1
|
Chen LW, Lu N, Wang L. High-sensitivity and stability electrochemical sensors for chlorogenic acid detection based on optimally engineered nanomaterials. Analyst 2025. [PMID: 39807842 DOI: 10.1039/d4an01483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Developing cost-effective and efficient analytical methods is essential for detecting chlorogenic acid (CGA), as excessive consumption of CGA, despite its significant antioxidant, anticancer, and anti-inflammatory properties, can cause serious health problems. The remarkable progress and adjustable features of nanomaterials have significantly improved the analytical capabilities of electrochemical sensors for CGA. This review examines the use of optimally engineered nanomaterials in CGA electrochemical sensors, emphasizing the design and modification strategies of various nanomaterials. It starts with an introduction to the basic principles of electrochemical sensors, detailing their components and the analytical methods employed. Subsequently, the review explores how structural and compositional adjustments in electrocatalysts from different nanomaterial categories enhance CGA detection performance. In conclusion, it discusses the challenges and opportunities linked to designing nanomaterials for modified electrodes in CGA sensors. This review seeks to enhance the understanding of the connection between nanomaterial structures and the performance of CGA electrochemical sensors, offering new perspectives for the future design of highly efficient CGA electrochemical sensors.
Collapse
Affiliation(s)
- Lin-Wei Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Nannan Lu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
2
|
Sigonya S, Mokhena TC, Mayer P, Makhanya TR, Mokhothu TH. Electrospinning and Rheological Characterization of Polyethylene Terephthalate and Polyvinyl Alcohol with Different Degrees of Hydrolysis Incorporating Molecularly Imprinted Polymers. Polymers (Basel) 2024; 16:3297. [PMID: 39684041 DOI: 10.3390/polym16233297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
This study investigates the electrospinning and rheological properties of polyethylene terephthalate (PET) and polyvinyl alcohol (PVA) with varying degrees of hydrolysis (DH) for molecularly imprinted polymer (MIP) incorporation. The morphology and properties of the electrospun nanofibers were evaluated, revealing that PVA nanofibers exhibited smoother and more uniform structures compared to PET fibers. The rheological behavior of the polymer solutions was also characterized, showing that PVA 99 DH solution exhibited shear-thinning behavior due to the unique structural properties of the polymer chains. The introduction of MIP and NIP additives had no significant impact on the rheological properties, except for PVA 99 MIP and NIP solutions, which showed deviations from Newtonian behavior. The electrospun MIP nanofibers showed a conductivity of 1054 µS/cm for PVA (87-90% DH) and a viscosity of 165.5 mPa·s, leading to optimal fiber formation, while displaying a good adsorption capacity of 0.36 mg for PVA-MIP to effectively target pharmaceuticals such as emtricitabine and tenofovir disoproxil, showing their potential for advanced water treatment applications. The results suggest that the electrospinning process and rheological properties of the polymer solutions are influenced by the molecular structure and interactions within the polymer matrix, which can be exploited to tailor the properties of MIPs for specific applications.
Collapse
Affiliation(s)
- Sisonke Sigonya
- Department of Chemistry, Durban University of Technology, P.O Box 1334, Durban 4000, South Africa
| | - Teboho Clement Mokhena
- DST/Mintek NIC, Advanced Materials Division, Mintek, 200 Malibongwe Drive, Randburg 2194, South Africa
| | - Paul Mayer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON K1N 6N5, Canada
| | - Talent Raymond Makhanya
- Department of Chemistry, Durban University of Technology, P.O Box 1334, Durban 4000, South Africa
| | | |
Collapse
|
3
|
Lu S, Zhang K, Liu Y, Zhan X, Savari R. Polymeric nanocomposite electrode for enhanced electrochemical detection of α-lipoic acid: Application in neuroinflammation prevention and clinical analysis. ENVIRONMENTAL RESEARCH 2024; 245:117369. [PMID: 37827372 DOI: 10.1016/j.envres.2023.117369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Using poly (vanillin-co-chitosan)/functionalized MWCNTs/GCE (PV-CS/f-MWCNTs/GCE) as a polymeric nanocomposite modified electrode, the present investigation has been conducted on the electrochemical detection of α-lipoic acid (α-LA) to prevent the activation of microglia inflammation of the nervous system. The manufacture of modified polymeric nanocomposite electrodes was carried out using the established electropolymerization process. Field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) analyses of structure revealed that the electropolymerization of poly (vanillin-co-chitosan) on the surface of the f-MWCNTs modified electrode was successful. Vanillin-co-chitosan electropolymerization on f-MWCNTs as electroactive sheets can enhance the signal for α-LA electrochemical sensors, according to research on the electrochemical characteristics utilizing cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methodologies. The PV-CS/f-MWCNTs/GCE demonstrated that it had a sensitivity of 0.04664 μA/μM, a detection limit of 0.012 μM, and an excellent response, linear range, and wide linear range to α-LA from 0 to 3000 μM. The results of the application of PV-CS/f-MWCNTs/GCE for determining the concentration of α-LA in a prepared real sample of human serum by DPV and human lipoic acid ELISA Kit analyses via standard addition method illustrated the substantial conformity between the findings of both assays. The results of the DPV analyses resulted in acceptable recovery values (97.60%-99.10%) and appropriate values of the Relative Standard Deviation (RSD) (3.58%-5.07%), which demonstrated the great applicability and accuracy of the results of PV-CS/f-MWCNTs/GCE for determining α-LA concentration in biological fluids and pharmaceutical specimens.
Collapse
Affiliation(s)
- Shenyi Lu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
| | - Ke Zhang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yu Liu
- Guangxi Medical university, Nanning, 530021, China
| | | | - Rojan Savari
- School of Physics, College of Science, University of Tehran, North-Kargar Street, Tehran, 1439955961, Iran
| |
Collapse
|
4
|
Brunet Cabré M, Okumu F, McKelvey K. Electrochemical Detection of Tenofovir through Quenching of Chloride Ion-Mediated Gold Electrodissolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4314-4320. [PMID: 38353065 DOI: 10.1021/acs.langmuir.3c03563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Tenofovir (TNF) is a nucleotide reverse transcriptase inhibitor used as an antiviral medication to treat human immunodeficiency virus (HIV) and hepatitis B virus infections. The extensive use of TNF can result in its release into the environment, and there is growing interest in developing simple and cost-effective methods for detecting TNF. We report that the electrochemical dissolution of gold in a chloride ion-containing electrolyte is suppressed in the presence of TNF. The quenching of the gold electrodissolution response is the result of the adsorption of TNF onto the gold surface. A simple analysis shows that we can relate the degree of TNF surface coverage to the relative size of the quenching of the gold electrodissolution response and follow the time-dependent absorption of TNF onto the gold electrode surface.
Collapse
Affiliation(s)
- Marc Brunet Cabré
- School of Chemistry, Trinity College Dublin, Dublin D02 PN4, Ireland
| | - Fredrick Okumu
- Jaramogi Oginga Odinga University of Science and Technology, P.O. Box 201, Bondo 40601, Kenya
| | - Kim McKelvey
- School of Chemical and Physical Sciences and MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington 6012, New Zealand
| |
Collapse
|
5
|
Draz MU, Zia Ul Haq M, Hayat A, Ajab H. An ALP enzyme-based electrochemical biosensor coated with signal-amplifying BaTiO 3 nanoparticles for the detection of an antiviral drug in human blood serum. NANOSCALE ADVANCES 2024; 6:534-547. [PMID: 38235091 PMCID: PMC10790964 DOI: 10.1039/d3na00839h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024]
Abstract
Tenofovir (TFV) is an antiviral drug used to treat the co-infections of HIV/HBV viruses. Accurate monitoring of TFV drug levels is essential for evaluating patient adherence, optimizing dosage, and assessing treatment efficacy. Herein, we propose an innovative electrochemical sensing approach by using the alkaline phosphatase (ALP) enzyme with the support of BaTiO3 nanoparticles. An attractive sensitivity and selectivity of the developed sensor towards TFV detection were achieved. First, the nanoparticles were synthesized by following a single-step sol-gel method and characterized through various analytical techniques, including SEM, EDX, FT-IR, BET, zeta potential, XRD, and UV-vis and Raman spectroscopy. The suggested mechanism demonstrated the formation of a strong bond between TFV and the ALP enzyme, primarily through the phosphate group, resulting in enzyme inhibition. Various parameters like nanoparticle amount, electrode modification time with enzyme and BaTiO3 nanoparticles, and drug incubation time were optimized. The biosensor demonstrated an outstanding limit of detection (LOD) of 0.09 nM and recovery percentages of 98.6-106% in human blood serum, indicating adequate repeatability and selectivity. The proposed biosensor can be converted into a portable device for measuring small sample volumes and observing patients for immediate medical care or personalized therapies. It achieved better sensitivity compared to existing methods, making it suitable for precise drug detection in microdoses.
Collapse
Affiliation(s)
- Muhammad Umar Draz
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus Pakistan
| | - Muhammad Zia Ul Haq
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus Pakistan
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University, Islamabad Lahore Campus Lahore 54000 Pakistan
| | - Huma Ajab
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus Abbottabad Pakistan
| |
Collapse
|
6
|
Ozer T, Henry CS. Recent Trends in Nanomaterial Based Electrochemical Sensors for Drug Detection: Considering Green Assessment. Curr Top Med Chem 2024; 24:952-972. [PMID: 38415434 DOI: 10.2174/0115680266286981240207053402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/02/2024] [Accepted: 01/12/2024] [Indexed: 02/29/2024]
Abstract
An individual's therapeutic drug exposure level is directly linked to corresponding clinical effects. Rapid, sensitive, inexpensive, portable and reliable devices are needed for diagnosis related to drug exposure, treatment, and prognosis of diseases. Electrochemical sensors are useful for drug monitoring due to their high sensitivity and fast response time. Also, they can be combined with portable signal read-out devices for point-of-care applications. In recent years, nanomaterials such as carbon-based, carbon-metal nanocomposites, noble nanomaterials have been widely used to modify electrode surfaces due to their outstanding features including catalytic abilities, conductivity, chemical stability, biocompatibility for development of electrochemical sensors. This review paper presents the most recent advances about nanomaterials-based electrochemical sensors including the use of green assessment approach for detection of drugs including anticancer, antiviral, anti-inflammatory, and antibiotics covering the period from 2019 to 2023. The sensor characteristics such as analyte interactions, fabrication, sensitivity, and selectivity are also discussed. In addition, the current challenges and potential future directions of the field are highlighted.
Collapse
Affiliation(s)
- Tugba Ozer
- Department of Bioengineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Türkiye
- Health Biotechnology Joint Research and Application Center of Excellence, 34220, Esenler, Istanbul, Türkiye
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO80523, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, 80523, United States
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
Khodari M, Assaf HF, Shamroukh AA, Rabie EM. Fabrication of an electrochemical sensor based on eggshell waste recycling for the voltammetric simultaneous detection of the antibiotics ofloxacin and ciprofloxacin. BMC Chem 2023; 17:131. [PMID: 37777805 PMCID: PMC10544171 DOI: 10.1186/s13065-023-01044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
In this work, an accurate, highly sensitive, and economical electrochemical sensor based on a carbon paste electrode modified by Ca2CuO3 nanostructure (Ca2CuO3 NS) was constructed using Eggshell waste recycling as a cheap source of calcium. The Ca2CuO3 NS was analyzed using FTIR, SEM, and XRD measurements. The synthesized nanomaterials utilized for the first time to enhance the electrocatalytic efficiency of carbon paste electrode (CPE) toward fluoroquinolones antibiotics ofloxacin (OFL) and ciprofloxacin (CIP), The drugs used to treat pneumonia caused by COVID-19. The synthesized Ca2CuO3 NS dramatically enhanced the anodic peak response of CPE toward both drugs compared to the unmodified one and other modified electrodes. The simultaneous detection of the two antibiotics was performed in the linear range of 0.09-1.0 μM for OFL and 0.05-0.8 μM for CIP with the LOD of 0.027 μM and 0.012 μM, respectively. The suggested method was applied successfully to determine OFL and CIP in real samples.
Collapse
Affiliation(s)
- M Khodari
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83521, Egypt.
| | - H F Assaf
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83521, Egypt
| | - Ahmed A Shamroukh
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83521, Egypt
| | - E M Rabie
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83521, Egypt
| |
Collapse
|
8
|
ERDEM A, ŞENTÜRK H, YILDIZ E, MARAL M, YILDIRIM A, BOZOĞLU A, KIVRAK B, AY NC. Electrochemical DNA biosensors developed for the monitoring of biointeractions with drugs: a review. Turk J Chem 2023; 47:864-887. [PMID: 38173734 PMCID: PMC10760829 DOI: 10.55730/1300-0527.3584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/31/2023] [Accepted: 09/30/2023] [Indexed: 01/05/2024] Open
Abstract
The interaction of drugs with DNA is important for the discovery of novel drug molecules and for understanding the therapeutic effects of drugs as well as the monitoring of side effects. For this reason, many studies have been carried out to investigate the interactions of drugs with nucleic acids. In recent years, a large number of studies have been performed to electrochemically detect drug-DNA interactions. The fast, sensitive, and accurate results of electrochemical techniques have resulted in a leading role for their implementation in this field. By means of electrochemical techniques, it is possible not only to demonstrate drug-DNA interactions but also to quantitatively analyze drugs. In this context, electrochemical biosensors for drug-DNA interactions have been examined under different headings including anticancer, antiviral, antibiotic, and central nervous system drugs as well as DNA-targeted drugs. An overview of the studies related to electrochemical DNA biosensors developed for the detection of drug-DNA interactions that were reported in the last two decades in the literature is presented herein along with their applications and they are discussed together with their future perspectives.
Collapse
Affiliation(s)
- Arzum ERDEM
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Huseyin ŞENTÜRK
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Esma YILDIZ
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Meltem MARAL
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Ayla YILDIRIM
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Aysen BOZOĞLU
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Burak KIVRAK
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Neslihan Ceren AY
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| |
Collapse
|
9
|
A Z A, Alhazzani K, Alaseem AM, Alanzi AR, Al Awadh SA, Alenazi FS, Obaidullah AJ, El-Wekil MM. A molecularly imprinted electrochemical sensor for specific and ultrasensitive determination of an aminoglycoside drug: the role of copper ions in the determination. Analyst 2023; 148:2170-2179. [PMID: 37060111 DOI: 10.1039/d3an00251a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Herein, a molecularly imprinted polymer (MIP) was fabricated for specific sensing of an aminoglycoside e.g. kanamycin (KANA). Carbon paste modified with a MIP specific to Cu2+-KANA was first introduced. Copper (Cu2+) as a metal ion was used as a signal tracer and an amplifier, producing a current response measured by differential pulse voltammetry (DPV). Introducing the aminoglycoside drug into the solution containing Cu2+ did not affect the current response of the NIP/CPE. Under the optimum conditions, the as-fabricated sensor exhibited an increase in the current response in the range of 0.55-550 nM with a good limit of detection (LOD, S/N = 3) of 161 pM. The sensor exhibited many advantages including high sensitivity and selectivity, good stability and reproducibility, and cost-effectiveness. Moreover, it was successfully applied for the determination of KANA in milk and honey samples with RSD % not more than 3.3%, suggesting the reliability of the as-designed sensor.
Collapse
Affiliation(s)
- Alanazi A Z
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali M Alaseem
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Abdullah R Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saeed Abdullah Al Awadh
- Saudi Food and Drug Authority, Drug Sector, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahaad S Alenazi
- Department of Pharmacology, College of Medicine, University of Ha'il, Saudi Arabia
- Medical education Unit, College of Medicine, University of Ha'il, Saudi Arabia
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| |
Collapse
|
10
|
Pohanka M. Immunosensors for Assay of Toxic Biological Warfare Agents. BIOSENSORS 2023; 13:402. [PMID: 36979614 PMCID: PMC10046508 DOI: 10.3390/bios13030402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
An immunosensor for the assay of toxic biological warfare agents is a biosensor suitable for detecting hazardous substances such as aflatoxin, botulinum toxin, ricin, Shiga toxin, and others. The application of immunosensors is used in outdoor assays, point-of-care tests, as a spare method for more expensive devices, and even in the laboratory as a standard analytical method. Some immunosensors, such as automated flow-through analyzers or lateral flow tests, have been successfully commercialized as tools for toxins assay, but the research is ongoing. New devices are being developed, and the use of advanced materials and assay techniques make immunosensors highly competitive analytical devices in the field of toxic biological warfare agents assay. This review summarizes facts about current applications and new trends of immunosensors regarding recent papers in this area.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, CZ-50001 Hradec Kralove, Czech Republic
| |
Collapse
|
11
|
Mehmandoust M, Li G, Erk N. Biomass-Derived Carbon Materials as an Emerging Platform for Advanced Electrochemical Sensors: Recent Advances and Future Perspectives. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mohammad Mehmandoust
- Department of Analytical Chemistry, Ankara University, Faculty of Pharmacy, 06560 Ankara, Turkey
| | - Guangli Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Nevin Erk
- Department of Analytical Chemistry, Ankara University, Faculty of Pharmacy, 06560 Ankara, Turkey
| |
Collapse
|