1
|
Pan J, Li X, Sun R, Xu Y, Shi Z, Dai C, Wen H, Han RPS, Ye Q, Zhang F, Liu Q. Hydrogel-based radio frequency H 2S sensor for in situ periodontitis monitoring and antibacterial treatment. Biosens Bioelectron 2024; 259:116404. [PMID: 38772248 DOI: 10.1016/j.bios.2024.116404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
Periodontitis, a chronic disease, can result in irreversible tooth loss and diminished quality of life, highlighting the significance of timely periodontitis monitoring and treatment. Meanwhile, hydrogen sulfide (H2S) in saliva, produced by pathogenic bacteria of periodontitis, is an important marker for periodontitis monitoring. However, the easy volatility and chemical instability of the molecule pose challenges to oral H2S sensing. Here, we report a wearable hydrogel-based radio frequency (RF) sensor capable of in situ H2S detection and antibacterial treatment. The RF sensor comprises an agarose hydrogel containing conjugated silver nanoparticles-chlorhexidine (AG-AgNPs-CHL hydrogel) integrated with split-ring resonators. Adhered to a tooth, the hydrogel-based RF sensor enables wireless transmission of sensing signals to a mobile terminal and a concurrent release of the broad-spectrum antibacterial agent chlorhexidine without complex circuits. With the selective binding of the AgNPs to the sulfidion, the RF sensor demonstrates good sensitivity, a wide detection range (2-30 μM), and a low limit of detection (1.2 μM). Compared with standard H2S measurement, the wireless H2S sensor can distinguish periodontitis patients from healthy individuals in saliva sample tests. The hydrogel-based wearable sensor will benefit patients with periodontitis by detecting disease-related biomarkers for practical oral health management.
Collapse
Affiliation(s)
- Jingying Pan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xin Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Rujing Sun
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yi Xu
- Stomatology Hospital, School of Stomatology, School of Medicine, Zhejiang University, Hangzhou, 310027, China
| | - Zhenghan Shi
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chaobo Dai
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hao Wen
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ray P S Han
- Cancer Research Center, College of Computer Science, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Qing Ye
- Cancer Research Center, College of Computer Science, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Fenni Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
2
|
Timpel J, Klinghammer S, Riemenschneider L, Ibarlucea B, Cuniberti G, Hannig C, Sterzenbach T. Sensors for in situ monitoring of oral and dental health parameters in saliva. Clin Oral Investig 2023; 27:5719-5736. [PMID: 37698630 PMCID: PMC10560166 DOI: 10.1007/s00784-023-05206-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/11/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVES The oral cavity is an easily accessible unique environment and open system which is influenced by the oral fluids, microbiota, and nutrition. Little is known about the kinetics and dynamics of metabolic processes at the intraoral surfaces. Real-time monitoring of salivary biomarkers, e.g., glucose, lactate, fluoride, calcium, phosphate, and pH with intraoral sensors is therefore of major interest. The aim of this review is to overview the existing literature for intraoral saliva sensors. MATERIALS AND METHODS A comprehensive literature search was performed to review the most relevant studies on intraoral saliva sensor technology. RESULTS There is limited literature about the in situ saliva monitoring of salivary biomarkers. Bioadhesion and biofouling processes at the intraoral surfaces limit the performances of the sensors. Real-time, long-term, and continuous intraoral measurement of salivary metabolites remains challenging and needs further investigation as only few well-functioning sensors have been developed until today. Until now, there is no sensor that measures reliably beyond hours for any analyte other than glucose. CONCLUSIONS Saliva's complex and dynamic structure as well as bioadhesion are key challenges and should be addressed in the future developments. Consequently, more studies that focus particularly on biofouling processes and interferential effects of the salivary matrix components on sensor surfaces are required. CLINICAL RELEVANCE By monitoring fluids in the oral cavity, as the entrance to the digestive system, extensive information can be obtained regarding the effects of foods and preventive agents on the oral microbiota and the tooth surfaces. This may lead to a better understanding of strategies to modulate oral and general health.
Collapse
Affiliation(s)
- Julia Timpel
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, 01307, Dresden, Germany.
- Else Kröner-Fresenius Center for Digital Health (EKFZ), Dresden University of Technology, 01309, Dresden, Germany.
| | - Stephanie Klinghammer
- Else Kröner-Fresenius Center for Digital Health (EKFZ), Dresden University of Technology, 01309, Dresden, Germany
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, 01069, Dresden, Germany
| | - Leif Riemenschneider
- Else Kröner-Fresenius Center for Digital Health (EKFZ), Dresden University of Technology, 01309, Dresden, Germany
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, 01069, Dresden, Germany
| | - Bergoi Ibarlucea
- Else Kröner-Fresenius Center for Digital Health (EKFZ), Dresden University of Technology, 01309, Dresden, Germany
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, 01069, Dresden, Germany
| | - Gianaurelio Cuniberti
- Else Kröner-Fresenius Center for Digital Health (EKFZ), Dresden University of Technology, 01309, Dresden, Germany
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, 01069, Dresden, Germany
| | - Christian Hannig
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
- Else Kröner-Fresenius Center for Digital Health (EKFZ), Dresden University of Technology, 01309, Dresden, Germany
| | - Torsten Sterzenbach
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
- Else Kröner-Fresenius Center for Digital Health (EKFZ), Dresden University of Technology, 01309, Dresden, Germany
| |
Collapse
|
3
|
Song Z, Zhou S, Qin Y, Xia X, Sun Y, Han G, Shu T, Hu L, Zhang Q. Flexible and Wearable Biosensors for Monitoring Health Conditions. BIOSENSORS 2023; 13:630. [PMID: 37366995 DOI: 10.3390/bios13060630] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Flexible and wearable biosensors have received tremendous attention over the past decade owing to their great potential applications in the field of health and medicine. Wearable biosensors serve as an ideal platform for real-time and continuous health monitoring, which exhibit unique properties such as self-powered, lightweight, low cost, high flexibility, detection convenience, and great conformability. This review introduces the recent research progress in wearable biosensors. First of all, the biological fluids often detected by wearable biosensors are proposed. Then, the existing micro-nanofabrication technologies and basic characteristics of wearable biosensors are summarized. Then, their application manners and information processing are also highlighted in the paper. Massive cutting-edge research examples are introduced such as wearable physiological pressure sensors, wearable sweat sensors, and wearable self-powered biosensors. As a significant content, the detection mechanism of these sensors was detailed with examples to help readers understand this area. Finally, the current challenges and future perspectives are proposed to push this research area forward and expand practical applications in the future.
Collapse
Affiliation(s)
- Zhimin Song
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shu Zhou
- Department of Anesthesiology, Jilin Cancer Hospital, Changchun 130021, China
| | - Yanxia Qin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiangjiao Xia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yanping Sun
- School of Biomedical Engineering, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, International Health Science Innovation Center, Research Center for Biosensor and Nanotheranostic, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Tong Shu
- School of Biomedical Engineering, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, International Health Science Innovation Center, Research Center for Biosensor and Nanotheranostic, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Liang Hu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
4
|
Yang M, Zhou Y, Wang K, Luo C, Xie M, Shi X, Lin X. Review of Chemical Sensors for Hydrogen Sulfide Detection in Organisms and Living Cells. SENSORS (BASEL, SWITZERLAND) 2023; 23:3316. [PMID: 36992027 PMCID: PMC10058419 DOI: 10.3390/s23063316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
As the third gasotransmitter, hydrogen sulfide (H2S) is involved in a variety of physiological and pathological processes wherein abnormal levels of H2S indicate various diseases. Therefore, an efficient and reliable monitoring of H2S concentration in organisms and living cells is of great significance. Of diverse detection technologies, electrochemical sensors possess the unique advantages of miniaturization, fast detection, and high sensitivity, while the fluorescent and colorimetric ones exhibit exclusive visualization. All these chemical sensors are expected to be leveraged for H2S detection in organisms and living cells, thus offering promising options for wearable devices. In this paper, the chemical sensors used to detect H2S in the last 10 years are reviewed based on the different properties (metal affinity, reducibility, and nucleophilicity) of H2S, simultaneously summarizing the detection materials, methods, linear range, detection limits, selectivity, etc. Meanwhile, the existing problems of such sensors and possible solutions are put forward. This review indicates that these types of chemical sensors competently serve as specific, accurate, highly selective, and sensitive sensor platforms for H2S detection in organisms and living cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaogang Lin
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China
| |
Collapse
|
5
|
Ahn BK, Ahn YJ, Lee YJ, Lee YH, Lee GJ. Simple and Sensitive Detection of Bacterial Hydrogen Sulfide Production Using a Paper-Based Colorimetric Assay. SENSORS (BASEL, SWITZERLAND) 2022; 22:5928. [PMID: 35957485 PMCID: PMC9371415 DOI: 10.3390/s22155928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen sulfide (H2S) is known to participate in bacteria-induced inflammatory response in periodontal diseases. Therefore, it is necessary to quantify H2S produced by oral bacteria for diagnosis and treatment of oral diseases including halitosis and periodontal disease. In this study, we introduce a paper-based colorimetric assay for detecting bacterial H2S utilizing silver/Nafion/polyvinylpyrrolidone membrane and a 96-well microplate. This H2S-sensing paper showed a good sensitivity (8.27 blue channel intensity/μM H2S, R2 = 0.9996), which was higher than that of lead acetate paper (6.05 blue channel intensity/μM H2S, R2 = 0.9959). We analyzed the difference in H2S concentration released from four kinds of oral bacteria (Eikenella corrodens, Streptococcus sobrinus, Streptococcus mutans, and Lactobacillus casei). Finally, the H2S level in Eikenella corrodens while varying the concentration of cysteine and treatment time was quantified. This paper-based colorimetric assay can be utilized as a simple and effective tool for in vitro screening of H2S-producing ability of many bacteria as well as salivary H2S analysis.
Collapse
Affiliation(s)
- Byung-Ki Ahn
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Yong-Jin Ahn
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Young-Ju Lee
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Yeon-Hee Lee
- Department of Orofacial Pain and Oral Medicine, Kyung Hee University Dental Hospital, Kyung Hee University School of Dentistry, Seoul 02447, Korea
| | - Gi-Ja Lee
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Korea
- Department of Medical Engineering, Kyung Hee University Graduate School, Seoul 02447, Korea
| |
Collapse
|
6
|
Iron oxide-immobilized porous carbon nanofiber-based radio frequency identification (RFID) tag sensor for detecting hydrogen sulfide. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|