1
|
Aslan M, d'Amico EA, Cho NH, Taheri A, Zhao Y, Zhong X, Blaauw M, Carter AP, Dumont S, Yildiz A. Structural and functional insights into activation and regulation of the dynein-dynactin-NuMA complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625568. [PMID: 39651296 PMCID: PMC11623564 DOI: 10.1101/2024.11.26.625568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
During cell division, NuMA orchestrates the focusing of microtubule minus-ends in spindle poles and cortical force generation on astral microtubules by interacting with dynein motors, microtubules, and other cellular factors. Here we used in vitro reconstitution, cryo-electron microscopy, and live cell imaging to understand the mechanism and regulation of NuMA. We determined the structure of the processive dynein/dynactin/NuMA complex (DDN) and showed that the NuMA N-terminus drives dynein motility in vitro and facilitates dynein-mediated transport in live cells. The C-terminus of NuMA directly binds to and suppresses the dynamics of the microtubule minus-end. Full-length NuMA is autoinhibited, but mitotically phosphorylated NuMA activates dynein in vitro and interphase cells. Together with dynein, activated full-length NuMA focuses microtubule minus-ends into aster-like structures. The binding of the cortical protein LGN to the NuMA C-terminus results in preferential binding of NuMA to the microtubule plus-end. These results provide critical insights into the activation of NuMA and dynein for their functions in the spindle body and the cell cortex.
Collapse
|
2
|
Sun S, Yang Y, Zhou J, Liu P. Liquid-liquid phase separation of microtubule-binding proteins in the regulation of spindle assembly. Cell Prolif 2024; 57:e13649. [PMID: 38736355 PMCID: PMC11471393 DOI: 10.1111/cpr.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/19/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Cell division is a highly regulated process essential for the accurate segregation of chromosomes. Central to this process is the assembly of a bipolar mitotic spindle, a highly dynamic microtubule (MT)-based structure responsible for chromosome movement. The nucleation and dynamics of MTs are intricately regulated by MT-binding proteins. Over the recent years, various MT-binding proteins have been reported to undergo liquid-liquid phase separation, forming either single- or multi-component condensates on MTs. Herein, we provide a comprehensive summary of the phase separation characteristics of these proteins. We underscore their critical roles in MT nucleation, spindle assembly and kinetochore-MT attachment during the cell division process. Furthermore, we discuss the current challenges and various remaining unsolved problems, highlights the ongoing research efforts aimed at a deeper understanding of the role of the phase separation process during spindle assembly and orientation. Our review aims to contribute to the collective knowledge in this area and stimulate further investigations that will enhance our comprehension of the intricate mechanisms governing cell division.
Collapse
Affiliation(s)
- Shuang Sun
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life SciencesShandong Normal UniversityJinanChina
| | - Yang Yang
- Translational Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life SciencesShandong Normal UniversityJinanChina
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life SciencesNankai UniversityTianjinChina
| | - Peiwei Liu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life SciencesShandong Normal UniversityJinanChina
| |
Collapse
|
3
|
Blazanin N, Liang X, Mahmud I, Kim E, Martinez S, Tan L, Chan W, Anvar NE, Ha MJ, Qudratullah M, Minelli R, Peoples M, Lorenzi P, Hart T, Lissanu Y. Therapeutic modulation of ROCK overcomes metabolic adaptation of cancer cells to OXPHOS inhibition and drives synergistic anti-tumor activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613317. [PMID: 39345502 PMCID: PMC11429714 DOI: 10.1101/2024.09.16.613317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Genomic studies have identified frequent mutations in subunits of the SWI/SNF chromatin remodeling complex including SMARCA4 and ARID1A in non-small cell lung cancer. Previously, we and others have identified that SMARCA4-mutant lung cancers are highly dependent on oxidative phosphorylation (OXPHOS). Despite initial excitements, therapeutics targeting metabolic pathways such as OXPHOS have largely been disappointing due to rapid adaptation of cancer cells to inhibition of single metabolic enzymes or pathways, suggesting novel combination strategies to overcome adaptive responses are urgently needed. Here, we performed a functional genomics screen using CRISPR-Cas9 library targeting genes with available FDA approved therapeutics and identified ROCK1/2 as a top hit that sensitizes cancer cells to OXPHOS inhibition. We validate these results by orthogonal genetic and pharmacologic approaches by demonstrating that KD025 (Belumosudil), an FDA approved ROCK inhibitor, has highly synergistic anti-cancer activity in vitro and in vivo in combination with OXPHOS inhibition. Mechanistically, we showed that this combination induced a rapid, profound energetic stress and cell cycle arrest that was in part due to ROCK inhibition-mediated suppression of the adaptive increase in glycolysis normally seen by OXPHOS inhibition. Furthermore, we applied global phosphoproteomics and kinase-motif enrichment analysis to uncover a dynamic regulatory kinome upon combination of OXPHOS and ROCK inhibition. Importantly, we found converging phosphorylation-dependent regulatory cross-talk by AMPK and ROCK kinases on key RHO GTPase signaling/ROCK-dependent substrates such as PPP1R12A, NUMA1 and PKMYT1 that are known regulators of cell cycle progression. Taken together, our study identified ROCK kinases as critical mediators of metabolic adaptation of cancer cells to OXPHOS inhibition and provides a strong rationale for pursuing ROCK inhibitors as novel combination partners to OXPHOS inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Nicholas Blazanin
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center
| | - Xiaobing Liang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center
| | - Iqbal Mahmud
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Eiru Kim
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Sara Martinez
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Waikin Chan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Nazanin Esmaeili Anvar
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Min Jin Ha
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Md Qudratullah
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center
| | - Rosalba Minelli
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Michael Peoples
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Philip Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Traver Hart
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Yonathan Lissanu
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center
| |
Collapse
|
4
|
Szalai L, Vereczkey I, Szemes M, Rókusz A, Csernák E, Tóth E, Melegh Z. NTRK-rearranged spindle cell sarcoma of the uterine cervix with a novel NUMA1::NTRK1 fusion. Virchows Arch 2024; 484:527-531. [PMID: 38151535 PMCID: PMC11021316 DOI: 10.1007/s00428-023-03724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 12/29/2023]
Abstract
NTRK-rearranged uterine sarcoma is a recently described entity that represents a subset of uterine sarcomas with distinct clinicopathological features. From a molecular point of view, this tumour is defined by NTRK gene rearrangement, resulting in overexpression or constitutive activation of Trk receptors. The presence of NTRK fusion is indicative of treatment response with a selective small-molecule inhibitor of the Trk kinases. Here, we report a case of an NTRK-rearranged sarcoma of the uterine cervix in a 43-year-old patient, measuring 80 mm in its largest dimension, with a novel NUMA1-NTRK1 fusion, not previously reported in NTRK-rearranged uterine sarcomas or other NTRK-rearranged tumours. The fusion, involving NUMA1 exon 14 (NM_006185.4) and NTRK1 exon 11 (NM_002529.4), was identified by next-generation sequencing (NGS) studies (FusionPlex Pan Solid Tumor v2 panel). Although the presence of NTRK fusion has been reported in a variety of neoplasms, a fusion involving NUMA1 (nuclear mitotic apparatus protein 1) and a tyrosine kinase partner has previously been reported in human neoplasms only in a handful of cases. The resulting fusion protein comprises the oligomerization domain of NUMA1, which is predicted to cause constant activation of the tyrosine kinase domain of NTRK1. The recognition and accurate diagnosis of these tumours are important due to the availability of potential targeted therapeutic options.
Collapse
Affiliation(s)
- Luca Szalai
- Department of Surgical and Molecular Pathology, National Tumour Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Ildikó Vereczkey
- Department of Surgical and Molecular Pathology, National Tumour Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | | | - András Rókusz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Erzsébet Csernák
- Department of Surgical and Molecular Pathology, National Tumour Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Erika Tóth
- Department of Surgical and Molecular Pathology, National Tumour Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Zsombor Melegh
- Department of Surgical and Molecular Pathology, National Tumour Biology Laboratory, National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
5
|
Parra AS, Moezzi CA, Johnston CA. Drosophila Adducin facilitates phase separation and function of a conserved spindle orientation complex. Front Cell Dev Biol 2023; 11:1220529. [PMID: 37655159 PMCID: PMC10467427 DOI: 10.3389/fcell.2023.1220529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
Asymmetric cell division (ACD) allows stem cells to generate differentiating progeny while simultaneously maintaining their own pluripotent state. ACD involves coupling mitotic spindle orientation with cortical polarity cues to direct unequal segregation of cell fate determinants. In Drosophila neural stem cells (neuroblasts; NBs), spindles orient along an apical-basal polarity axis through a conserved complex of Partner of Inscuteable (Pins; human LGN) and Mushroom body defect (Mud; human NuMA). While many details of its function are well known, the molecular mechanics that drive assembly of the cortical Pins/Mud complex remain unclear, particularly with respect to the mutually exclusive Pins complex formed with the apical scaffold protein Inscuteable (Insc). Here we identify Hu li tai shao (Hts; human Adducin) as a direct Mud-binding protein, using an aldolase fold within its head domain (HtsHEAD) to bind a short Mud coiled-coil domain (MudCC) that is adjacent to the Pins-binding domain (MudPBD). Hts is expressed throughout the larval central brain and apically polarizes in mitotic NBs where it is required for Mud-dependent spindle orientation. In vitro analyses reveal that Pins undergoes liquid-liquid phase separation with Mud, but not with Insc, suggesting a potential molecular basis for differential assembly mechanics between these two competing apical protein complexes. Furthermore, we find that Hts binds an intact Pins/Mud complex, reduces the concentration threshold for its phase separation, and alters the liquid-like property of the resulting phase separated droplets. Domain mapping and mutational analyses implicate critical roles for both multivalent interactions (via MudCC oligomerization) and protein disorder (via an intrinsically disordered region in Hts; HtsIDR) in phase separation of the Hts/Mud/Pins complex. Our study identifies a new component of the spindle positioning machinery in NBs and suggests that phase separation of specific protein complexes might regulate ordered assembly within the apical domain to ensure proper signaling output.
Collapse
|
6
|
Faienza F, Polverino F, Rajendraprasad G, Milletti G, Hu Z, Colella B, Gargano D, Strappazzon F, Rizza S, Vistesen MV, Luo Y, Antonioli M, Cianfanelli V, Ferraina C, Fimia GM, Filomeni G, De Zio D, Dengjel J, Barisic M, Guarguaglini G, Di Bartolomeo S, Cecconi F. AMBRA1 phosphorylation by CDK1 and PLK1 regulates mitotic spindle orientation. Cell Mol Life Sci 2023; 80:251. [PMID: 37584777 PMCID: PMC10432340 DOI: 10.1007/s00018-023-04878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023]
Abstract
AMBRA1 is a crucial factor for nervous system development, and its function has been mainly associated with autophagy. It has been also linked to cell proliferation control, through its ability to regulate c-Myc and D-type cyclins protein levels, thus regulating G1-S transition. However, it remains still unknown whether AMBRA1 is differentially regulated during the cell cycle, and if this pro-autophagy protein exerts a direct role in controlling mitosis too. Here we show that AMBRA1 is phosphorylated during mitosis on multiple sites by CDK1 and PLK1, two mitotic kinases. Moreover, we demonstrate that AMBRA1 phosphorylation at mitosis is required for a proper spindle function and orientation, driven by NUMA1 protein. Indeed, we show that the localization and/or dynamics of NUMA1 are strictly dependent on AMBRA1 presence, phosphorylation and binding ability. Since spindle orientation is critical for tissue morphogenesis and differentiation, our findings could account for an additional role of AMBRA1 in development and cancer ontogenesis.
Collapse
Affiliation(s)
- Fiorella Faienza
- Cell Stress and Survival Group, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute, Copenhagen, Denmark
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Federica Polverino
- Institute of Molecular Biology and Pathology, CNR National Research Council, Rome, Italy
| | | | - Giacomo Milletti
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- DNA Replication and Cancer Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | - Zehan Hu
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Barbara Colella
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Deborah Gargano
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Flavie Strappazzon
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyogène, Univ Lyon, Univ Lyon 1, CNRS, INSERM, 69008, Lyon, France
| | - Salvatore Rizza
- Redox Biology Group, Danish Cancer Institute, Copenhagen, Denmark
| | - Mette Vixø Vistesen
- Cell Stress and Survival Group, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute, Copenhagen, Denmark
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Shenzhen, China
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Manuela Antonioli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- National Institute for Infectious Diseases, IRCSS "L. Spallanzani", Rome, Italy
| | - Valentina Cianfanelli
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Science, University "ROMA TRE", 00146, Rome, Italy
- Department of Woman and Child Health and Public Health, Gynecologic Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Caterina Ferraina
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Gian Maria Fimia
- National Institute for Infectious Diseases, IRCSS "L. Spallanzani", Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Filomeni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Redox Biology Group, Danish Cancer Institute, Copenhagen, Denmark
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Daniela De Zio
- Melanoma Research Team, Danish Cancer Institute, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University Of Copenhagen, Copenhagen, Denmark
| | - Joern Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Institute, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, CNR National Research Council, Rome, Italy
| | | | - Francesco Cecconi
- Cell Stress and Survival Group, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute, Copenhagen, Denmark.
- Università Cattolica del Sacro Cuore and Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
7
|
Yin S, Zhao S, Li J, Liu K, Ma X, Zhang Z, Wang R, Tian J, Liu F, Song Y, Song M, Zhao R, Yang R, Lee MH, Dong Z. NUMA1 modulates apoptosis of esophageal squamous cell carcinoma cells through regulating ASK1-JNK signaling pathway. Cell Mol Life Sci 2023; 80:211. [PMID: 37462735 PMCID: PMC11071978 DOI: 10.1007/s00018-023-04854-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/30/2023] [Accepted: 07/01/2023] [Indexed: 07/21/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common malignancy worldwide with a low survival rate due to a lack of therapeutic targets. Here, our results showed that nuclear mitotic apparatus protein 1 (NUMA1) transcript and protein levels are significantly upregulated in ESCC patient samples and its high expression predicated poor prognosis. Knock-down of NUMA1 promoted cell apoptosis and suppressed cell proliferation and colony formation. By using cell-derived xenograft (CDX) and patient-derived xenograft (PDX) mice models, we found silencing the NUMA1 expression suppressed tumor progression. In addition, conditional knocking-out of NUMA1 reduced 4NQO-induced carcinogenesis in mice esophagus, which further confirmed the oncogenic role of NUMA1 in ESCC. Mechanistically, from the immunoprecipitation assay we revealed that NUMA1 interacted with GSTP1 and TRAF2, promoted the association of TRAF2 with GSTP1 while inhibited the interaction of TRAF2 and ASK1, thus to regulate sustained activation of JNK. In summary, our findings suggest that NUMA1 plays an important role during ESCC progression and it functions through regulating ASK1-MKK4-SAPK/JNK signaling pathway.
Collapse
Affiliation(s)
- Shuying Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Simin Zhao
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian Li
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Xinli Ma
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Zihan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Rui Wang
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Jie Tian
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Fangfang Liu
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
- Research Center of Basic Medicine Sciences, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanming Song
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Mengqiu Song
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Ran Yang
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China.
- College of Korean Medicine, Dongshin University, Naju, Jeonnam, 58245, Republic of Korea.
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China.
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
8
|
Zheng H, Wen W. Protein phase separation: new insights into cell division. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1042-1051. [PMID: 37249333 PMCID: PMC10415187 DOI: 10.3724/abbs.2023093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/15/2023] [Indexed: 05/31/2023] Open
Abstract
As the foundation for the development of multicellular organisms and the self-renewal of single cells, cell division is a highly organized event which segregates cellular components into two daughter cells equally or unequally, thus producing daughters with identical or distinct fates. Liquid-liquid phase separation (LLPS), an emerging biophysical concept, provides a new perspective for us to understand the mechanisms of a wide range of cellular events, including the organization of membrane-less organelles. Recent studies have shown that several key organelles in the cell division process are assembled into membrane-free structures via LLPS of specific proteins. Here, we summarize the regulatory functions of protein phase separation in centrosome maturation, spindle assembly and polarity establishment during cell division.
Collapse
Affiliation(s)
- Hongdan Zheng
- />Department of NeurosurgeryHuashan Hospitalthe Shanghai Key Laboratory of Medical EpigeneticsState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceNational Center for Neurological DisordersInstitutes of Biomedical SciencesSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Wenyu Wen
- />Department of NeurosurgeryHuashan Hospitalthe Shanghai Key Laboratory of Medical EpigeneticsState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceNational Center for Neurological DisordersInstitutes of Biomedical SciencesSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| |
Collapse
|
9
|
El-Tanani M, Nsairat H, Mishra V, Mishra Y, Aljabali AAA, Serrano-Aroca Á, Tambuwala MM. Ran GTPase and Its Importance in Cellular Signaling and Malignant Phenotype. Int J Mol Sci 2023; 24:ijms24043065. [PMID: 36834476 PMCID: PMC9968026 DOI: 10.3390/ijms24043065] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 02/08/2023] Open
Abstract
Ran is a member of the Ras superfamily of proteins, which primarily regulates nucleocytoplasmic trafficking and mediates mitosis by regulating spindle formation and nuclear envelope (NE) reassembly. Therefore, Ran is an integral cell fate determinant. It has been demonstrated that aberrant Ran expression in cancer is a result of upstream dysregulation of the expression of various factors, such as osteopontin (OPN), and aberrant activation of various signaling pathways, including the extracellular-regulated kinase/mitogen-activated protein kinase (ERK/MEK) and phosphatidylinositol 3-kinase/Protein kinase B (PI3K/Akt) pathways. In vitro, Ran overexpression has severe effects on the cell phenotype, altering proliferation, adhesion, colony density, and invasion. Therefore, Ran overexpression has been identified in numerous types of cancer and has been shown to correlate with tumor grade and the degree of metastasis present in various cancers. The increased malignancy and invasiveness have been attributed to multiple mechanisms. Increased dependence on Ran for spindle formation and mitosis is a consequence of the upregulation of these pathways and the ensuing overexpression of Ran, which increases cellular dependence on Ran for survival. This increases the sensitivity of cells to changes in Ran concentration, with ablation being associated with aneuploidy, cell cycle arrest, and ultimately, cell death. It has also been demonstrated that Ran dysregulation influences nucleocytoplasmic transport, leading to transcription factor misallocation. Consequently, patients with tumors that overexpress Ran have been shown to have a higher malignancy rate and a shorter survival time compared to their counterparts.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Correspondence:
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain
| | - Murtaza M. Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
| |
Collapse
|
10
|
Archambault V, Li J, Emond-Fraser V, Larouche M. Dephosphorylation in nuclear reassembly after mitosis. Front Cell Dev Biol 2022; 10:1012768. [PMID: 36268509 PMCID: PMC9576876 DOI: 10.3389/fcell.2022.1012768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
In most animal cell types, the interphase nucleus is largely disassembled during mitotic entry. The nuclear envelope breaks down and chromosomes are compacted into separated masses. Chromatin organization is also mostly lost and kinetochores assemble on centromeres. Mitotic protein kinases play several roles in inducing these transformations by phosphorylating multiple effector proteins. In many of these events, the mechanistic consequences of phosphorylation have been characterized. In comparison, how the nucleus reassembles at the end of mitosis is less well understood in mechanistic terms. In recent years, much progress has been made in deciphering how dephosphorylation of several effector proteins promotes nuclear envelope reassembly, chromosome decondensation, kinetochore disassembly and interphase chromatin organization. The precise roles of protein phosphatases in this process, in particular of the PP1 and PP2A groups, are emerging. Moreover, how these enzymes are temporally and spatially regulated to ensure that nuclear reassembly progresses in a coordinated manner has been partly uncovered. This review provides a global view of nuclear reassembly with a focus on the roles of dephosphorylation events. It also identifies important open questions and proposes hypotheses.
Collapse
Affiliation(s)
- Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Vincent Archambault,
| | - Jingjing Li
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Virginie Emond-Fraser
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Myreille Larouche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
11
|
Tarannum N, Singh R, Woolner S. Sculpting an Embryo: The Interplay between Mechanical Force and Cell Division. J Dev Biol 2022; 10:37. [PMID: 36135370 PMCID: PMC9502278 DOI: 10.3390/jdb10030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022] Open
Abstract
The journey from a single fertilised cell to a multicellular organism is, at the most fundamental level, orchestrated by mitotic cell divisions. Both the rate and the orientation of cell divisions are important in ensuring the proper development of an embryo. Simultaneous with cell proliferation, embryonic cells constantly experience a wide range of mechanical forces from their surrounding tissue environment. Cells must be able to read and respond correctly to these forces since they are known to affect a multitude of biological functions, including cell divisions. The interplay between the mechanical environment and cell divisions is particularly crucial during embryogenesis when tissues undergo dynamic changes in their shape, architecture, and overall organisation to generate functional tissues and organs. Here we review our current understanding of the cellular mechanisms by which mechanical force regulates cell division and place this knowledge within the context of embryogenesis and tissue morphogenesis.
Collapse
Affiliation(s)
- Nawseen Tarannum
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | - Sarah Woolner
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
12
|
Ray S, Abugable AA, Parker J, Liversidge K, Palminha NM, Liao C, Acosta-Martin AE, Souza CDS, Jurga M, Sudbery I, El-Khamisy SF. A mechanism for oxidative damage repair at gene regulatory elements. Nature 2022; 609:1038-1047. [PMID: 36171374 DOI: 10.1038/s41586-022-05217-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/09/2022] [Indexed: 11/09/2022]
Abstract
Oxidative genome damage is an unavoidable consequence of cellular metabolism. It arises at gene regulatory elements by epigenetic demethylation during transcriptional activation1,2. Here we show that promoters are protected from oxidative damage via a process mediated by the nuclear mitotic apparatus protein NuMA (also known as NUMA1). NuMA exhibits genomic occupancy approximately 100 bp around transcription start sites. It binds the initiating form of RNA polymerase II, pause-release factors and single-strand break repair (SSBR) components such as TDP1. The binding is increased on chromatin following oxidative damage, and TDP1 enrichment at damaged chromatin is facilitated by NuMA. Depletion of NuMA increases oxidative damage at promoters. NuMA promotes transcription by limiting the polyADP-ribosylation of RNA polymerase II, increasing its availability and release from pausing at promoters. Metabolic labelling of nascent RNA identifies genes that depend on NuMA for transcription including immediate-early response genes. Complementation of NuMA-deficient cells with a mutant that mediates binding to SSBR, or a mitotic separation-of-function mutant, restores SSBR defects. These findings underscore the importance of oxidative DNA damage repair at gene regulatory elements and describe a process that fulfils this function.
Collapse
Affiliation(s)
- Swagat Ray
- School of Biosciences, University of Sheffield, Sheffield, UK.,The Healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK.,School of Life and Environmental Sciences, Department of Life Sciences, University of Lincoln, Lincoln, UK
| | - Arwa A Abugable
- School of Biosciences, University of Sheffield, Sheffield, UK.,The Healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK
| | - Jacob Parker
- School of Biosciences, University of Sheffield, Sheffield, UK.,Center for Advanced Parkinson Research, Harvard Medical School, Boston, MA, USA
| | | | - Nelma M Palminha
- School of Biosciences, University of Sheffield, Sheffield, UK.,The Healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK
| | - Chunyan Liao
- School of Biosciences, University of Sheffield, Sheffield, UK.,The Healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK
| | - Adelina E Acosta-Martin
- biOMICS Facility, Faculty of Science Mass Spectrometry Centre, University of Sheffield, Sheffield, UK
| | - Cleide D S Souza
- School of Biosciences, University of Sheffield, Sheffield, UK.,Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Mateusz Jurga
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| | - Ian Sudbery
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Sherif F El-Khamisy
- School of Biosciences, University of Sheffield, Sheffield, UK. .,The Healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK. .,Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK.
| |
Collapse
|
13
|
Hotta T, Lee YRJ, Higaki T, Hashimoto T, Liu B. Two Kinesin-14A Motors Oligomerize to Drive Poleward Microtubule Convergence for Acentrosomal Spindle Morphogenesis in Arabidopsis thaliana. Front Cell Dev Biol 2022; 10:949345. [PMID: 35982853 PMCID: PMC9380777 DOI: 10.3389/fcell.2022.949345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Plant cells form acentrosomal spindles with microtubules (MTs) converged toward two structurally undefined poles by employing MT minus end-directed Kinesin-14 motors. To date, it is unclear whether the convergent bipolar MT array assumes unified poles in plant spindles, and if so, how such a goal is achieved. Among six classes of Kinesin-14 motors in Arabidopsis thaliana, the Kinesin-14A motors ATK1 (KatA) and ATK5 share the essential function in spindle morphogenesis. To understand how the two functionally redundant Kinesin-14A motors contributed to the spindle assembly, we had ATK1-GFP and ATK5-GFP fusion proteins expressed in their corresponding null mutants and found that they were functionally comparable to their native forms. Although ATK1 was a nuclear protein and ATK5 cytoplasmic prior to nuclear envelop breakdown, at later mitotic stages, the two motors shared similar localization patterns of uniform association with both spindle and phragmoplast MTs. We found that ATK1 and ATK5 were rapidly concentrated toward unified polar foci when cells were under hyperosmotic conditions. Concomitantly, spindle poles became perfectly focused as if there were centrosome-like MT-organizing centers where ATK1 and ATK5 were highly enriched and at which kinetochore fibers pointed. The separation of ATK1/ATK5-highlighted MTs from those of kinetochore fibers suggested that the motors translocated interpolar MTs. Our protein purification and live-cell imaging results showed that ATK1 and ATK5 are associated with each other in vivo. The stress-induced spindle pole convergence was also accompanied by poleward accumulation of the MT nucleator γ-tubulin. These results led to the conclusion that the two Kinesin-14A motors formed oligomeric motor complexes that drove MT translocation toward the spindle pole to establish acentrosomal spindles with convergent poles.
Collapse
Affiliation(s)
- Takashi Hotta
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, Davis, CA, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Takumi Higaki
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Takashi Hashimoto
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Bo Liu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, Davis, CA, United States
- *Correspondence: Bo Liu,
| |
Collapse
|
14
|
Darnat P, Burg A, Sallé J, Lacoste J, Louvet-Vallée S, Gho M, Audibert A. Cortical Cyclin A controls spindle orientation during asymmetric cell divisions in Drosophila. Nat Commun 2022; 13:2723. [PMID: 35581185 PMCID: PMC9114397 DOI: 10.1038/s41467-022-30182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
The coordination between cell proliferation and cell polarity is crucial to orient the asymmetric cell divisions to generate cell diversity in epithelia. In many instances, the Frizzled/Dishevelled planar cell polarity pathway is involved in mitotic spindle orientation, but how this is spatially and temporally coordinated with cell cycle progression has remained elusive. Using Drosophila sensory organ precursor cells as a model system, we show that Cyclin A, the main Cyclin driving the transition to M-phase of the cell cycle, is recruited to the apical-posterior cortex in prophase by the Frizzled/Dishevelled complex. This cortically localized Cyclin A then regulates the orientation of the division by recruiting Mud, a homologue of NuMA, the well-known spindle-associated protein. The observed non-canonical subcellular localization of Cyclin A reveals this mitotic factor as a direct link between cell proliferation, cell polarity and spindle orientation. The Frizzled/Dishevelled planar cell polarity pathway is involved in mitotic spindle orientation, but how this is coordinated with the cell cycle is unclear. Here, the authors show with Drosophila sensory organ precursor cells that Cyclin A is recruited in prophase by Frizzled/Dishevelled, regulating division orientation.
Collapse
Affiliation(s)
- Pénélope Darnat
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine (LBD-IBPS), Cell cycle and cell determination Team, F-75005, Paris, France
| | - Angélique Burg
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine (LBD-IBPS), Cell cycle and cell determination Team, F-75005, Paris, France
| | - Jérémy Sallé
- Institut Jacques Monod, Université Paris Diderot/CNRS, Cellular Spatial Organization Team, F-75005, Paris, France
| | - Jérôme Lacoste
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine (LBD-IBPS), Cell cycle and cell determination Team, F-75005, Paris, France
| | - Sophie Louvet-Vallée
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine (LBD-IBPS), Cell cycle and cell determination Team, F-75005, Paris, France
| | - Michel Gho
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine (LBD-IBPS), Cell cycle and cell determination Team, F-75005, Paris, France.
| | - Agnès Audibert
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine (LBD-IBPS), Cell cycle and cell determination Team, F-75005, Paris, France.
| |
Collapse
|
15
|
Sun M, Jia M, Ren H, Yang B, Chi W, Xin G, Jiang Q, Zhang C. NuMA regulates mitotic spindle assembly, structural dynamics and function via phase separation. Nat Commun 2021; 12:7157. [PMID: 34887424 PMCID: PMC8660824 DOI: 10.1038/s41467-021-27528-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
A functional mitotic spindle is essential for accurate chromosome congression and segregation during cell proliferation; however, the underlying mechanisms of its assembly remain unclear. Here we show that NuMA regulates this assembly process via phase separation regulated by Aurora A. NuMA undergoes liquid-liquid phase separation during mitotic entry and KifC1 facilitates NuMA condensates concentrating on spindle poles. Phase separation of NuMA is mediated by its C-terminus, whereas its dynein-dynactin binding motif also facilitates this process. Phase-separated NuMA droplets concentrate tubulins, bind microtubules, and enrich crucial regulators, including Kif2A, at the spindle poles, which then depolymerizes spindle microtubules and promotes poleward spindle microtubule flux for spindle assembly and structural dynamics. In this work, we show that NuMA orchestrates mitotic spindle assembly, structural dynamics and function via liquid-liquid phase separation regulated by Aurora A phosphorylation.
Collapse
Affiliation(s)
- Mengjie Sun
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Mingkang Jia
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, 100871, Beijing, China
| | - He Ren
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Biying Yang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Wangfei Chi
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Guangwei Xin
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Qing Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Chuanmao Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
16
|
Arcani R, Bertin D, Bardin N, Mazodier K, Jean R, Suchon P, Venton G, Daumas A, Jean E, Villani P, Kaplanski G, Jarrot PA. Anti-NuMA antibodies: clinical associations and significance in patients with primary Sjögren's syndrome or systemic lupus erythematosus. Rheumatology (Oxford) 2021; 60:4074-4084. [PMID: 33404653 DOI: 10.1093/rheumatology/keaa881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/26/2020] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE To determine the clinical significance of anti-nuclear mitotic apparatus (NuMA) antibodies (AC-26 or AC-25) in patients with primary Sjögren's syndrome (pSS) and SLE. METHODS Between 2013 and 2018, clinical and immunological features of pSS and SLE patients with anti-NuMA antibodies were compared with anti-NuMA antibodies-negative pSS and SLE cohorts. RESULTS Among 31 284 sera positive for antinuclear antibodies, 90 patients (0.29%) had anti-AC-26 (anti-NuMA1) and AC-25 (anti-HsEg5) antibodies (73.3% and 26.7%, respectively). Autoimmune diseases, mainly consisting in pSS (28.9%) and SLE (21.1%), were found in 67.8%. Anti-NuMA antibodies represented the unique ANA in 60% and 50% of patients with pSS and SLE patients, respectively. Compared with 137 anti-NuMA-negative pSS patients, 20 anti-NuMA-positive pSS presented with less frequent ocular sicca syndrome (70.0% vs 89.1%, P=0.031), dryness complications (15.0% vs 39.4%, P=0.045), or detectable anti-SSa and/or anti-SSb antibodies (40.0% vs 66.4%, P=0.027). Compared with 80 anti-NuMA-negative SLE patients, 14 anti-NuMA-positive SLE patients had no lupus nephritis (0.0% vs 28.8%, P=0.049), less frequent dsDNA antibodies (42.9% vs 75.0%, P=0.025) and complement consumption (21.4% vs 53.8%, P=0.040). Anti-NuMA-positive pSS and SLE patients less frequently required treatments compared with anti-NuMA-negative patients. CONCLUSION Although rare, anti-NuMA antibodies are mainly associated with pSS and SLE and may be useful for diagnosis when other auto-antibodies are negative. PSS and SLE patients with anti-NuMA antibodies have less severe clinical and biological profiles, suggesting that anti-NuMA antibodies may constitute a good prognosis marker in both autoimmune diseases.
Collapse
Affiliation(s)
- Robin Arcani
- Department of Internal Medicine and Clinical Immunology, CHU La Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM).,Center for Cardiovascular and Nutrition research (C2VN), INRA 1260, INSERM UMR_S 1263, Aix-Marseille University
| | - Daniel Bertin
- Department of Biological Immunology, CHU La Conception
| | - Nathalie Bardin
- Center for Cardiovascular and Nutrition research (C2VN), INRA 1260, INSERM UMR_S 1263, Aix-Marseille University.,Department of Biological Immunology, CHU La Conception
| | - Karin Mazodier
- Department of Internal Medicine and Clinical Immunology, CHU La Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM)
| | - Rodolphe Jean
- Department of Internal Medicine and Clinical Immunology, CHU La Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM)
| | | | - Geoffroy Venton
- Hematology and Cellular Therapy Department, CHU La Conception
| | - Aurélie Daumas
- Center for Cardiovascular and Nutrition research (C2VN), INRA 1260, INSERM UMR_S 1263, Aix-Marseille University.,Internal Medicine, Geriatrics and Therapeutics Department, CHU La Timone
| | - Estelle Jean
- Internal Medicine Department, CHU La Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Patrick Villani
- Internal Medicine, Geriatrics and Therapeutics Department, CHU La Timone
| | - Gilles Kaplanski
- Department of Internal Medicine and Clinical Immunology, CHU La Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM).,Center for Cardiovascular and Nutrition research (C2VN), INRA 1260, INSERM UMR_S 1263, Aix-Marseille University
| | - Pierre-André Jarrot
- Department of Internal Medicine and Clinical Immunology, CHU La Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM).,Center for Cardiovascular and Nutrition research (C2VN), INRA 1260, INSERM UMR_S 1263, Aix-Marseille University
| |
Collapse
|
17
|
Chaigne A, Smith MB, Lopez Cavestany R, Hannezo E, Chalut KJ, Paluch EK. Three-dimensional geometry controls division symmetry in stem cell colonies. J Cell Sci 2021; 134:jcs255018. [PMID: 34323278 PMCID: PMC8349555 DOI: 10.1242/jcs.255018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 06/16/2021] [Indexed: 11/24/2022] Open
Abstract
Proper control of division orientation and symmetry, largely determined by spindle positioning, is essential to development and homeostasis. Spindle positioning has been extensively studied in cells dividing in two-dimensional (2D) environments and in epithelial tissues, where proteins such as NuMA (also known as NUMA1) orient division along the interphase long axis of the cell. However, little is known about how cells control spindle positioning in three-dimensional (3D) environments, such as early mammalian embryos and a variety of adult tissues. Here, we use mouse embryonic stem cells (ESCs), which grow in 3D colonies, as a model to investigate division in 3D. We observe that, at the periphery of 3D colonies, ESCs display high spindle mobility and divide asymmetrically. Our data suggest that enhanced spindle movements are due to unequal distribution of the cell-cell junction protein E-cadherin between future daughter cells. Interestingly, when cells progress towards differentiation, division becomes more symmetric, with more elongated shapes in metaphase and enhanced cortical NuMA recruitment in anaphase. Altogether, this study suggests that in 3D contexts, the geometry of the cell and its contacts with neighbors control division orientation and symmetry. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Agathe Chaigne
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Matthew B. Smith
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Rocio Lopez Cavestany
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | | | - Kevin J. Chalut
- Wellcome/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Ewa K. Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- Wellcome/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
18
|
Yang C, Zhang Y, Segar N, Huang C, Zeng P, Tan X, Mao L, Chen Z, Haglund F, Larsson O, Chen Z, Lin Y. Nuclear IGF1R interacts with NuMA and regulates 53BP1‑dependent DNA double‑strand break repair in colorectal cancer. Oncol Rep 2021; 46:168. [PMID: 34165167 PMCID: PMC8250583 DOI: 10.3892/or.2021.8119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Nuclear insulin-like growth factor 1 receptor (nIGF1R) has been associated with poor overall survival and chemotherapy resistance in various types of cancer; however, the underlying mechanism remains unclear. In the present study, immunoprecipitation-coupled mass spectrometry was performed in an IGF1R-overexpressing SW480-OE colorectal cancer cell line to identify the nIGF1R interactome. Network analysis revealed 197 proteins of interest which were involved in several biological pathways, including RNA processing, DNA double-strand break (DSB) repair and SUMOylation pathways. Nuclear mitotic apparatus protein (NuMA) was identified as one of nIGF1R's colocalizing partners. Proximity ligation assay (PLA) revealed different levels of p53-binding protein 1 (53BP1)-NuMA colocalization between IGF1R-positive (R+) and IGF1R-negative (R−) mouse embryonic fibroblasts following exposure to ionizing radiation (IR). 53BP1 was retained by NuMA in the R− cells during IR-induced DNA damage. By contrast, the level of NuMA-53BP1 was markedly lower in R+ cells compared with R− cells. The present data suggested a regulatory role of nIGF1R in 53BP1-dependent DSB repair through its interaction with NuMA. Bright-field PLA analysis on a paraffin-embedded tissue microarray from patients with colorectal cancer revealed a significant association between increased nuclear colocalizing signals of NuMA-53BP1 and a shorter overall survival. These results indicate that nIGF1R plays a role in facilitating 53BP1-dependent DDR by regulating the NuMA-53BP1 interaction, which in turn might affect the clinical outcome of patients with colorectal cancer.
Collapse
Affiliation(s)
- Chen Yang
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Yifan Zhang
- Department of Clinical Pathology and Cytology, Karolinska University Hospital Solna, 171 64 Solna, Stockholm, Sweden
| | - Nelly Segar
- Department of Oncology and Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Changhao Huang
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Pengwei Zeng
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Xiangzhou Tan
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Linfeng Mao
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Zhikang Chen
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Felix Haglund
- Department of Oncology and Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Olle Larsson
- Department of Oncology and Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Zihua Chen
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Yingbo Lin
- Department of Oncology and Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| |
Collapse
|
19
|
Cutillas V, Johnston CA. Mud binds the kinesin-14 Ncd in Drosophila. Biochem Biophys Rep 2021; 26:101016. [PMID: 34027137 PMCID: PMC8134030 DOI: 10.1016/j.bbrep.2021.101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/13/2021] [Accepted: 05/05/2021] [Indexed: 11/03/2022] Open
Abstract
Maintenance of proper mitotic spindle structure is necessary for error-free chromosome segregation and cell division. Spindle assembly is controlled by force-generating kinesin motors that contribute to its geometry and bipolarity, and balancing motor-dependent forces between opposing kinesins is critical to the integrity of this process. Non-claret dysjunctional (Ncd), a Drosophila kinesin-14 member, crosslinks and slides microtubule minus-ends to focus spindle poles and sustain bipolarity. However, mechanisms that regulate Ncd activity during mitosis are underappreciated. Here, we identify Mushroom body defect (Mud), the fly ortholog of human NuMA, as a direct Ncd binding partner. We demonstrate this interaction involves a short coiled-coil domain within Mud (MudCC) binding the N-terminal, non-motor microtubule-binding domain of Ncd (NcdnMBD). We further show that the C-terminal ATPase motor domain of Ncd (NcdCTm) directly interacts with NcdnMBD as well. Mud binding competes against this self-association and also increases NcdnMBD microtubule binding in vitro. Our results describe an interaction between two spindle-associated proteins and suggest a potentially new mode of minus-end motor protein regulation at mitotic spindle poles.
Collapse
Affiliation(s)
- Vincent Cutillas
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | | |
Collapse
|
20
|
Vasquez-Limeta A, Loncarek J. Human centrosome organization and function in interphase and mitosis. Semin Cell Dev Biol 2021; 117:30-41. [PMID: 33836946 DOI: 10.1016/j.semcdb.2021.03.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/15/2023]
Abstract
Centrosomes were first described by Edouard Van Beneden and named and linked to chromosome segregation by Theodor Boveri around 1870. In the 1960-1980s, electron microscopy studies have revealed the remarkable ultrastructure of a centriole -- a nine-fold symmetrical microtubular assembly that resides within a centrosome and organizes it. Less than two decades ago, proteomics and genomic screens conducted in multiple species identified hundreds of centriole and centrosome core proteins and revealed the evolutionarily conserved nature of the centriole assembly pathway. And now, super resolution microscopy approaches and improvements in cryo-tomography are bringing an unparalleled nanoscale-detailed picture of the centriole and centrosome architecture. In this chapter, we summarize the current knowledge about the architecture of human centrioles. We discuss the structured organization of centrosome components in interphase, focusing on localization/function relationship. We discuss the process of centrosome maturation and mitotic spindle pole assembly in centriolar and acentriolar cells, emphasizing recent literature.
Collapse
Affiliation(s)
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, NIH/NCI, Frederick 21702, MD, USA.
| |
Collapse
|
21
|
Kiyomitsu T, Boerner S. The Nuclear Mitotic Apparatus (NuMA) Protein: A Key Player for Nuclear Formation, Spindle Assembly, and Spindle Positioning. Front Cell Dev Biol 2021; 9:653801. [PMID: 33869212 PMCID: PMC8047419 DOI: 10.3389/fcell.2021.653801] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/10/2021] [Indexed: 01/10/2023] Open
Abstract
The nuclear mitotic apparatus (NuMA) protein is well conserved in vertebrates, and dynamically changes its subcellular localization from the interphase nucleus to the mitotic/meiotic spindle poles and the mitotic cell cortex. At these locations, NuMA acts as a key structural hub in nuclear formation, spindle assembly, and mitotic spindle positioning, respectively. To achieve its variable functions, NuMA interacts with multiple factors, including DNA, microtubules, the plasma membrane, importins, and cytoplasmic dynein. The binding of NuMA to dynein via its N-terminal domain drives spindle pole focusing and spindle positioning, while multiple interactions through its C-terminal region define its subcellular localizations and functions. In addition, NuMA can self-assemble into high-ordered structures which likely contribute to spindle positioning and nuclear formation. In this review, we summarize recent advances in NuMA’s domains, functions and regulations, with a focus on human NuMA, to understand how and why vertebrate NuMA participates in these functions in comparison with invertebrate NuMA-related proteins.
Collapse
Affiliation(s)
- Tomomi Kiyomitsu
- Cell Division Dynamics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | - Susan Boerner
- Cell Division Dynamics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| |
Collapse
|
22
|
Chapa-Y-Lazo B, Hamanaka M, Wray A, Balasubramanian MK, Mishima M. Polar relaxation by dynein-mediated removal of cortical myosin II. J Cell Biol 2021; 219:151836. [PMID: 32497213 PMCID: PMC7401816 DOI: 10.1083/jcb.201903080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 02/03/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Nearly six decades ago, Lewis Wolpert proposed the relaxation of the polar cell cortex by the radial arrays of astral microtubules as a mechanism for cleavage furrow induction. While this mechanism has remained controversial, recent work has provided evidence for polar relaxation by astral microtubules, although its molecular mechanisms remain elusive. Here, using C. elegans embryos, we show that polar relaxation is achieved through dynein-mediated removal of myosin II from the polar cortexes. Mutants that position centrosomes closer to the polar cortex accelerated furrow induction, whereas suppression of dynein activity delayed furrowing. We show that dynein-mediated removal of myosin II from the polar cortexes triggers a bidirectional cortical flow toward the cell equator, which induces the assembly of the actomyosin contractile ring. These results provide a molecular mechanism for the aster-dependent polar relaxation, which works in parallel with equatorial stimulation to promote robust cytokinesis.
Collapse
Affiliation(s)
- Bernardo Chapa-Y-Lazo
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| | - Motonari Hamanaka
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK.,Hokkaido University, Sapporo, Japan
| | - Alexander Wray
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK.,University of Nottingham, Nottingham, UK
| | - Mohan K Balasubramanian
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| | - Masanori Mishima
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| |
Collapse
|
23
|
Sureka R, Mishra R. Identification of Evolutionarily Conserved Nuclear Matrix Proteins and Their Prokaryotic Origins. J Proteome Res 2020; 20:518-530. [PMID: 33289389 DOI: 10.1021/acs.jproteome.0c00550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Compared to prokaryotic cells, a typical eukaryotic cell is much more complex along with its endomembrane system and membrane-bound organelles. Although the endosymbiosis theories convincingly explain the evolution of membrane-bound organelles such as mitochondria and chloroplasts, very little is understood about the evolutionary origins of the nucleus, the defining feature of eukaryotes. Most studies on nuclear evolution have not been able to take into consideration the underlying structural framework of the nucleus, attributed to the nuclear matrix (NuMat), a ribonucleoproteinaceous structure. This can largely be attributed to the lack of annotation of its core components. Since NuMat has been shown to provide a structural platform for facilitating a variety of nuclear functions such as replication, transcription, and splicing, it is important to identify its protein components to better understand these processes. In this study, we address this issue using the developing embryos of Drosophila melanogaster and Danio rerio and identify 362 core NuMat proteins that are conserved between the two organisms. We further compare our results with publicly available Mus musculus NuMat dataset and Homo sapiens cellular localization dataset to define the core homologous NuMat proteins consisting of 252 proteins. We find that of them, 86 protein groups have originated from pre-existing proteins in prokaryotes. While 36 were conserved across all eukaryotic supergroups, 14 new proteins evolved before the evolution of the last eukaryotic common ancestor and together, these 50 proteins out of the 252 core conserved NuMat proteins are conserved across all eukaryotes, indicating their indispensable nature for nuclear function for over 1.5 billion years of eukaryotic history. Our analysis paves the way to understand the evolution of the complex internal nuclear architecture and its functions.
Collapse
Affiliation(s)
- Rahul Sureka
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Rakesh Mishra
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| |
Collapse
|
24
|
Serra-Marques A, Houtekamer R, Hintzen D, Canty JT, Yildiz A, Dumont S. The mitotic protein NuMA plays a spindle-independent role in nuclear formation and mechanics. J Cell Biol 2020; 219:e202004202. [PMID: 33044554 PMCID: PMC7555356 DOI: 10.1083/jcb.202004202] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/15/2020] [Accepted: 09/11/2020] [Indexed: 01/04/2023] Open
Abstract
Eukaryotic cells typically form a single, round nucleus after mitosis, and failures to do so can compromise genomic integrity. How mammalian cells form such a nucleus remains incompletely understood. NuMA is a spindle protein whose disruption results in nuclear fragmentation. What role NuMA plays in nuclear integrity, and whether its perceived role stems from its spindle function, are unclear. Here, we use live imaging to demonstrate that NuMA plays a spindle-independent role in forming a single, round nucleus. NuMA keeps the decondensing chromosome mass compact at mitotic exit and promotes a mechanically robust nucleus. NuMA's C terminus binds DNA in vitro and chromosomes in interphase, while its coiled-coil acts as a central regulatory and structural element: it prevents NuMA from binding chromosomes at mitosis, regulates its nuclear mobility, and is essential for nuclear formation. Thus, NuMA plays a structural role over the cell cycle, building and maintaining the spindle and nucleus, two of the cell's largest structures.
Collapse
Affiliation(s)
- Andrea Serra-Marques
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA
| | - Ronja Houtekamer
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
| | - Dorine Hintzen
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
| | - John T. Canty
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA
- Department of Physics, University of California, Berkeley, Berkeley, CA
| | - Sophie Dumont
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
25
|
Polverino F, Naso FD, Asteriti IA, Palmerini V, Singh D, Valente D, Bird AW, Rosa A, Mapelli M, Guarguaglini G. The Aurora-A/TPX2 Axis Directs Spindle Orientation in Adherent Human Cells by Regulating NuMA and Microtubule Stability. Curr Biol 2020; 31:658-667.e5. [PMID: 33275894 DOI: 10.1016/j.cub.2020.10.096] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/16/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
Mitotic spindle orientation is a crucial process that defines the axis of cell division, contributing to daughter cell positioning and fate, and hence to tissue morphogenesis and homeostasis.1,2 The trimeric NuMA/LGN/Gαi complex, the major determinant of spindle orientation, exerts pulling forces on the spindle poles by anchoring astral microtubules (MTs) and dynein motors to the cell cortex.3,4 Mitotic kinases contribute to correct spindle orientation by regulating nuclear mitotic apparatus protein (NuMA) localization,5-7 among which the Aurora-A centrosomal kinase regulates NuMA targeting to the cell cortex in metaphase.8,9 Aurora-A and its activator targeting protein for Xklp2 (TPX2) are frequently overexpressed in cancer,10-12 raising the question as to whether spindle orientation is among the processes downstream the Aurora-A/TPX2 signaling axis altered under pathological conditions. Here, we investigated the role of TPX2 in the Aurora-A- and NuMA-dependent spindle orientation. We show that, in cultured adherent human cells, the interaction with TPX2 is required for Aurora-A to exert this function. We also show that Aurora-A, TPX2, and NuMA are part of a complex at spindle MTs, where TPX2 acts as a platform for Aurora-A regulation of NuMA. Interestingly, excess TPX2 does not influence NuMA localization but induces a "super-alignment" of the spindle axis with respect to the substrate, although an excess of Aurora-A induces spindle misorientation. These opposite effects are both linked to altered MT stability. Overall, our results highlight the importance of TPX2 for spindle orientation and suggest that spindle orientation is differentially sensitive to unbalanced levels of Aurora-A, TPX2, or the Aurora-A/TPX2 complex.
Collapse
Affiliation(s)
- Federica Polverino
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Adamello 16, 20141 Milan, Italy
| | - Francesco D Naso
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Italia A Asteriti
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Valentina Palmerini
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Adamello 16, 20141 Milan, Italy
| | - Divya Singh
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Davide Valente
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Alexander W Bird
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Alessandro Rosa
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Department of Biology and Biotechnology "C. Darwin," Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Marina Mapelli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Adamello 16, 20141 Milan, Italy.
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy.
| |
Collapse
|
26
|
Steblyanko Y, Rajendraprasad G, Osswald M, Eibes S, Jacome A, Geley S, Pereira AJ, Maiato H, Barisic M. Microtubule poleward flux in human cells is driven by the coordinated action of four kinesins. EMBO J 2020; 39:e105432. [PMID: 33073400 PMCID: PMC7705458 DOI: 10.15252/embj.2020105432] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Mitotic spindle microtubules (MTs) undergo continuous poleward flux, whose driving force and function in humans remain unclear. Here, we combined loss-of-function screenings with analysis of MT-dynamics in human cells to investigate the molecular mechanisms underlying MT-flux. We report that kinesin-7/CENP-E at kinetochores (KTs) is the predominant driver of MT-flux in early prometaphase, while kinesin-4/KIF4A on chromosome arms facilitates MT-flux during late prometaphase and metaphase. Both these activities work in coordination with kinesin-5/EG5 and kinesin-12/KIF15, and our data suggest that the MT-flux driving force is transmitted from non-KT-MTs to KT-MTs by the MT couplers HSET and NuMA. Additionally, we found that the MT-flux rate correlates with spindle length, and this correlation depends on the establishment of stable end-on KT-MT attachments. Strikingly, we find that MT-flux is required to regulate spindle length by counteracting kinesin 13/MCAK-dependent MT-depolymerization. Thus, our study unveils the long-sought mechanism of MT-flux in human cells as relying on the coordinated action of four kinesins to compensate for MT-depolymerization and regulate spindle length.
Collapse
Affiliation(s)
| | | | - Mariana Osswald
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | - Susana Eibes
- Danish Cancer Society Research Center (DCRC)CopenhagenDenmark
| | - Ariana Jacome
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | - Stephan Geley
- Institute of PathophysiologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - António J Pereira
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | - Helder Maiato
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- Experimental Biology UnitDepartment of BiomedicineFaculdade de MedicinaUniversidade do PortoPortoPortugal
| | - Marin Barisic
- Danish Cancer Society Research Center (DCRC)CopenhagenDenmark
- Department of Cellular and Molecular MedicineFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
27
|
Rajeevan A, Keshri R, Kapoor S, Kotak S. NuMA interaction with chromatin is vital for proper chromosome decondensation at the mitotic exit. Mol Biol Cell 2020; 31:2437-2451. [PMID: 32845810 PMCID: PMC7851854 DOI: 10.1091/mbc.e20-06-0415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
NuMA is an abundant long coiled-coil protein that plays a prominent role in spindle organization during mitosis. In interphase, NuMA is localized to the nucleus and hypothesized to control gene expression and chromatin organization. However, because of the prominent mitotic phenotype upon NuMA loss, its precise function in the interphase nucleus remains elusive. Here, we report that NuMA is associated with chromatin in interphase and prophase but released upon nuclear envelope breakdown (NEBD) by the action of Cdk1. We uncover that NuMA directly interacts with DNA via evolutionarily conserved sequences in its C-terminus. Notably, the expression of the DNA-binding-deficient mutant of NuMA affects chromatin decondensation at the mitotic exit, and nuclear shape in interphase. We show that the nuclear shape defects observed upon mutant NuMA expression are due to its potential to polymerize into higher-order fibrillar structures. Overall, this work establishes the spindle-independent function of NuMA in choreographing proper chromatin decompaction and nuclear shape by directly associating with the DNA.
Collapse
Affiliation(s)
- Ashwathi Rajeevan
- Department of Microbiology and Cell Biology, Indian Institute of Science, 560012 Bangalore, India
| | - Riya Keshri
- Department of Microbiology and Cell Biology, Indian Institute of Science, 560012 Bangalore, India
| | - Sukriti Kapoor
- Department of Microbiology and Cell Biology, Indian Institute of Science, 560012 Bangalore, India
| | - Sachin Kotak
- Department of Microbiology and Cell Biology, Indian Institute of Science, 560012 Bangalore, India
| |
Collapse
|
28
|
A Dual Protein-mRNA Localization Screen Reveals Compartmentalized Translation and Widespread Co-translational RNA Targeting. Dev Cell 2020; 54:773-791.e5. [PMID: 32783880 DOI: 10.1016/j.devcel.2020.07.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/01/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022]
Abstract
Local translation allows spatial control of gene expression. Here, we performed a dual protein-mRNA localization screen, using smFISH on 523 human cell lines expressing GFP-tagged genes. 32 mRNAs displayed specific cytoplasmic localizations with local translation at unexpected locations, including cytoplasmic protrusions, cell edges, endosomes, Golgi, the nuclear envelope, and centrosomes, the latter being cell-cycle-dependent. Automated classification of mRNA localization patterns revealed a high degree of intercellular heterogeneity. Surprisingly, mRNA localization frequently required ongoing translation, indicating widespread co-translational RNA targeting. Interestingly, while P-body accumulation was frequent (15 mRNAs), four mRNAs accumulated in foci that were distinct structures. These foci lacked the mature protein, but nascent polypeptide imaging showed that they were specialized translation factories. For β-catenin, foci formation was regulated by Wnt, relied on APC-dependent polysome aggregation, and led to nascent protein degradation. Thus, translation factories uniquely regulate nascent protein metabolism and create a fine granular compartmentalization of translation.
Collapse
|
29
|
Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV, Correa Marrero M, Polacco BJ, Melnyk JE, Ulferts S, Kaake RM, Batra J, Richards AL, Stevenson E, Gordon DE, Rojc A, Obernier K, Fabius JM, Soucheray M, Miorin L, Moreno E, Koh C, Tran QD, Hardy A, Robinot R, Vallet T, Nilsson-Payant BE, Hernandez-Armenta C, Dunham A, Weigang S, Knerr J, Modak M, Quintero D, Zhou Y, Dugourd A, Valdeolivas A, Patil T, Li Q, Hüttenhain R, Cakir M, Muralidharan M, Kim M, Jang G, Tutuncuoglu B, Hiatt J, Guo JZ, Xu J, Bouhaddou S, Mathy CJP, Gaulton A, Manners EJ, Félix E, Shi Y, Goff M, Lim JK, McBride T, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, De Wit E, Leach AR, Kortemme T, Shoichet B, Ott M, Saez-Rodriguez J, tenOever BR, Mullins RD, Fischer ER, Kochs G, Grosse R, García-Sastre A, Vignuzzi M, Johnson JR, Shokat KM, Swaney DL, Beltrao P, Krogan NJ. The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 2020; 182:685-712.e19. [PMID: 32645325 PMCID: PMC7321036 DOI: 10.1016/j.cell.2020.06.034] [Citation(s) in RCA: 744] [Impact Index Per Article: 148.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The causative agent of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions and killed hundreds of thousands of people worldwide, highlighting an urgent need to develop antiviral therapies. Here we present a quantitative mass spectrometry-based phosphoproteomics survey of SARS-CoV-2 infection in Vero E6 cells, revealing dramatic rewiring of phosphorylation on host and viral proteins. SARS-CoV-2 infection promoted casein kinase II (CK2) and p38 MAPK activation, production of diverse cytokines, and shutdown of mitotic kinases, resulting in cell cycle arrest. Infection also stimulated a marked induction of CK2-containing filopodial protrusions possessing budding viral particles. Eighty-seven drugs and compounds were identified by mapping global phosphorylation profiles to dysregulated kinases and pathways. We found pharmacologic inhibition of the p38, CK2, CDK, AXL, and PIKFYVE kinases to possess antiviral efficacy, representing potential COVID-19 therapies.
Collapse
Affiliation(s)
- Mehdi Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Danish Memon
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Bjoern Meyer
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Veronica V Rezelj
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Miguel Correa Marrero
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Benjamin J Polacco
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James E Melnyk
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Svenja Ulferts
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Robyn M Kaake
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jyoti Batra
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alicia L Richards
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Erica Stevenson
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David E Gordon
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ajda Rojc
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kirsten Obernier
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jacqueline M Fabius
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Margaret Soucheray
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elena Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Cassandra Koh
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Quang Dinh Tran
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Alexandra Hardy
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Rémy Robinot
- Virus & Immunity Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France; Vaccine Research Institute, 94000 Creteil, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | | | - Claudia Hernandez-Armenta
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Alistair Dunham
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sebastian Weigang
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany
| | - Julian Knerr
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Maya Modak
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Diego Quintero
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuan Zhou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aurelien Dugourd
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Alberto Valdeolivas
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Trupti Patil
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qiongyu Li
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Merve Cakir
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Monita Muralidharan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Minkyu Kim
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gwendolyn Jang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Beril Tutuncuoglu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph Hiatt
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey Z Guo
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiewei Xu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sophia Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
| | - Christopher J P Mathy
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anna Gaulton
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Emma J Manners
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Eloy Félix
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ying Shi
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Marisa Goff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | | | | | | | | | - Emmie De Wit
- NIH/NIAID/Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Andrew R Leach
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Tanja Kortemme
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian Shoichet
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - R Dyche Mullins
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | | | - Georg Kochs
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany
| | - Robert Grosse
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg 79104, Germany.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France.
| | - Jeffery R Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Kevan M Shokat
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute.
| | - Danielle L Swaney
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Pedro Beltrao
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Nevan J Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
30
|
Lam MSY, Lisica A, Ramkumar N, Hunter G, Mao Y, Charras G, Baum B. Isotropic myosin-generated tissue tension is required for the dynamic orientation of the mitotic spindle. Mol Biol Cell 2020; 31:1370-1379. [PMID: 32320325 PMCID: PMC7353144 DOI: 10.1091/mbc.e19-09-0545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/19/2020] [Accepted: 04/14/2020] [Indexed: 12/01/2022] Open
Abstract
The ability of cells to divide along their longest axis has been proposed to play an important role in maintaining epithelial tissue homeostasis in many systems. Because the division plane is largely set by the position of the anaphase spindle, it is important to understand how spindles become oriented. While several molecules have been identified that play key roles in spindle orientation across systems, most notably Mud/NuMA and cortical dynein, the precise mechanism by which spindles detect and align with the long cell axis remain poorly understood. Here, in exploring the dynamics of spindle orientation in mechanically distinct regions of the fly notum, we find that the ability of cells to properly reorient their divisions depends on local tissue tension. Thus, spindles reorient to align with the long cell axis in regions where isotropic tension is elevated, but fail to do so in elongated cells within the crowded midline, where tension is low, or in regions that have been mechanically isolated from the rest of the tissue via laser ablation. Importantly, these differences in spindle behavior outside and inside the midline can be recapitulated by corresponding changes in tension induced by perturbations that alter nonmuscle myosin II activity. These data lead us to propose that isotropic tension within an epithelium provides cells with a mechanically stable substrate upon which localized cortical motor complexes can act on astral microtubules to orient the spindle.
Collapse
Affiliation(s)
| | - Ana Lisica
- London Centre for Nanotechnology
- Institute for the Physics of Living Systems, and
| | | | | | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology
- Institute for the Physics of Living Systems, and
| | - Guillaume Charras
- London Centre for Nanotechnology
- Institute for the Physics of Living Systems, and
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology
- Institute for the Physics of Living Systems, and
| |
Collapse
|
31
|
Mass Spectrometric Comparison of HPV-Positive and HPV-Negative Oropharyngeal Cancer. Cancers (Basel) 2020; 12:cancers12061531. [PMID: 32545200 PMCID: PMC7352546 DOI: 10.3390/cancers12061531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Squamous cell carcinoma of the head and neck (HNSCC) consist of two distinct biological entities. While the numbers of classical, tobacco-induced HNSCC are declining, tumors caused by human papillomavirus (HPV) infection are increasing in many countries. HPV-positive HNSCC mostly arise in the oropharynx and are characterized by an enhanced sensitivity towards radiotherapy and a favorable prognosis. To identify molecular differences between both entities on the protein level, we conducted a mass spectrometric comparison of eight HPV-positive and nine HPV-negative oropharyngeal tumors (OPSCC). Overall, we identified 2051 proteins, of which 31 were found to be differentially expressed. Seventeen of these can be assorted to three functional groups, namely DNA replication, nuclear architecture and cytoskeleton regulation, with the differences in the last group potentially reflecting an enhanced migratory and invasive capacity. Furthermore, a number of identified proteins have been described to directly impact on DNA double-strand break repair or radiation sensitivity (e.g., SLC3A2, cortactin, RBBP4, Numa1), offering explanations for the differential prognosis. The unequal expression of three proteins (SLC3A2, MCM2 and lamin B1) was confirmed by immunohistochemical staining using a tissue microarray containing 205 OPSCC samples. The expression levels of SLC3A2 and lamin B1 were found be of prognostic relevance in patients with HPV-positive and HPV-negative OPSCC, respectively.
Collapse
|
32
|
Renna C, Rizzelli F, Carminati M, Gaddoni C, Pirovano L, Cecatiello V, Pasqualato S, Mapelli M. Organizational Principles of the NuMA-Dynein Interaction Interface and Implications for Mitotic Spindle Functions. Structure 2020; 28:820-829.e6. [PMID: 32413290 DOI: 10.1016/j.str.2020.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/18/2020] [Accepted: 04/22/2020] [Indexed: 01/01/2023]
Abstract
Mitotic progression is orchestrated by the microtubule-based motor dynein, which sustains all mitotic spindle functions. During cell division, cytoplasmic dynein acts with the high-molecular-weight complex dynactin and nuclear mitotic apparatus (NuMA) to organize and position the spindle. Here, we analyze the interaction interface between NuMA and the light intermediate chain (LIC) of eukaryotic dynein. Structural studies show that NuMA contains a hook domain contacting directly LIC1 and LIC2 chains through a conserved hydrophobic patch shared among other Hook adaptors. In addition, we identify a LIC-binding motif within the coiled-coil region of NuMA that is homologous to CC1-boxes. Analysis of mitotic cells revealed that both LIC-binding sites of NuMA are essential for correct spindle placement and cell division. Collectively, our evidence depicts NuMA as the dynein-activating adaptor acting in the mitotic processes of spindle organization and positioning.
Collapse
Affiliation(s)
- Cristina Renna
- IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | | | | | - Chiara Gaddoni
- IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Laura Pirovano
- IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | | | | | - Marina Mapelli
- IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy.
| |
Collapse
|
33
|
Gisler S, Maia ARR, Chandrasekaran G, Kopparam J, van Lohuizen M. A genome-wide enrichment screen identifies NUMA1-loss as a resistance mechanism against mitotic cell-death induced by BMI1 inhibition. PLoS One 2020; 15:e0227592. [PMID: 32343689 PMCID: PMC7188281 DOI: 10.1371/journal.pone.0227592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/24/2020] [Indexed: 02/02/2023] Open
Abstract
BMI1 is a core protein of the polycomb repressive complex 1 (PRC1) that is overexpressed in several cancer types, making it a promising target for cancer therapies. However, the underlying mechanisms and interactions associated with BMI1-induced tumorigenesis are often context-dependent and complex. Here, we performed a drug resistance screen on mutagenized human haploid HAP1 cells treated with BMI1 inhibitor PTC-318 to find new genetic and mechanistic features associated with BMI1-dependent cancer cell proliferation. Our screen identified NUMA1-mutations as the most significant inducer of PTC-318 cell death resistance. Independent validations on NUMA1-proficient HAP1 and non-small cell lung cancer cell lines exposed to BMI1 inhibition by PTC-318 or BMI1 knockdown resulted in cell death following mitotic arrest. Interestingly, cells with CRISPR-Cas9 derived NUMA1 knockout also showed a mitotic arrest phenotype following BMI1 inhibition but, contrary to cells with wildtype NUMA1, these cells were resistant to BMI1-dependent cell death. The current study brings new insights to BMI1 inhibition-induced mitotic lethality in cancer cells and presents a previously unknown role of NUMA1 in this process.
Collapse
Affiliation(s)
- Santiago Gisler
- Division of Molecular Genetics, Oncode and The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ana Rita R. Maia
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gayathri Chandrasekaran
- Division of Molecular Genetics, Oncode and The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jawahar Kopparam
- Division of Molecular Genetics, Oncode and The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maarten van Lohuizen
- Division of Molecular Genetics, Oncode and The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Sosunov A, Wu X, McGovern R, Mikell C, McKhann GM, Goldman JE. Abnormal mitosis in reactive astrocytes. Acta Neuropathol Commun 2020; 8:47. [PMID: 32293551 PMCID: PMC7158149 DOI: 10.1186/s40478-020-00919-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/17/2020] [Indexed: 12/21/2022] Open
Abstract
Although abnormal mitosis with disarranged metaphase chromosomes or many micronuclei in astrocytes (named "Alzheimer I type astrocytes" and later "Creutzfeldt-Peters cells") have been known for nearly 100 years, the origin and mechanisms of this pathology remain elusive. In experimental brain insults in rats, we show that abnormal mitoses that are not followed by cytokinesis are typical for reactive astrocytes. The pathology originates due to the inability of the cells to form normal mitotic spindles with subsequent metaphase chromosome congression, which, in turn may be due to shape constraints aggravated by cellular enlargement and to the accumulation of large amounts of cytosolic proteins. Many astrocytes escape from arrested mitosis by producing micronuclei. These polyploid astrocytes can survive for long periods of time and enter into new cell cycles.
Collapse
Affiliation(s)
- Alexander Sosunov
- Department of Neurosurgery, Columbia University, 630 W. 168th St, P&S 15-405, New York, NY 10032 USA
| | - Xiaoping Wu
- Department of Neurosurgery, Columbia University, 630 W. 168th St, P&S 15-405, New York, NY 10032 USA
| | - Robert McGovern
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455 USA
| | - Charles Mikell
- Department of Neurosurgery, Stony Brook University School of Medicine, Stony Brook, NY USA
| | - Guy M. McKhann
- Department of Neurosurgery, Columbia University, 630 W. 168th St, P&S 15-405, New York, NY 10032 USA
| | - James E. Goldman
- Pathology & Cell Biology, Columbia University, New York, NY 10032 USA
| |
Collapse
|
35
|
Takayanagi H, Hayase J, Kamakura S, Miyano K, Chishiki K, Yuzawa S, Sumimoto H. Intramolecular interaction in LGN, an adaptor protein that regulates mitotic spindle orientation. J Biol Chem 2019; 294:19655-19666. [PMID: 31732560 DOI: 10.1074/jbc.ra119.011457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/07/2019] [Indexed: 12/11/2022] Open
Abstract
Proper mitotic spindle orientation requires that astral microtubules are connected to the cell cortex by the microtubule-binding protein NuMA, which is recruited from the cytoplasm. Cortical recruitment of NuMA is at least partially mediated via direct binding to the adaptor protein LGN. LGN normally adopts a closed conformation via an intramolecular interaction between its N-terminal NuMA-binding domain and its C-terminal region that contains four GoLoco (GL) motifs, each capable of binding to the membrane-anchored Gαi subunit of heterotrimeric G protein. Here we show that the intramolecular association with the N-terminal domain in LGN involves GL3, GL4, and a region between GL2 and GL3, whereas GL1 and GL2 do not play a major role. This conformation renders GL1 but not the other GL motifs in a state easily accessible to Gαi To interact with full-length LGN in a closed state, NuMA requires the presence of Gαi; both NuMA and Gαi are essential for cortical recruitment of LGN in mitotic cells. In contrast, mInsc, a protein that competes with NuMA for binding to LGN and regulates mitotic spindle orientation in asymmetric cell division, efficiently binds to full-length LGN without Gαi and induces its conformational change, enhancing its association with Gαi In nonpolarized symmetrically dividing HeLa cells, disruption of the LGN-NuMA interaction by ectopic expression of mInsc results in a loss of cortical localization of NuMA during metaphase and anaphase and promotes mitotic spindle misorientation and a delayed anaphase progression. These findings highlight a specific role for LGN-mediated cell cortex recruitment of NuMA.
Collapse
Affiliation(s)
- Hiroki Takayanagi
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Junya Hayase
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Sachiko Kamakura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Kei Miyano
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Kanako Chishiki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Satoru Yuzawa
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| |
Collapse
|
36
|
Tarchini B, Lu X. New insights into regulation and function of planar polarity in the inner ear. Neurosci Lett 2019; 709:134373. [PMID: 31295539 PMCID: PMC6732021 DOI: 10.1016/j.neulet.2019.134373] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/02/2019] [Accepted: 07/06/2019] [Indexed: 12/18/2022]
Abstract
Acquisition of cell polarity generates signaling and cytoskeletal asymmetry and thus underpins polarized cell behaviors during tissue morphogenesis. In epithelial tissues, both apical-basal polarity and planar polarity, which refers to cell polarization along an axis orthogonal to the apical-basal axis, are essential for epithelial morphogenesis and function. A prime example of epithelial planar polarity can be found in the auditory sensory epithelium (or organ of Corti, OC). Sensory hair cells, the sound receptors, acquire a planar polarized apical cytoskeleton which is uniformely oriented along an axis orthogonal to the longitudinal axis of the cochlear duct. Both cell-intrinsic and tissue-level planar polarity are necessary for proper perception of sound. Here we review recent insights into the novel roles and mechanisms of planar polarity signaling gained from genetic analysis in mice, focusing mainly on the OC but also with some discussions on the vestibular sensory epithelia.
Collapse
Affiliation(s)
- Basile Tarchini
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Department of Medicine, Tufts University, Boston, 02111, MA, USA; Graduate School of Biomedical Science and Engineering (GSBSE), University of Maine, Orono, 04469, ME, USA.
| | - Xiaowei Lu
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| |
Collapse
|
37
|
Zhou H, Zheng T, Wang T, Li Q, Wang F, Liang X, Chen J, Teng J. CCDC74A/B are K-fiber crosslinkers required for chromosomal alignment. BMC Biol 2019; 17:73. [PMID: 31521166 PMCID: PMC6744678 DOI: 10.1186/s12915-019-0694-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/29/2019] [Indexed: 12/26/2022] Open
Abstract
Background Spindle microtubule organization, regulated by microtubule-associated proteins, is critical for cell division. Proper organization of kinetochore fiber (K-fiber), connecting spindle poles and kinetochores, is a prerequisite for precise chromosomal alignment and faithful genetic material transmission. However, the mechanisms of K-fiber organization and dynamic maintenance are still not fully understood. Results We reveal that two previously uncharacterized coiled-coil domain proteins CCDC74A and CCDC74B (CCDC74A/B) are spindle-localized proteins in mammalian cells. They bind directly to microtubules through two separate domains and bundle microtubules both in vivo and in vitro. These functions are required for K-fiber organization, bipolar spindle formation, and chromosomal alignment. Moreover, CCDC74A/B form homodimers in vivo, and their self-association activity is necessary for microtubule bundling and K-fiber formation. Conclusions We characterize CCDC74A and CCDC74B as microtubule-associated proteins that localize to spindles and are important K-fiber crosslinkers required for bipolar spindle formation and chromosome alignment. Electronic supplementary material The online version of this article (10.1186/s12915-019-0694-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haining Zhou
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Tao Zheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Tianning Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qi Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Fulin Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xin Liang
- Peking-Tsinghua Center for Life Sciences and Max-Planck Partner Group, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100871, China. .,Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
38
|
Poon J, Fries A, Wessel GM, Yajima M. Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins. Nat Commun 2019; 10:3779. [PMID: 31439829 PMCID: PMC6706577 DOI: 10.1038/s41467-019-11560-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/18/2019] [Indexed: 02/01/2023] Open
Abstract
Evolution is proposed to result, in part, from acquisition of new developmental programs. One such example is the appearance of the micromeres in a sea urchin that form by an asymmetric cell division at the 4th embryonic cleavage and function as a major signaling center in the embryo. Micromeres are not present in other echinoderms and thus are considered as a derived feature, yet its acquisition mechanism is unknown. Here, we report that the polarity factor AGS and its associated proteins are responsible for micromere formation. Evolutionary modifications of AGS protein seem to have provided the cortical recruitment and binding of AGS to the vegetal cortex, contributing to formation of micromeres in the sea urchins. Indeed, introduction of sea urchin AGS into the sea star embryo induces asymmetric cell divisions, suggesting that the molecular evolution of AGS protein is key in the transition of echinoderms to micromere formation and the current developmental style of sea urchins not seen in other echinoderms.
Collapse
Affiliation(s)
- Jessica Poon
- MCB Department, Brown University, 185 Meeting Street, BOXG-L277, Providence, RI, 02912, USA
| | - Annaliese Fries
- MCB Department, Brown University, 185 Meeting Street, BOXG-L277, Providence, RI, 02912, USA
| | - Gary M Wessel
- MCB Department, Brown University, 185 Meeting Street, BOXG-L277, Providence, RI, 02912, USA
| | - Mamiko Yajima
- MCB Department, Brown University, 185 Meeting Street, BOXG-L277, Providence, RI, 02912, USA.
| |
Collapse
|
39
|
Abstract
Mechanical forces drive the remodeling of tissues during morphogenesis. This relies on the transmission of forces between cells by cadherin-based adherens junctions, which couple the force-generating actomyosin cytoskeletons of neighboring cells. Moreover, components of cadherin adhesions adopt force-dependent conformations that induce changes in the composition of adherens junctions, enabling transduction of mechanical forces into an intracellular response. Cadherin mechanotransduction can mediate reinforcement of cell–cell adhesions to withstand forces but also induce biochemical signaling to regulate cell behavior or direct remodeling of cell–cell adhesions to enable cell rearrangements. By transmission and transduction of mechanical forces, cadherin adhesions coordinate cellular behaviors underlying morphogenetic processes of collective cell migration, cell division, and cell intercalation. Here, we review recent advances in our understanding of this central role of cadherin adhesions in force-dependent regulation of morphogenesis.
Collapse
Affiliation(s)
- Willem-Jan Pannekoek
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johan de Rooij
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn Gloerich
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
40
|
Global Interactomics Connect Nuclear Mitotic Apparatus Protein NUMA1 to Influenza Virus Maturation. Viruses 2018; 10:v10120731. [PMID: 30572664 PMCID: PMC6316800 DOI: 10.3390/v10120731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 11/17/2022] Open
Abstract
Influenza A virus (IAV) infections remain a major human health threat. IAV has enormous genetic plasticity and can rapidly escape virus-targeted anti-viral strategies. Thus, there is increasing interest to identify host proteins and processes the virus requires for replication and maturation. The IAV non-structural protein 1 (NS1) is a critical multifunctional protein that is expressed to high levels in infected cells. Host proteins that interact with NS1 may serve as ideal targets for attenuating IAV replication. We previously developed and characterized broadly cross-reactive anti-NS1 monoclonal antibodies. For the current study, we used these mAbs to co-immunoprecipitate native IAV NS1 and interacting host proteins; 183 proteins were consistently identified in this NS1 interactome study, 124 of which have not been previously reported. RNAi screens identified 11 NS1-interacting host factors as vital for IAV replication. Knocking down one of these, nuclear mitotic apparatus protein 1 (NUMA1), dramatically reduced IAV replication. IAV genomic transcription and translation were not inhibited but transport of viral structural proteins to the cell membrane was hindered during maturation steps in NUMA1 knockdown (KD) cells.
Collapse
|
41
|
Ou S, Tan MH, Weng T, Li H, Koh CG. LIM kinase1 regulates mitotic centrosome integrity via its activity on dynein light intermediate chains. Open Biol 2018; 8:rsob.170202. [PMID: 29925632 PMCID: PMC6030115 DOI: 10.1098/rsob.170202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 05/29/2018] [Indexed: 01/10/2023] Open
Abstract
Abnormal centrosome number and function have been implicated in tumour development. LIM kinase1 (LIMK1), a regulator of actin cytoskeleton dynamics, is found to localize at the mitotic centrosome. However, its role at the centrosome is not fully explored. Here, we report that LIMK1 depletion resulted in multi-polar spindles and defocusing of centrosomes, implicating its involvement in the regulation of mitotic centrosome integrity. LIMK1 could influence centrosome integrity by modulating centrosomal protein localization at the spindle pole. Interestingly, dynein light intermediate chains (LICs) are able to rescue the defects observed in LIMK1-depleted cells. We found that LICs are potential novel interacting partners and substrates of LIMK1 and that LIMK1 phosphorylation regulates cytoplasmic dynein function in centrosomal protein transport, which in turn impacts mitotic spindle pole integrity.
Collapse
Affiliation(s)
- Sirong Ou
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Mei-Hua Tan
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Ting Weng
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - HoiYeung Li
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Cheng-Gee Koh
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore .,Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, 117411, Singapore
| |
Collapse
|
42
|
Abstract
Cytoplasmic dynein 1 is an important microtubule-based motor in many eukaryotic cells. Dynein has critical roles both in interphase and during cell division. Here, we focus on interphase cargoes of dynein, which include membrane-bound organelles, RNAs, protein complexes and viruses. A central challenge in the field is to understand how a single motor can transport such a diverse array of cargoes and how this process is regulated. The molecular basis by which each cargo is linked to dynein and its cofactor dynactin has started to emerge. Of particular importance for this process is a set of coiled-coil proteins - activating adaptors - that both recruit dynein-dynactin to their cargoes and activate dynein motility.
Collapse
|
43
|
Qin WS, Wu J, Chen Y, Cui FC, Zhang FM, Lyu GT, Zhang HM. The Short Isoform of Nuclear Mitotic Apparatus Protein 1 Functions as a Putative Tumor Suppressor. Chin Med J (Engl) 2018; 130:1824-1830. [PMID: 28748856 PMCID: PMC5547835 DOI: 10.4103/0366-6999.211535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: Nuclear mitotic apparatus protein 1 (NuMA1) had been reported to produce three groups of isoforms categorized as long, middle, and short groups, of which short NuMA displayed distinct localization patterns compared to long and middle isoforms. However, the function of short NuMA was not clear in the progress of cancer formation. This study aimed to unveil the role of short NuMA in cancer pathogenesis. Methods: The expression levels of short isoforms were explored in paired gastric carcinoma (GC) samples and different cell lines. Furthermore, the short isoform behaved as a putative tumor suppressor based on cell proliferation and cell colony formation assays. Pull-down assay and whole-genome gene expression analysis were carried out to search candidate interaction partners of short NuMA. Results: The expression of short NuMA was highly expressed in S and G2 phases of the cell cycle; compared with nontumor tissues, short NuMA downregulated in nine GCs (GC1 [0.131, P = 5 × 10−4]; GC2 [0.316, P = 3 × 10−5]; GC3 [0.111, P = 6 × 10−4]; GC4 [0.456, P = 0.011]; GC5 [0.474, P = 0.001]; GC6 [0.311, P = 0.004]; GC7 [0.28, P = 3 × 10−5]; GC8 [0.298, P = 0.007]; and GC9 [0.344, P = 0.002]). Besides, high expression of short NuMA significantly inhibits cell growth (2.43 × 105 vs. 2.97 × 105, P = 0.0029) and cell clone information in vitro (70 vs. 2, P = 1.67 × 10−45). Short NuMA could bind with alpha–actinin-4 (ACTN4), a putative tumor promoting gene. Overexpression of short NuMA could tremendously decrease the expression of MYB proto-oncogene like 2 (MYBL2) of about 92-fold, which played an important role in the cell cycles. Conclusions: Short isoform of NuMA might be functioned as a putative role of tumor suppressor. Further studies should be made to illuminate the relationship between ACTN4, MYBL2, and tumor progression.
Collapse
Affiliation(s)
- Wang-Sen Qin
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Jin Wu
- Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yang Chen
- Central Laboratory, Haikou People's Hospital, Haikou, Hainan 570208, China
| | - Fa-Cai Cui
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Fu-Ming Zhang
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Guan-Ting Lyu
- Department of Blood Transfusion, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hong-Mei Zhang
- Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
44
|
Huang P, Almeciga-Pinto I, Jarpe M, van Duzer JH, Mazitschek R, Yang M, Jones SS, Quayle SN. Selective HDAC inhibition by ACY-241 enhances the activity of paclitaxel in solid tumor models. Oncotarget 2018; 8:2694-2707. [PMID: 27926524 PMCID: PMC5356834 DOI: 10.18632/oncotarget.13738] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/24/2016] [Indexed: 01/26/2023] Open
Abstract
ACY-241 is a novel, orally available and selective histone deacetylase (HDAC) 6 inhibitor in Phase 1b clinical development in multiple myeloma (NCT 02400242). Like the structurally related drug ACY-1215 (ricolinostat), ACY-241 has the potential for a substantially reduced side effect profile versus current nonselective HDAC inhibitor drug candidates due to reduced potency against Class I HDACs while retaining the potential for anticancer effectiveness. We now show that combination treatment of xenograft models with paclitaxel and either ricolinostat or ACY-241 significantly suppresses solid tumor growth. In cell lines from multiple solid tumor lineages, combination treatment with ACY-241 and paclitaxel enhanced inhibition of proliferation and increased cell death relative to either single agent alone. Combination treatment with ACY-241 and paclitaxel also resulted in more frequent occurrence of mitotic cells with abnormal multipolar spindles and aberrant mitoses, consistent with the observed increase of aneuploid cells. At the molecular level, multipolar mitotic spindle formation was observed to be NuMA-dependent and γ-tubulin independent, suggesting that treatment-induced multipolar spindle formation does not depend on centrosomal amplification. The significantly enhanced efficacy of ACY-241 plus paclitaxel observed here, in addition to the anticipated superior safety profile of a selective HDAC6 inhibitor versus pan-HDAC inhibitors, provides a strong rationale for clinical development of this combination in patients with advanced solid tumors.
Collapse
Affiliation(s)
- Pengyu Huang
- Acetylon Pharmaceuticals, Inc., Boston, MA 02210, USA
| | | | - Matthew Jarpe
- Acetylon Pharmaceuticals, Inc., Boston, MA 02210, USA
| | | | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Min Yang
- Acetylon Pharmaceuticals, Inc., Boston, MA 02210, USA
| | - Simon S Jones
- Acetylon Pharmaceuticals, Inc., Boston, MA 02210, USA
| | | |
Collapse
|
45
|
Tang Z, Hu Y, Wang Z, Jiang K, Zhan C, Marshall WF, Tang N. Mechanical Forces Program the Orientation of Cell Division during Airway Tube Morphogenesis. Dev Cell 2018; 44:313-325.e5. [PMID: 29337000 DOI: 10.1016/j.devcel.2017.12.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/13/2017] [Accepted: 12/12/2017] [Indexed: 11/16/2022]
Abstract
Oriented cell division plays a key role in controlling organogenesis. The mechanisms for regulating division orientation at the whole-organ level are only starting to become understood. By combining 3D time-lapse imaging, mouse genetics, and mathematical modeling, we find that global orientation of cell division is the result of a combination of two types of spindles with distinct spindle dynamic behaviors in the developing airway epithelium. Fixed spindles follow the classic long-axis rule and establish their division orientation before metaphase. In contrast, rotating spindles do not strictly follow the long-axis rule and determine their division orientation during metaphase. By using both a cell-based mechanical model and stretching-lung-explant experiments, we showed that mechanical force can function as a regulatory signal in maintaining the stable ratio between fixed spindles and rotating spindles. Our findings demonstrate that mechanical forces, cell geometry, and oriented cell division function together in a highly coordinated manner to ensure normal airway tube morphogenesis.
Collapse
Affiliation(s)
- Zan Tang
- College of Life Sciences, Peking University, Beijing 100871, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Yucheng Hu
- Zhou Pei-yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, China
| | - Zheng Wang
- National Institute of Biological Sciences, Beijing 102206, China; Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Kewu Jiang
- National Institute of Biological Sciences, Beijing 102206, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Cheng Zhan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Nan Tang
- National Institute of Biological Sciences, Beijing 102206, China.
| |
Collapse
|
46
|
Hueschen CL, Kenny SJ, Xu K, Dumont S. NuMA recruits dynein activity to microtubule minus-ends at mitosis. eLife 2017; 6. [PMID: 29185983 PMCID: PMC5706958 DOI: 10.7554/elife.29328] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 10/22/2017] [Indexed: 12/14/2022] Open
Abstract
To build the spindle at mitosis, motors exert spatially regulated forces on microtubules. We know that dynein pulls on mammalian spindle microtubule minus-ends, and this localized activity at ends is predicted to allow dynein to cluster microtubules into poles. How dynein becomes enriched at minus-ends is not known. Here, we use quantitative imaging and laser ablation to show that NuMA targets dynactin to minus-ends, localizing dynein activity there. NuMA is recruited to new minus-ends independently of dynein and more quickly than dynactin; both NuMA and dynactin display specific, steady-state binding at minus-ends. NuMA localization to minus-ends involves a C-terminal region outside NuMA’s canonical microtubule-binding domain and is independent of minus-end binders γ-TuRC, CAMSAP1, and KANSL1/3. Both NuMA’s minus-end-binding and dynein-dynactin-binding modules are required to rescue focused, bipolar spindle organization. Thus, NuMA may serve as a mitosis-specific minus-end cargo adaptor, targeting dynein activity to minus-ends to cluster spindle microtubules into poles. Every time a cell divides, it needs to duplicate its DNA and evenly distribute it between the two new ‘daughter’ cells. To move and distribute DNA, the cell builds a large machine called a spindle, which is made of stiff cables called microtubules. Many proteins, including a motor called dynein, help to organize the spindle’s microtubules. One of dynein’s jobs is to cluster all microtubules at the two tips of the spindle, pulling them into shape. Without this clustering, spindles have the wrong shape and structure and can make mistakes when moving DNA. Microtubules have a ‘plus’ end and a ‘minus’ end, and motor proteins usually only travel in one specified direction. Dynein, for example, moves towards the minus end of microtubules, which is where most of the clustering happens. It can form a complex with other proteins that help clustering, one of which is called NuMA. Until now, it was thought that dynein transports NuMA to the minus ends. To test this model, Hueschen et al. studied dividing human cells under a microscope and isolated minus ends with the help of a laser. The experiments showed that, in fact, NuMA gets to minus ends independently of dynein. Once it is on the minus ends, NuMA grabs hold of another protein complex called dynactin, which then gathers dynein. Dynein then pulls the spindles into shape from the minus ends. When NuMA was experimentally removed from the cells, dynein-dynactin complexes were scattered along the entire length of the microtubule instead of pulling specifically on minus-ends, which resulted in disorganized spindles. Thus, where dynein complexes pull determines what spindle shape they build. Hueschen et al. also showed that dynein complexes only pull on minus-ends while the cell divides, which makes sense, because NuMA remains hidden in the cell nucleus for the rest of the time. Together, these results suggest that NuMA makes sure dynein pulls specifically on the minus-ends of the microtubules to tighten the spindle at the right time. A next step will be to test how the mechanical properties of the spindle are changed without dynein pulling on minus-ends. A better knowledge of how different proteins work together to build the spindle and help cells divide can help us understand what goes wrong when cells divide abnormally, as in the case of cancer cells.
Collapse
Affiliation(s)
- Christina L Hueschen
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States.,Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Samuel J Kenny
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Sophie Dumont
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States.,Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
47
|
Bernard F, Lepesant JA, Guichet A. Nucleus positioning within Drosophila egg chamber. Semin Cell Dev Biol 2017; 82:25-33. [PMID: 29056490 DOI: 10.1016/j.semcdb.2017.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
Both types of Drosophila egg chamber germ cells, i.e. oocyte and nurse cells, have to control their nucleus positions in order to produce a viable gamete. Interestingly, while actin microfilaments are crucial to position the nuclei in nurse cells, these are the microtubules that are important for oocyte nucleus to migrate and adopt the correct position. In this review, we discuss the mechanisms underlying these positioning processes in the two cell types with respect to the organization and dynamics of the actin and microtubule skeleton. In the nurse cells it is essential to keep firmly the nuclei in a central position to prevent them from obstructing the ring canals when the cytoplasmic content of the cells is dumped into the oocyte cells toward the end of oogenesis. This is achieved by the assembly of thick filopodia-like actin cables anchored to the plasma membrane, which grow inwardly and eventually encase tightly the nuclei in a cage-like structure. In the oocyte, the migration at an early stage of oogenesis of the nucleus from a posterior location to an anchorage site at an asymmetric anterior position, is an essential step in the setting up of the dorsoventral polarity axis of the future embryo. This process is controlled by an interplay between MT networks that just start to be untangled. Although both mechanisms have evolved to fulfill cell-type specific cell processes in the context of fly oogenesis, interesting parallels can be drawn with other nuclear positioning mechanisms in the mouse oocyte and the developing muscle respectively.
Collapse
Affiliation(s)
- Fred Bernard
- Institut Jacques Monod, CNRS UMR 7592, Université Paris-Diderot, Sorbonne Paris Cité, 75205, Paris Cedex, France.
| | - Jean-Antoine Lepesant
- Institut Jacques Monod, CNRS UMR 7592, Université Paris-Diderot, Sorbonne Paris Cité, 75205, Paris Cedex, France.
| | - Antoine Guichet
- Institut Jacques Monod, CNRS UMR 7592, Université Paris-Diderot, Sorbonne Paris Cité, 75205, Paris Cedex, France.
| |
Collapse
|
48
|
Wu J, Lu G, Wu J, Yang H, Yu Z, Mu S, Zhang H. Application of fusion PCR to the amplification of full-length ORF sequences of different splicing variants of NuMA1 from HeLa cells. Acta Biochim Biophys Sin (Shanghai) 2017; 49:962-965. [PMID: 28981606 DOI: 10.1093/abbs/gmx093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/01/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jin Wu
- Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Guanting Lu
- Department of Blood Transfusion, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Jianwei Wu
- Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Hua Yang
- Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Zhicao Yu
- Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Shijie Mu
- Department of Blood Transfusion, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Hongmei Zhang
- Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
49
|
Elting MW, Prakash M, Udy DB, Dumont S. Mapping Load-Bearing in the Mammalian Spindle Reveals Local Kinetochore Fiber Anchorage that Provides Mechanical Isolation and Redundancy. Curr Biol 2017; 27:2112-2122.e5. [PMID: 28690110 DOI: 10.1016/j.cub.2017.06.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/04/2017] [Accepted: 06/08/2017] [Indexed: 11/25/2022]
Abstract
Active forces generated at kinetochores move chromosomes, and the dynamic spindle must robustly anchor kinetochore fibers (k-fibers) to bear this load. The mammalian spindle bears the load of chromosome movement far from poles, but we do not know where and how-physically and molecularly-this load distributes across the spindle. In part, this is because probing spindle mechanics in live cells is difficult. Yet answering this question is key to understanding how the spindle generates and responds to force and performs its diverse mechanical functions. Here, we map load-bearing across the mammalian spindle in space-time and dissect local anchorage mechanics and mechanism. To do so, we laser-ablate single k-fibers at different spindle locations and in different molecular backgrounds and quantify the immediate relaxation of chromosomes, k-fibers, and microtubule speckles. We find that load redistribution is locally confined in all directions: along the first 3-4 μm from kinetochores, scaling with k-fiber length, and laterally within ∼2 μm of k-fiber sides, without detectable load sharing between neighboring k-fibers. A phenomenological model suggests that dense, transient crosslinks to the spindle along k-fibers bear the load of chromosome movement but that these connections do not limit the timescale of spindle reorganization. The microtubule crosslinker NuMA is needed for the local load-bearing observed, whereas Eg5 and PRC1 are not detectably required, suggesting specialization in mechanical function. Together, the data and model suggest that NuMA-mediated crosslinks locally bear load, providing mechanical isolation and redundancy while allowing spindle fluidity. These features are well suited to support robust chromosome segregation.
Collapse
Affiliation(s)
- Mary Williard Elting
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Dylan B Udy
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sophie Dumont
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
50
|
Gilberto S, Peter M. Dynamic ubiquitin signaling in cell cycle regulation. J Cell Biol 2017; 216:2259-2271. [PMID: 28684425 PMCID: PMC5551716 DOI: 10.1083/jcb.201703170] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/11/2017] [Accepted: 05/25/2017] [Indexed: 12/16/2022] Open
Abstract
Gilberto and Peter discuss the role of ubiquitylation in the regulation of DNA replication and mitosis. The cell division cycle is driven by a collection of enzymes that coordinate DNA duplication and separation, ensuring that genomic information is faithfully and perpetually maintained. The activity of the effector proteins that perform and coordinate these biological processes oscillates by regulated expression and/or posttranslational modifications. Ubiquitylation is a cardinal cellular modification and is long known for driving cell cycle transitions. In this review, we emphasize emerging concepts of how ubiquitylation brings the necessary dynamicity and plasticity that underlie the processes of DNA replication and mitosis. New studies, often focusing on the regulation of chromosomal proteins like DNA polymerases or kinetochore kinases, are demonstrating that ubiquitylation is a versatile modification that can be used to fine-tune these cell cycle events, frequently through processes that do not involve proteasomal degradation. Understanding how the increasing variety of identified ubiquitin signals are transduced will allow us to develop a deeper mechanistic perception of how the multiple factors come together to faithfully propagate genomic information. Here, we discuss these and additional conceptual challenges that are currently under study toward understanding how ubiquitin governs cell cycle regulation.
Collapse
Affiliation(s)
- Samuel Gilberto
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland.,Molecular Life Science PhD Program, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Matthias Peter
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
| |
Collapse
|