1
|
Sansilapin C, Tangwangvivat R, Hoffmann CS, Chailek C, Lekcharoen P, Thippamom N, Petcharat S, Taweethavonsawat P, Wacharapluesadee S, Buathong R, Kurosu T, Yoshikawa T, Shimojima M, Iamsirithaworn S, Putcharoen O. Severe fever with thrombocytopenia syndrome (SFTS) in Thailand: using a one health approach to respond to novel zoonosis and its implications in clinical practice. ONE HEALTH OUTLOOK 2024; 6:18. [PMID: 39350294 PMCID: PMC11443680 DOI: 10.1186/s42522-024-00112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS), a tick-borne disease caused by Dabie bandavirus (SFTSV) is an emerging infectious disease of substantial concern in East Asia. In 2019, Ongkittikul S et al. reported the first case of SFTS in Thailand. Our report describes a One Health investigation of SFTS zoonosis examining the index case and suspected animal reservoirs using real-time RT-PCR and immunoassays. We add to the report on the first confirmed case of SFTSV infection in a human in Thailand by conducting a limited but informative One Health surveillance study. Dogs and cats tested positive for SFTSV antibody using IgG ELISA. We conclude that domestic dogs and cats might serve as potential reservoirs for SFTSV spread due to their closer proximity to the index case than other non-domestic animals. Notably, we did not detect SFTSV in synanthropic cats or dogs-nor did we detect SFTSV in Rhipicephalus sanguineus ticks-using RT-PCR. We propose that One Health investigations coupling genomic and serologic assays in response to new SFTS cases could play a pivotal role in preventing and managing SFTS among humans and animals in East Asia. As such, we are establishing a collaborative response to SFTS in Thailand through human outbreak investigations that align with principles of One Health, through environmental surveys and animal RT-PCR and immunoassays. Our investigation highlights the importance of coupling RT-PCR with seroprevalence assays as principal elements of One Health surveillance for SFTS in order to shed light on potential animal reservoirs and track emerging zoonosis.
Collapse
Affiliation(s)
- Chalo Sansilapin
- Department of Disease Control, Ministry of Public Health, Mueang, Nonthaburi, Thailand
| | | | - Curtis S Hoffmann
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Bangkok, 10330, Thailand
| | - Chanatip Chailek
- Department of Disease Control, Ministry of Public Health, Mueang, Nonthaburi, Thailand
| | - Paisin Lekcharoen
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nattakarn Thippamom
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Bangkok, 10330, Thailand
| | - Sininat Petcharat
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Bangkok, 10330, Thailand
| | - Piyanan Taweethavonsawat
- Parasitology Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Bangkok, 10330, Thailand.
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Rome Buathong
- Department of Disease Control, Ministry of Public Health, Mueang, Nonthaburi, Thailand
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sopon Iamsirithaworn
- Department of Disease Control, Ministry of Public Health, Mueang, Nonthaburi, Thailand
| | - Opass Putcharoen
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Bangkok, 10330, Thailand
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Matsuura Y, Hamakubo E, Nishiguchi A, Momoi Y, Matsuu A. Elucidation of prognostic factors in the acute phase of feline severe fever with thrombocytopenia syndrome virus infection. J Vet Med Sci 2024; 86:211-220. [PMID: 38171741 PMCID: PMC10898982 DOI: 10.1292/jvms.22-0427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a potentially fatal tick-borne zoonotic disease, endemic to Asian regions, including western Japan. Cats appear to suffer a particularly severe form of the disease; however, feline SFTS is not clinically well characterized. Accordingly, in this study, we investigated the associations of, demographic, hematological and biochemical, immunological, and virological parameters with clinical outcome (fatal cases vs. survivors) in SFTSV-positive cats. Viral genomic analysis was also performed. Viral load in blood, total bilirubin, creatine phosphokinase, serum amyloid A, interleukin-6, tumor necrotic factor-α, and virus-specific IgM and IgG differed significantly between survivors and fatal cases, and thus may have utility as prognosticators. Furthermore, survivor profiling revealed high-level of viremia with multiple parameters (white blood cells, platelet, total bilirubin, glucose, and serum amyloid A) beyond the reference range in the 7-day acute phase, and signs of clinical recovery in the post-acute phase (parameters returning to, or tending toward, the reference range). However, SFTSV was still detectable from some survived cats even 14 days after onset of disease, indicating the risk of infection posed by close-contact exposure may persist through the post-acute phase. This study provides useful information for prognostic assessments of acute feline SFTS, and may contribute to early treatment plans for cats with SFTS. Our findings also alert pet owners and animal health professionals to the need for prolonged vigilance against animal-to-human transmission when handling cats that have been diagnosed with SFTS.
Collapse
Affiliation(s)
- Yukiko Matsuura
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Emu Hamakubo
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | | | - Yasuyuki Momoi
- Department of Veterinary Clinical Pathology, Graduate School of Agriculture and Life Science, The University of Tokyo, Tokyo, Japan
| | - Aya Matsuu
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- Current affiliation: Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
3
|
Sakai Y, Mura S, Kuwabara Y, Kagimoto S, Sakurai M, Morimoto M, Park ES, Shimojima M, Nagata N, Ami Y, Yoshikawa T, Iwata-Yoshikawa N, Fukushi S, Watanabe S, Kurosu T, Okutani A, Kimura M, Imaoka K, Saijo M, Morikawa S, Suzuki T, Maeda K. Lethal severe fever with thrombocytopenia syndrome virus infection causes systemic germinal centre failure and massive T cell apoptosis in cats. Front Microbiol 2024; 14:1333946. [PMID: 38249467 PMCID: PMC10796997 DOI: 10.3389/fmicb.2023.1333946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Severe fever with thrombocytopenia syndrome (SFTS) is a fatal viral disease characterized by high fever, thrombocytopenia, leukopenia, and multi-organ haemorrhage. Disruption of the humoral immune response and decreased lymphocyte numbers are thought to contribute to the disease severity. These findings have been obtained through the analysis of peripheral blood leukocytes in human patients, whereas analysis of lymph nodes has been limited. Thus, in this study, we characterized the germinal centre response and apoptosis in the lymph nodes of cats with fatal SFTS, because SFTS in cats well mimics the pathology of human SFTS. Methods Lymph node tissue sections collected during necropsy from seven fatal SFTS patients and five non-SFTS cases were used for histopathological analysis. Additionally, lymph node tissue sections collected from cats with experimental infection of SFTS virus (SFTSV) were also analysed. Results In the lymphoid follicles of cats with SFTS, a drastic decrease in Bcl6- and Ki67-positive germinal centre B cells was observed. Together, the number of T cells in the follicles was also decreased in SFTS cases. In the paracortex, a marked increase in cleaved-caspase3 positivity was observed in T cells. These changes were independent of the number of local SFTS virus-positive cell. Furthermore, the analysis of cats with experimental SFTSV infection revealed that the intrafollicular Bcl6- and CD3-positive cell numbers in cats with low anti-SFTSV antibody production were significantly lower than those in cats with high anti-SFTSV antibody production. Discussion These results suggest that dysfunction of the humoral response in severe SFTS was caused by the loss of germinal centre formation and massive apoptosis of T cells in the lymph nodes due to systemically circulating viruses.
Collapse
Affiliation(s)
- Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Serina Mura
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yuko Kuwabara
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Saya Kagimoto
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masashi Sakurai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masahiro Morimoto
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Eun-sil Park
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasushi Ami
- Management Department of Biosafety and Laboratory Animal, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shumpei Watanabe
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akiko Okutani
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masanobu Kimura
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koichi Imaoka
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shigeru Morikawa
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|