1
|
Tomac I, Adam V, Labuda J. Advanced chemically modified electrodes and platforms in food analysis and monitoring. Food Chem 2024; 460:140548. [PMID: 39096799 DOI: 10.1016/j.foodchem.2024.140548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/22/2024] [Accepted: 07/18/2024] [Indexed: 08/05/2024]
Abstract
Electrochemical sensors and electroanalytical techniques become emerging as effective and low-cost tools for rapid assessment of special parameters of the food quality. Chemically modified electrodes are developed to change properties and behaviour, particularly sensitivity and selectivity, of conventional electroanalytical sensors. Within this comprehensive review, novel trends in chemical modifiers material structure, electrodes construction and flow analysis platforms are described and evaluated. Numerous recent application examples for the detection of food specific analytes are presented in a form of table to stimulate further development in both, the basic research and commercial field.
Collapse
Affiliation(s)
- Ivana Tomac
- Department of Applied Chemistry and Ecology, Faculty of Food Technology Osijek, J. J. Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Generála Píky 1999/5, 613 00 Brno, Czech Republic.
| | - Jan Labuda
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37 Bratislava, Slovakia.
| |
Collapse
|
2
|
Rahchamandi SYR, Mirhadi E, Gheybi F, Kazemi-Beydokhti A, Jaafari MR, Mostafavi E, Kesharwani P, Sahebkar A, Alavizadeh SH. Engineering carbon-based nanomaterials for the delivery of platinum compounds: An innovative cancer disarming frontier. ENVIRONMENTAL RESEARCH 2024; 262:119933. [PMID: 39278586 DOI: 10.1016/j.envres.2024.119933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/12/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
Carbon-based nanomaterials have been frequently used as one of the most advanced and fascinating nanocarriers for drug delivery applications due to their unique physicochemical properties. Varying types of carbon nanomaterials (CNMs) including carbon nanotubes, graphene, graphene oxides, carbon nanohorns, fullerenes, carbon nanodots, and carbon nanodiamonds are promising candidates for designing novel systems to deliver platinum compounds. CNMs modification with various moieties renders vast bio-applications in the area of targeted and organelle-specific cancer therapy. This review featured an updated and concise summarizations of various types of CNMs, their synthesis, advantages and disadvantages including potential bio-toxicity for biomedical applications. The therapeutic utility of CNMs and their efficacy have been noticed and for the first time, this review addressed CNMs-focused applications on the delivery of platinum-derivatives to the cancer site. Collectively, the contents of this review will assist researchers to focus on the possible fabrication, bio-functionalization and designing methods of CNMs to the further development of their future biomedical implementations.
Collapse
Affiliation(s)
- Seyedeh Yasaman Rahnamaei Rahchamandi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Mirhadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Gheybi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Kazemi-Beydokhti
- Department of Chemical Engineering, School of Petroleum and Petrochemical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Rasool A, Sri S, Zulfajri M, Sri Herwahyu Krismastuti F. Nature inspired nanomaterials, advancements in green synthesis for biological sustainability. INORG CHEM COMMUN 2024; 169:112954. [DOI: 10.1016/j.inoche.2024.112954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Zou Y, Shi Y, Wang T, Ji S, Zhang X, Shen T, Huang X, Xiao J, Farag MA, Shi J, Zou X. Quantum dots as advanced nanomaterials for food quality and safety applications: A comprehensive review and future perspectives. Compr Rev Food Sci Food Saf 2024; 23:e13339. [PMID: 38578165 DOI: 10.1111/1541-4337.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
The importance of food quality and safety lies in ensuring the best product quality to meet consumer demands and public health. Advanced technologies play a crucial role in minimizing the risk of foodborne illnesses, contamination, drug residue, and other potential hazards in food. Significant materials and technological advancements have been made throughout the food supply chain. Among them, quantum dots (QDs), as a class of advanced nanomaterials with unique physicochemical properties, are progressively demonstrating their value in the field of food quality and safety. This review aims to explore cutting-edge research on the different applications of QDs in food quality and safety, including encapsulation of bioactive compounds, detection of food analytes, food preservation and packaging, and intelligent food freshness indicators. Moreover, the modification strategies and potential toxicities of diverse QDs are outlined, which can affect performance and hinder applications in the food industry. The findings suggested that QDs are mainly used in analyte detection and active/intelligent food packaging. Various food analytes can be detected using QD-based sensors, including heavy metal ions, pesticides, antibiotics, microorganisms, additives, and functional components. Moreover, QD incorporation aided in improving the antibacterial and antioxidant activities of film/coatings, resulting in extended shelf life for packaged food. Finally, the perspectives and critical challenges for the productivity, toxicity, and practical application of QDs are also summarized. By consolidating these essential aspects into this review, the way for developing high-performance QD-based nanomaterials is presented for researchers and food technologists to better capitalize upon this technology in food applications.
Collapse
Affiliation(s)
- Yucheng Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| | - Yongqiang Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| | - Tianxing Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| | - Shengyang Ji
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| | - Tingting Shen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| | - Xiaowei Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Universidade de Vigo, Ourense, Spain
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo P.B., Egypt
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| |
Collapse
|
5
|
Krishna Perumal P, Chen CW, Giri BS, Singhania RR, Patel AK, Dong CD. Graphene-based functional electrochemical sensors for the detection of chlorpyrifos in water and food samples: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:631-641. [PMID: 38410271 PMCID: PMC10894149 DOI: 10.1007/s13197-023-05772-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/07/2023] [Accepted: 05/20/2023] [Indexed: 02/28/2024]
Abstract
Prolonged and excessive use of chlorpyrifos (CPS) has caused severe pollution, particularly in crops, vegetables, fruits, and water sources. As a result, CPS is detected in various food and water samples using conventional methods. However, its applications are limited due to size, portability, cost, etc. In this regard, electrochemical sensors are preferred for CPS detection due to their high sensitivity, reliability, rapid, on-site detection, and user-friendly. Notably, graphene-based electrochemical sensors have gained more attention due to their unique physiochemical and electrochemical properties. It shows high sensitivity, selectivity, and quick response because of its high surface area and high conductivity. In this review, we have discussed an overview of three graphene-based different functional electrochemical sensors such as electroanalytical sensors, bio-electrochemical sensors, and photoelectrochemical sensors used to detect CPS in food and water samples. Furthermore, the fabrication and operation of these electrochemical sensors using various materials (low band gap material, nanomaterials, enzymes, antibodies, DNA, aptamers, and so on) and electrochemical techniques (CV, DPV, EIS, SWV etc.) are discussed. The study found that the electrical signal was reduced with increasing CPS concentration. This is due to the blocking of active sites, reduced redox reaction, impedance, irreversible reactions, etc. In addition, acetylcholinesterase-coupled sensors are more sensitive and stable than others. Also, it can be further improved by fabricating with low band gap nanomaterials. Despite their advantages, these sensors have significant drawbacks, such as low reusability, repeatability, stability, and high cost. Therefore, further research is required to overcome such limitations.
Collapse
Affiliation(s)
- Pitchurajan Krishna Perumal
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Chiu-wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Balendu Shekher Giri
- Sustainability Cluster, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand 248007 India
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| |
Collapse
|
6
|
Chen J, Ji C, Wang X, Tian Y, Tao H. A new plant-esterase inhibition based electrochemical sensor with signal amplification by MoS 2@N-CDs for chlorpyrifos detection. RSC Adv 2024; 14:10703-10713. [PMID: 38567337 PMCID: PMC10986163 DOI: 10.1039/d4ra00009a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
Chlorpyrifos (CPF) is the most common pesticide entering the food chain and posing a threat to human health. This study presents a new electrochemical biosensor based on molybdenum disulfide nanosheets and nitrogen-doped carbon dot nanocomposite (MoS2@N-CDs) and kidney bean esterase (KdBE), and it is shown to achieve accurate detection of CPF. MoS2@N-CDs were prepared by a facile solvothermal method and characterized by electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Electrochemical characterization confirmed that MoS2@N-CDs facilitated electron transfer and increased the electroactive surface area of the electrode, thereby improved the sensing performance of the electrode. The oxidation peak current of 1-naphthol, which was produced by the hydrolysis of 1-naphthyl acetate catalyzed by KdBE, was adopted as the signal of the sensor. CPF can suppress KdBE activity and consequently cause a decrease in the sensing signal. The experimental results show that the variation of sensing signal is a reliable index to evaluate the CPF level. Under the optimized conditions, the developed enzyme sensor showed superior CPF assay performance with a linear detection range as wide as 0.01-500 μg L-1 and LOD as low as 3.5 × 10-3 μg L-1 (S/N = 3). The inter- and intra-batch RSDs for electrode testing were 4.02% and 2.69%, respectively. Moreover, the developed biosensor also showed good stability and anti-interference. The spiked recoveries of CPF in oilseed rape and cabbage ranged from 98.09% to 106.01% with low relative standard deviation (RSD) (<5.23%), suggesting that the sensor is a promising tool to enable simple, low-cost but highly sensitive large-scale screening of CPF residues in food.
Collapse
Affiliation(s)
- Jiayu Chen
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University Huaxi District Guiyang 550025 China
| | - Chun Ji
- School of Pharmaceutical Sciences, Guizhou University Huaxi District Guiyang 550025 China
| | - Xiao Wang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University Huaxi District Guiyang 550025 China
| | - Yunxia Tian
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University Huaxi District Guiyang 550025 China
| | - Han Tao
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University Huaxi District Guiyang 550025 China
| |
Collapse
|
7
|
Sebastian N, Yu WC, Balram D, Hong GT, Alharthi SS, Al-Saidi HM. Ultrasensitive detection and photocatalytic degradation of polyketide drug tetracycline in environment and food samples using dual-functional Ag doped zinc ferrite embedded functionalized carbon nanofibers. CHEMOSPHERE 2024; 348:140692. [PMID: 37952826 DOI: 10.1016/j.chemosphere.2023.140692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
The efficient degradation and accurate quantification of tetracycline in environment and food samples is pivotal for ensuring public health and safety by monitoring potential contamination and maintaining regulatory standards. Hence, in this study, photocatalytic degradation of tetracycline and its electrochemical detection in environment and food samples based on dual-functional silver-doped zinc ferrite nanoparticles embedded chitosan-functionalized carbon nanofibers fabricated on a screen-printed carbon electrode (AgZFO/CHIT-CNF/SPCE) is presented. A hydrothermal method was used in the synthesis of Ag-doped ZFO, and chitosan was functionalized on the CNF surface using a swift and cost-effective chemical modification process of carboxyl groups. Various techniques, such as XRD, HRTEM, elemental mapping, EIS, XPS, FTIR, VSM, BET, UV-Vis DRS, and Raman spectroscopy were used to analyze the characteristics of the prepared nanocomposite. Cyclic voltammetry and differential pulse voltammetry were used to evaluate the surface-controlled electrocatalytic properties of AgZFO/CHIT-CNF towards tetracycline. Electrochemical tests revealed that the proposed electrode exhibited excellent sensitivity for detecting tetracycline. The fabricated electrode had a low detection limit of 1 nM and a wide linear range (0.2-53.2 μM). The sensor also demonstrated exceptional selectivity, stability, and reusability. The practical feasibility evaluated with real samples, including chicken feed, shrimp, milk, soil, and wastewater, resulted in high recovery values.
Collapse
Affiliation(s)
- Neethu Sebastian
- Institute of Organic and Polymeric Materials, Department of Molecular Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei, 106, Taiwan, ROC
| | - Wan-Chin Yu
- Institute of Organic and Polymeric Materials, Department of Molecular Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei, 106, Taiwan, ROC.
| | - Deepak Balram
- Department of Electrical Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei, 106, Taiwan, ROC
| | - Guo-Ting Hong
- Institute of Organic and Polymeric Materials, Department of Molecular Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei, 106, Taiwan, ROC
| | - Salman S Alharthi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Hamed M Al-Saidi
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| |
Collapse
|
8
|
Hossain MI, Hasnat MA. Recent advancements in non-enzymatic electrochemical sensor development for the detection of organophosphorus pesticides in food and environment. Heliyon 2023; 9:e19299. [PMID: 37662791 PMCID: PMC10474438 DOI: 10.1016/j.heliyon.2023.e19299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Organophosphorus Pesticides (OPPs) are among the extensively used pesticides throughout the world to boost agricultural production. However, persistent residues of these toxic pesticides in various vegetables, fruits, and drinking water poses detrimental health effects. Consequently, the rapid monitoring of these harmful chemicals through simple and cost-effective methods has become crucial. In such an instance, electrochemical methods offer simple, rapid, sensitive, reproducible, and affordable detection pathways. To overcome the limitations associated with electrochemical enzymatic sensors, non-enzymatic sensors have emerged as promising and simpler alternatives. The non-enzymatic sensors have demonstrated superior activity, reaching detection limit up to femto (10-15) molar concentration in recent years, leveraging higher selectivity obtained through the molecularly imprinted polymers, synergistic effects between carbonaceous nanomaterials and metals, metal oxide alloys, and other alternative approaches. Herein, this review paper provides an overview of the recent advancements in the development of non-enzymatic electrochemical sensors for the detection of commonly used OPPs, such as Chlorpyrifos (CHL), Diazinon (DZN), Malathion (MTN), Methyl parathion (MP) and Fenthion (FEN). The design method of the electrodes, electrode functioning mechanism, and their analytical performance metrics, such as limit of detection, sensitivity, selectivity, and linearity range, were reviewed and compared. Furthermore, the existing challenges within this rapidly growing field were discussed along with their potential solutions which will facilitate the fabrication of advanced and sustainable non-enzymatic sensors in the future.
Collapse
Affiliation(s)
- Mohammad Imran Hossain
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Mohammad A. Hasnat
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| |
Collapse
|
9
|
Liu X, Li Y, Qiao W, Chang M, Li Y. A non-enzymatic electrochemical sensor based on nitrogen-doped mesoporous carbon@hydroxyl-functionalized ionic liquid composites modified electrode for the detection of fenitrothion. RSC Adv 2023; 13:13030-13039. [PMID: 37124009 PMCID: PMC10133836 DOI: 10.1039/d3ra01011b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023] Open
Abstract
The overuse of organophosphorus pesticides (OPs) results in severe environmental pollution and food safety issues. Fenitrothion (FNT) is a typical derivative of OPs, so rapid and sensitive detection of FNT plays an important role in environmental protection and public health. An FNT non-enzymatic electrochemical sensor based on nitrogen-doped mesoporous carbon@functionalized ionic liquid composites (N-CMK-3@IL) was constructed in this work. The surface topography and electrochemical properties of the sensor were investigated by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. Because N-CMK-3@IL composites could improve the conductivity and increase the active surface area of the modified electrode, the sensor exhibited good electrocatalytic activity to FNT. Under the optimal experimental conditions, a good linear relationship for FNT was obtained in the range of 0.5-100 ng mL-1, and the detection limit was 0.1 ng mL-1 (S/N = 3). The sensor was successfully applied for the detection of FNT in vegetable samples.
Collapse
Affiliation(s)
- Xinsheng Liu
- School of Basic Medical Sciences, Ningxia Medical University Yinchuan 750004 P. R. China +86-951-6980139 +86-951-6980139
| | - Yutong Li
- School of Public Health, Ningxia Medical University Yinchuan 750004 P. R. China
| | - Wenli Qiao
- School of Public Health, Ningxia Medical University Yinchuan 750004 P. R. China
| | - Mengjun Chang
- School of Public Health, Ningxia Medical University Yinchuan 750004 P. R. China
| | - Yonghong Li
- School of Public Health, Ningxia Medical University Yinchuan 750004 P. R. China
- Key Laboratory of Environmental Factors and Chronic Disease Control Yinchuan 750004 P. R. China
| |
Collapse
|
10
|
De Luca V, Mandrich L, Manco G. Development of a Qualitative Test to Detect the Presence of Organophosphate Pesticides on Fruits and Vegetables. Life (Basel) 2023; 13:life13020490. [PMID: 36836850 PMCID: PMC9958579 DOI: 10.3390/life13020490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND In recent decades, the use of pesticides in agriculture has increased at a fast pace, highlighting safety problems for the environment and human health, which in turn has made it necessary to develop new detection and decontamination systems for pesticides. METHODS A new qualitative test capable of detecting the presence of pesticides on fruits and vegetables by using thermostable enzymes was discovered, and the test was carried out on apples and aubergines. The contaminating pesticides were extracted from fruits with acetonitrile and analyzed with a biosensor system based on the thermostable esterase EST2 immobilized on a nitrocellulose filter. This enzyme is irreversibly inhibited mainly in the presence of organophosphates pesticides. Therefore, by observing esterase activity inhibition, we revealed the presence of residual pesticides on the fruits and vegetables. RESULTS By analyzing the rate of esterase activity inhibition, we predicted that residual pesticides are present on the surface of the fruits. When we cleaned the fruits by washing them in the presence of the phosphotriesterase SsoPox before the detection of the esterase activity on filters, we observed a full recovery of the activity for apples and 30% for aubergines, indicating that the enzymatic decontamination of organophosphates pesticides took place. CONCLUSIONS The reported method permitted us to assess the pesticides present on the vegetables and their decontamination.
Collapse
Affiliation(s)
- Valentina De Luca
- Institute of Experimental Endocrinology and Oncology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Luigi Mandrich
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
- Correspondence: (L.M.); (G.M.)
| | - Giuseppe Manco
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
- Correspondence: (L.M.); (G.M.)
| |
Collapse
|
11
|
Pathiraja G, Bonner CDJ, Obare SO. Recent Advances of Enzyme-Free Electrochemical Sensors for Flexible Electronics in the Detection of Organophosphorus Compounds: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23031226. [PMID: 36772265 PMCID: PMC9918968 DOI: 10.3390/s23031226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 06/10/2023]
Abstract
Emerging materials integrated into high performance flexible electronics to detect environmental contaminants have received extensive attention worldwide. The accurate detection of widespread organophosphorus (OP) compounds in the environment is crucial due to their high toxicity even at low concentrations, which leads to acute health concerns. Therefore, developing rapid, highly sensitive, reliable, and facile analytical sensing techniques is necessary to monitor environmental, ecological, and food safety risks. Although enzyme-based sensors have better sensitivity, their practical usage is hindered due to their low specificity and stability. Therefore, among various detection methods of OP compounds, this review article focuses on the progress made in the development of enzyme-free electrochemical sensors as an effective nostrum. Further, the novel materials used in these sensors and their properties, synthesis methodologies, sensing strategies, analytical methods, detection limits, and stability are discussed. Finally, this article summarizes potential avenues for future prospective electrochemical sensors and the current challenges of enhancing the performance, stability, and shelf life.
Collapse
Affiliation(s)
- Gayani Pathiraja
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Chartanay D. J. Bonner
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Sherine O. Obare
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC 27401, USA
| |
Collapse
|
12
|
Chang HW, Chen CL, Chen YH, Chang YM, Liu FJ, Tsai YC. Electrochemical Organophosphorus Pesticide Detection Using Nanostructured Gold-Modified Electrodes. SENSORS (BASEL, SWITZERLAND) 2022; 22:9938. [PMID: 36560305 PMCID: PMC9787336 DOI: 10.3390/s22249938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
In this study, nanostructured gold was successfully prepared on a bare Au electrode using the electrochemical deposition method. Nanostructured gold provided more exposed active sites to facilitate the ion and electron transfer during the electrocatalytic reaction of organophosphorus pesticide (methyl parathion). The morphological and structural characterization of nanostructured gold was conducted using field-emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), which was further carried out to evaluate the electrocatalytic activity towards methyl parathion sensing. The electrochemical performance of nanostructured gold was investigated by electrochemical measurements (cyclic voltammetry (CV) and differential pulse voltammetry (DPV)). The proposed nanostructured gold-modified electrode exhibited prominent electrochemical methyl parathion sensing performance (including two linear concentration ranges from 0.01 to 0.5 ppm (R2 = 0.993) and from 0.5 to 4 ppm (R2 = 0.996), limit of detection of 5.9 ppb, excellent selectivity and stability), and excellent capability in determination of pesticide residue in real fruit and vegetable samples (bok choy and strawberry). The study demonstrated that the presented approach to fabricate a nanostructured gold-modified electrode could be practically applied to detect pesticide residue in agricultural products via integrating the electrochemical and gas chromatography coupled with mass spectrometry (GC/MS-MS) analysis.
Collapse
Affiliation(s)
- Han-Wei Chang
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan
- Pesticide Analysis Center, National United University, Miaoli 360302, Taiwan
| | - Chien-Lin Chen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yan-Hua Chen
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan
- Pesticide Analysis Center, National United University, Miaoli 360302, Taiwan
| | - Yu-Ming Chang
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan
- Pesticide Analysis Center, National United University, Miaoli 360302, Taiwan
| | - Feng-Jiin Liu
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan
- Pesticide Analysis Center, National United University, Miaoli 360302, Taiwan
| | - Yu-Chen Tsai
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
13
|
Mondal R, Dam P, Chakraborty J, Paret ML, Katı A, Altuntas S, Sarkar R, Ghorai S, Gangopadhyay D, Mandal AK, Husen A. Potential of nanobiosensor in sustainable agriculture: the state-of-art. Heliyon 2022; 8:e12207. [PMID: 36578430 PMCID: PMC9791828 DOI: 10.1016/j.heliyon.2022.e12207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/28/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
A rapid surge in world population leads to an increase in worldwide demand for agricultural products. Nanotechnology and its applications in agriculture have appeared as a boon to civilization with enormous potential in transforming conventional farming practices into redefined farming activities. Low-cost portable nanobiosensors are the most effective diagnostic tool for the rapid on-site assessment of plant and soil health including plant biotic and abiotic stress level, nutritional status, presence of hazardous chemicals in soil, etc. to maintain proper farming and crop productivity. Nanobiosensors detect physiological signals and convert them into standardized detectable signals. In order to achieve a reliable sensing analysis, nanoparticles can aid in signal amplification and sensor sensitivity by lowering the detection limit. The high selectivity and sensitivity of nanobiosensors enable early detection and management of targeted abnormalities. This study identifies the types of nanobiosensors according to the target application in agriculture sector.
Collapse
Affiliation(s)
- Rittick Mondal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Paulami Dam
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Joydeep Chakraborty
- Department of Microbiology, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Mathew L. Paret
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy, FL 32351, USA
- Plant Pathology Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Ahmet Katı
- Department of Biotechnology, University of Health Sciences Turkey, 34668, Istanbul, Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, 34668, Istanbul, Turkey
| | - Sevde Altuntas
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, 34668, Istanbul, Turkey
- Department of Tissue Engineering, University of Health Sciences Turkey, 34668, Istanbul, Turkey
| | - Ranit Sarkar
- Department of Microbiology, Orissa University of Agriculture & Technology, Bhubaneswar, Odisha 751003, India
| | - Suvankar Ghorai
- Department of Microbiology, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Debnirmalya Gangopadhyay
- Silkworm Genetics and Breeding Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Amit Kumar Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Azamal Husen
- Wolaita Sodo University, PO Box 138, Wolaita, Ethiopia
| |
Collapse
|
14
|
Sharma D, Kushwaha CS, Kumari P. Preparation of Titanium Dioxide Encapsulated Rice Husk Derived Nanocellulose Grafted Polyaniline for Potentiometric Sensing of Residual Malathion. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
15
|
Goyal R, Bishnoi S, Sharma A, Singhal R, Gupta P. Electrochemical sensing of chlorpyrifos, a carcinogen responsible for breast cancer, in milk and plasma of lactating mothers. ELECTROANAL 2022. [DOI: 10.1002/elan.202200238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|