1
|
Aljboory ZHA, Ghani M, Raoof JB. Magnetic polyoxometalate composite stabilized on the woven cotton yarn as a sorbent for thin film microextraction of some selected nonsteroidal anti-inflammatory drugs followed by high-performance liquid chromatography-ultraviolet detection. J Chromatogr A 2024; 1741:465615. [PMID: 39709898 DOI: 10.1016/j.chroma.2024.465615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
A new thin film was fabricated using Fe3O4@SiO2-polyoxometalate (POM) as the coating and it was coupled with a HPLC-UV to develop a method for the selective determination of ibuprofen, paracetamol and diclofenac (as the model analytes) from human plasma and urine samples. The prepared magnetic POM was coated on the pores and surface of cotton yarn to prepare the extracting device. The prepared sorbent was characterized by several techniques including: FT-IR, XRD, BET, SEM, and VSM analysis. Using a multivariate optimization strategy (Plackett-Berman design (PBD) and Box-Behnken Design (BBD)), extraction factors were optimized. The optimal condition is: pH=4, extraction time=23 min, desorption time=3 min, desorption volume=400 µL, and Na2SO4 concentration=0.8 %. In the optimal condition, the linearity of the method was in the range of 0.5-200 µg l-1. LODs, LOQs, and intra-day as well as inter-day RSDs were <0.24 µg L-1, 0.81 µg L-1, and 4.1 %, respectively. The enrichment factor (EF) values for the tested substances varied from 16 to 21. The absolute recoveries (ARs%) were also between 64 and 84 %. The sorbent extracted the analytes up to 32 times with little changes in the ER (95 ± 1.5). This method was successfully applied to detect target analytes in biological fluids, achieving high recovery. This novel approach combines efficiency with practicality, making it well-suited for field applications. In addition, the greenness and whiteness of the method (sustainability assessment) were evaluated using the qualitative green assessment tools including AGREE, BAGI and the white analytical chemistry assessment tool (RGB12). The high BAGI (72.5) and RGB 12 (94.7) scores confirmed the method's strong applicability, cost-effectiveness, and sustainability.
Collapse
Affiliation(s)
| | - Milad Ghani
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
2
|
Krumplewski W, Rykowska I. New Materials for Thin-Film Solid-Phase Microextraction (TF-SPME) and Their Use for Isolation and Preconcentration of Selected Compounds from Aqueous, Biological and Food Matrices. Molecules 2024; 29:5025. [PMID: 39519666 PMCID: PMC11547565 DOI: 10.3390/molecules29215025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Determination of a broad spectrum of analytes, carried out with analytical instruments in samples with complex matrices, including environmental, biological, and food samples, involves the development of new and selective sorption phases used in microextraction techniques that allow their isolation from the matrix. SPME solid-phase microextraction is compatible with green analytical chemistry among the sample preparation techniques, as it reduces the use of toxic organic solvents to the minimum necessary. Over the past two decades, it has undergone impressive progress, resulting in the development of the thin-film solid-phase microextraction technique, TF-SPME (the thin-film solid-phase microextraction), which is characterized by a much larger surface area of the sorption phase compared to that of the SPME fiber. TF-SPME devices, in the form of a mostly rectangular metal or polymer substrate onto which a thin film of sorption phase is applied, are characterized, among others, by a higher sorption capacity. In comparison with microextraction carried out on SPME fiber, they enable faster microextraction of analytes. The active phase on which analyte sorption occurs can be applied to the substrate through techniques such as dip coating, spin coating, electrospinning, rod coating, and spray coating. The dynamic development of materials chemistry makes it possible to use increasingly advanced materials as selective sorption phases in the TF-SPME technique: polymers, conducting polymers, molecularly imprinted polymers, organometallic frameworks, carbon nanomaterials, aptamers, polymeric ionic liquids, and deep eutectic solvents. Therefore, TF-SPME has been successfully used to prepare analytical samples to determine a broad spectrum of analytes in sample matrices: environmental, biological, and food. The work will be a review of the above-mentioned issues.
Collapse
Affiliation(s)
| | - Iwona Rykowska
- Department of Chemistry, Adam Mickiewicz University, Ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| |
Collapse
|
3
|
Martínez-Pérez-Cejuela H, Gionfriddo E. Evolution of Green Sample Preparation: Fostering a Sustainable Tomorrow in Analytical Sciences. Anal Chem 2024; 96:7840-7863. [PMID: 38687329 DOI: 10.1021/acs.analchem.4c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Affiliation(s)
- H Martínez-Pérez-Cejuela
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - E Gionfriddo
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
4
|
Li Y, Guan C, Liu C, Li Z, Han G. Disease diagnosis and application analysis of molecularly imprinted polymers (MIPs) in saliva detection. Talanta 2024; 269:125394. [PMID: 37980173 DOI: 10.1016/j.talanta.2023.125394] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023]
Abstract
Saliva has significantly evolved as a diagnostic fluid in recent years, giving a non-invasive alternative to blood analysis. A high protein concentration in saliva is delivered directly from the bloodstream, making it a "human mirror" that reflects the body's physiological state. It plays an essential role in detecting diseases in biomedical and fitness monitoring. Molecularly imprinted polymers (MIPs) are biomimetic materials with custom-designed synthetic recognition sites that imitate biological counterparts renowned for sensitive analyte detection. This paper reviews the progress made in research about MIP biosensors for detecting saliva biomarkers. Specifically, we investigate the link between saliva biomarkers and various diseases, providing detailed insights into the corresponding biosensors. Furthermore, we discuss the principles of molecular imprinting for disease diagnostics and application analysis, including recent advances in integrated MIP-sensor technologies for high-affinity analyte detection in saliva. Notably, these biosensors exhibit high discrimination, allowing for the detection of saliva biomarkers linked explicitly to chronic stress disorders, diabetes, cancer, bacterial or viral-induced illnesses, and exposure to illicit toxic substances or tobacco smoke. Our findings indicate that MIP-based biosensors match and perhaps surpass their counterparts featuring integrated natural antibodies in terms of stability, signal-to-noise ratios, and detection limits. Additionally, we highlight the design of MIP coatings, strategies for synthesizing polymers, and the integration of advanced biodevices. These tailored biodevices, designed to assess various salivary biomarkers, are emerging as promising screening or diagnostic tools for real-time monitoring and self-health management, improving quality of life.
Collapse
Affiliation(s)
- Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Changjun Guan
- School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, 130012, PR China
| | - Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Ze Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
5
|
Jian N, Dai Y, Liu H, Wu N, Liu LE, Wu D, Wu Y. Simple, fast and eco-friendly micro-solid phase extraction based on thiol and ionic liquid bi-functional nanofibers membrane for the determination of sulfonamides in environmental water. Anal Chim Acta 2024; 1288:342163. [PMID: 38220295 DOI: 10.1016/j.aca.2023.342163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Sulfonamides (SAs) are a class of synthetic antibacterial agents that are diffusely used in the medical industry and animal husbandry. Their prevalence in the influents and effluents of water treatment plants, as well as in rivers and groundwater, has provoked worldwide concern. Monitoring SAs in environmental water is of great significance for public health. However, most of the available detection techniques for SAs are cumbersome and time-consuming. With the increasing number of actual samples, simple, fast and environmentally friendly analytical methods are always in demand. RESULTS Herein, we describe a highly efficient micro-solid phase extraction (μ-SPE) sample preparation technique based on a novel thiol and ionic liquid bi-functional nanofibers membrane (IL-SH-PAN NFsM) for multi-residue detection of sulfonamides (SAs) in water samples. By the synergistic effect of -SH and -IL, the as-prepared IL-SH-PAN NFsM demonstrated high adsorption capacity and excellent selectivity for SAs. The water samples can be directly used for μ-SPE without pH and ionic strength adjustment, and the eluent can be directly collected for HPLC-MS/MS analysis. Compared with other methods reported in the literature, this method required much shorter extraction time (2 min for a batch), much less amount of adsorbent (4.0 mg) and organic solvent (0.5 mL), while providing much higher sensitivity (1.4-3.9 ng L-1), and fine recoveries (88.8%-117.7%) with relative standard deviations less than 4.26%. SIGNIFICANCE AND NOVELTY A bi-functional nanofibers membrane was prepared for efficient extraction of SAs. The adsorbent exhibited superior adsorption performance and excellent selectivity. The underlying interaction mechanisms derived from -SH and -IL were proposed, which provide a new idea for preparing versatile adsorbents. Rapid, efficient and sensitive detection of SAs in water was achieved. The novel sample preparation technique can be expected as an efficient method for routine trace SAs residue monitoring in various water samples.
Collapse
Affiliation(s)
- Ningge Jian
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yuanyuan Dai
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Hongli Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Niu Wu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Li-E Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Di Wu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
6
|
Chen D, Chen Y, Zhang Y, Du J, Xiao H, Yang Z, Xu J. Multi-class analysis of 100 drug residues in cosmetics using high-performance liquid chromatography-quadrupole time-of-flight high-resolution mass spectrometry. Talanta 2024; 266:124954. [PMID: 37478768 DOI: 10.1016/j.talanta.2023.124954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/25/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Cosmetics are an important aspect of the lives of many people. With an increasing demand for cosmetics, consumers pay more attention to their efficacy and composition. To improve their efficacy, prohibited substances, such as hormones, glucocorticoids, antibiotics, antifungals and antihistamines, may be added to cosmetics. We developed a rapid method for the multi-class analysis of drug residues in toner and lotion cosmetic samples using high-performance liquid chromatography coupled with quadrupole time-of-flight high-resolution mass spectrometry (HPLC-Q-TOF-HRMS). The primary variables in the extraction and purification steps were studied to minimize the interference of the sample matrix. The non-information-dependent sequential window acquisition of all theoretical fragment ion spectra (SWATH®) mode was used to improve the data acquisition efficiency. The secondary product ion peak areas were used for quantification to obtain a satisfactory matrix effects. The validation experiments confirmed that the developed method exhibited good linearity (5-200 ng/L) with correlation coefficients (R) ≥ 0.9902. Our developed method was then successfully applied to 92 real cosmetic samples. The calibration curve established by this method can be used for retrospective quantitative analysis over long durations without re-calibration. This method is efficient and suitable for screening and controlling multi-class prohibited substances in the cosmetics industry to reduce potential risks.
Collapse
Affiliation(s)
- Dan Chen
- Guangdong Institute of Sport Science, Guangzhou, 510663, PR China
| | - Ying Chen
- Guangdong Institute of Sport Science, Guangzhou, 510663, PR China
| | - Yuan Zhang
- Guangdong Institute of Sport Science, Guangzhou, 510663, PR China
| | - Juan Du
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, PR China
| | - Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, PR China
| | - Zong Yang
- Asia Pacific Technical Support Center of SCIEX, Shanghai, 200050, PR China
| | - Jia Xu
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, PR China.
| |
Collapse
|
7
|
Jiang Y, Wang X, Zhao G, Shi Y, Wu Y. In-situ SERS detection of quinolone antibiotic residues in aquaculture water by multifunctional Fe 3O 4@mTiO 2@Ag nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123056. [PMID: 37385202 DOI: 10.1016/j.saa.2023.123056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Antibiotic residues in aquaculture environments disrupt the ecosystem balance and pose a potential hazard to human health when entering the food chain. Therefore, ultra-sensitive detection of antibiotics is necessary. In this study, a multifunctional Fe3O4@mTiO2@Ag core-shell nanoparticle (NP), synthesized using a layer-by-layer method, was demonstrated to be useful as an enhanced substrate for in-situ surface-enhanced Raman spectroscopy (SERS) detection of various quinolone antibiotics in aqueous environments. The results showed that the minimum detectable concentrations of the six investigated antibiotics were 1 × 10-9 mol/L (ciprofloxacin, danofloxacin, enoxacin, enrofloxacin, and norfloxacin) and 1 × 10-8 mol/L (difloxacin hydrochloride) under the enrichment and enhancement of Fe3O4@mTiO2@Ag NPs. Additionally, there was a good quantitative relationship between the antibiotics concentrations and SERS peak intensities within a certain detection range. The results of the spiked assay of actual aquaculture water samples showed that the recoveries of the six antibiotics ranged from 82.9% to 113.5%, with relative standard deviations ranging from 1.71% to 7.24%. In addition, Fe3O4@mTiO2@Ag NPs achieved satisfactory results in assisting the photocatalytic degradation of antibiotics in aqueous environments. This provides a multifunctional solution for low concentration detection and efficient degradation of antibiotics in aquaculture water.
Collapse
Affiliation(s)
- Ye Jiang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| | - Xiaochan Wang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China.
| | - Guo Zhao
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China
| | - Yinyan Shi
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| | - Yao Wu
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| |
Collapse
|
8
|
Yuan R, Chen H, Liu J, Li R, He H. An electrochemical impedimetric platform formed by a CNT@UiO-66 nanocomposite for quantitative analysis of oxytetracycline. Dalton Trans 2023; 52:11552-11557. [PMID: 37545403 DOI: 10.1039/d3dt01980b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Functional materials are considered one of the most critical factors in constructing high-performance electrochemical aptasensors in the sensing field. In this work, the microporous Zr-MOF UiO-66 (UiO = Universitetet i Oslo) is selected for assembly with carbon nanotubes (CNTs) to prepare a CNT@UiO-66 composite. The as-synthesized CNT@UiO-66 composite has a high surface area, excellent stability, good electrical conductivity, and abundant Zr(IV) sites, conferring it great potential for application in fabricating high-performance electrochemical aptasensors. It is gratifying that this electrochemical impedimetric aptasensor can detect trace oxytetracycline (OTC) from 0.01 to 0.7 pg mL-1 with a low limit of detection (LOD) of 1.48 fg mL-1. Meanwhile, this fabricated sensor based on CNT@UiO-66 has fine stability, excellent selectivity, and available reproducibility. In particular, the CNT@UiO-66-based aptasensor can quantitatively detect the OTC concentration in real samples.
Collapse
Affiliation(s)
- Rongrong Yuan
- Department of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, P. R. China.
| | - Hongxu Chen
- Nanotechnology Research Institute (NRI), Jiaxing University, Jiaxing, 314001, P. R. China.
| | - Jiawei Liu
- Department of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, P. R. China.
| | - Ruyu Li
- Department of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, P. R. China.
| | - Hongming He
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| |
Collapse
|
9
|
Zhang Z, Zhu F, Ma Y, Huo Z, Zhang L, Shen F, Ji W, Zhou Q. Preparation of amine-modified amphiphilic resins for the extraction of trace pharmaceuticals and personal care products in environmental waters. J Chromatogr A 2023; 1701:464062. [PMID: 37216852 DOI: 10.1016/j.chroma.2023.464062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
Herein, four amine-modified amphiphilic resins were synthesized and utilized as solid-phase extraction (SPE) materials to enrich pharmaceuticals and personal care products (PPCPs) from environmental water. The obtained materials (Strong anion-exchange amphiphilic materials, SAAMs; Weak anion-exchange amphiphilic materials, WAAMs) possessed large specific surface area (473-626 m2/g), high ion exchange capacity (0.89-1.97 mmol/g), and small contact angle (74.41-79.74°), indicating good hydrophilicity. The main factors affecting the efficiency of the extraction process were studied, including column volume, column flow rate, sample salinity and sample pH. Notably, the trend observed in absolute recovery was significantly correlated with the Zeta potential of the employed adsorbents. Furthermore, based on the obtained materials, a method of SPE coupled with ultra-performance liquid chromatography and tandem mass spectrometry (SPE/LC-MS/MS) was developed, and then utilized to determine PPCPs in the samples collected from the Yangtze River Delta. The Method detection limit (MDL) and Method quantification limit (MQL) ranged from 0.05 to 0.60 ng/L and 0.17 to 2.00 ng/L, respectively, with a relative standard deviation (RSD) below 6.3%, demonstrating good accuracy and sensitivity. As evidenced by comparison with previous literature, the developed method exhibited satisfactory performance, showing great potential for further commercial application in the extraction of trace PPCPs from environmental water samples.
Collapse
Affiliation(s)
- Ziang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Feng Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, PR China
| | - Yan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, PR China
| | - Libin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Fei Shen
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, PR China
| | - Wenliang Ji
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, PR China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, PR China.
| |
Collapse
|
10
|
Khalili M, Dadfarnia S, Haji Shabani AM. Green thin-film microextraction based on polyaniline emeraldine salt-coated cellulose filter paper as an efficient preparation plane for extraction of Cd from environmental samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-023-02791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|