1
|
Shreesha L, Levin M. Cellular Competency during Development Alters Evolutionary Dynamics in an Artificial Embryogeny Model. ENTROPY (BASEL, SWITZERLAND) 2023; 25:e25010131. [PMID: 36673272 PMCID: PMC9858125 DOI: 10.3390/e25010131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 05/25/2023]
Abstract
Biological genotypes do not code directly for phenotypes; developmental physiology is the control layer that separates genomes from capacities ascertained by selection. A key aspect is cellular competency, since cells are not passive materials but descendants of unicellular organisms with complex context-sensitive behavioral capabilities. To probe the effects of different degrees of cellular competency on evolutionary dynamics, we used an evolutionary simulation in the context of minimal artificial embryogeny. Virtual embryos consisted of a single axis of positional information values provided by cells' 'structural genes', operated upon by an evolutionary cycle in which embryos' fitness was proportional to monotonicity of the axial gradient. Evolutionary dynamics were evaluated in two modes: hardwired development (genotype directly encodes phenotype), and a more realistic mode in which cells interact prior to evaluation by the fitness function ("regulative" development). We find that even minimal ability of cells with to improve their position in the embryo results in better performance of the evolutionary search. Crucially, we observed that increasing the behavioral competency masks the raw fitness encoded by structural genes, with selection favoring improvements to its developmental problem-solving capacities over improvements to its structural genome. This suggests the existence of a powerful ratchet mechanism: evolution progressively becomes locked in to improvements in the intelligence of its agential substrate, with reduced pressure on the structural genome. This kind of feedback loop in which evolution increasingly puts more effort into the developmental software than perfecting the hardware explains the very puzzling divergence of genome from anatomy in species like planaria. In addition, it identifies a possible driver for scaling intelligence over evolutionary time, and suggests strategies for engineering novel systems in silico and in bioengineering.
Collapse
Affiliation(s)
- Lakshwin Shreesha
- UFR Fundamental and Biomedical Sciences, Université Paris Cité, 75006 Paris, France
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
2
|
Juliane Veigl S. Do heritable immune responses extend physiological individuality? HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2022; 44:67. [PMID: 36427106 PMCID: PMC9700645 DOI: 10.1007/s40656-022-00549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Immunology and its philosophy are a primary source for thinking about biological individuality. Through its discriminatory function, the immune system is believed to delineate organism and environment within one generation, thus defining the physiological individual. Based on the paradigmatic instantiations of immune systems, immune interactions and, thus, the physiological individual are believed to last only for one generation. However, in recent years, transgenerationally persisting immune responses have been reported in several phyla, but the consequences for physiological individuality have not yet been explored. In this article, I will introduce an invertebrate immune system that is RNA-based and operates through a heritable silencing/licensing paradigm. I will discuss how such a perspective on immune systems can illuminate our conceptions of individuality. I will particularly introduce an account of immunological individuality that is not restricted to one generation.
Collapse
|
3
|
Rodriguez FD. Targeting Epigenetic Mechanisms to Treat Alcohol Use Disorders (AUD). Curr Pharm Des 2021; 27:3252-3272. [PMID: 33535943 PMCID: PMC8778698 DOI: 10.2174/1381612827666210203142539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/08/2020] [Indexed: 12/04/2022]
Abstract
BACKGROUND The impact of abusive alcohol consumption on human health is remarkable. According to the World Health Organization (WHO), approximately 3.3 million people die annually because of harmful alcohol consumption (the figure represents around 5.9% of global deaths). Alcohol Use Disorder (AUD) is a chronic disease where individuals exhibit compulsive alcohol drinking and present negative emotional states when they do not drink. In the most severe manifestations of AUD, the individuals lose control over intake despite a decided will to stop drinking. Given the multiple faces and the specific forms of this disease, the term AUD often appears in the plural (AUDs). Since only a few approved pharmacological treatments are available to treat AUD and they do not apply to all individuals or AUD forms, the search for compounds that may help to eliminate the burden of the disease and complement other therapeutical approaches is necessary. METHODS This work reviews recent research focused on the involvement of epigenetic mechanisms in the pathophysiology of AUD. Excessive drinking leads to chronic and compulsive consumption that eventually damages the organism. The central nervous system is a key target and is the focus of this study. The search for the genetic and epigenetic mechanisms behind the intricated dysregulation induced by ethanol will aid researchers in establishing new therapy approaches. CONCLUSION Recent findings in the field of epigenetics are essential and offer new windows for observation and research. The study of small molecules that inhibit key epienzymes involved in nucleosome architecture dynamics is necessary in order to prove their action and specificity in the laboratory and to test their effectivity and safety in clinical trials with selected patients bearing defined alterations caused by ethanol.
Collapse
Affiliation(s)
- F. David Rodriguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, University of Salamanca and Group GIR BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
| |
Collapse
|
4
|
Silva WTAF, Otto SP, Immler S. Evolution of plasticity in production and transgenerational inheritance of small RNAs under dynamic environmental conditions. PLoS Genet 2021; 17:e1009581. [PMID: 34038409 PMCID: PMC8186813 DOI: 10.1371/journal.pgen.1009581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 06/08/2021] [Accepted: 05/05/2021] [Indexed: 01/07/2023] Open
Abstract
In a changing environment, small RNAs (sRNAs) play an important role in the post-transcriptional regulation of gene expression and can vary in abundance depending on the conditions experienced by an individual (phenotypic plasticity) and its parents (non-genetic inheritance). Many sRNAs are unusual in that they can be produced in two ways, either using genomic DNA as the template (primary sRNAs) or existing sRNAs as the template (secondary sRNAs). Thus, organisms can evolve rapid plastic responses to their current environment by adjusting the amplification rate of sRNA templates. sRNA levels can also be transmitted transgenerationally by the direct transfer of either sRNAs or the proteins involved in amplification. Theory is needed to describe the selective forces acting on sRNA levels, accounting for the dual nature of sRNAs as regulatory elements and templates for amplification and for the potential to transmit sRNAs and their amplification agents to offspring. Here, we develop a model to study the dynamics of sRNA production and inheritance in a fluctuating environment. We tested the selective advantage of mutants capable of sRNA-mediated phenotypic plasticity within resident populations with fixed levels of sRNA transcription. Even when the resident was allowed to evolve an optimal constant rate of sRNA production, plastic amplification rates capable of responding to environmental conditions were favored. Mechanisms allowing sRNA transcripts or amplification agents to be inherited were favored primarily when parents and offspring face similar environments and when selection acts before the optimal level of sRNA can be reached within the organism. Our study provides a clear set of testable predictions for the evolution of sRNA-related mechanisms of phenotypic plasticity and transgenerational inheritance.
Collapse
Affiliation(s)
| | - Sarah P. Otto
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Simone Immler
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
5
|
Ivimey-Cook ER, Sales K, Carlsson H, Immler S, Chapman T, Maklakov AA. Transgenerational fitness effects of lifespan extension by dietary restriction in Caenorhabditis elegans. Proc Biol Sci 2021; 288:20210701. [PMID: 33975472 PMCID: PMC8113902 DOI: 10.1098/rspb.2021.0701] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/15/2021] [Indexed: 12/28/2022] Open
Abstract
Dietary restriction (DR) increases lifespan in a broad variety of organisms and improves health in humans. However, long-term transgenerational consequences of dietary interventions are poorly understood. Here, we investigated the effect of DR by temporary fasting (TF) on mortality risk, age-specific reproduction and fitness across three generations of descendants in Caenorhabditis elegans. We show that while TF robustly reduces mortality risk and improves late-life reproduction of the individuals subject to TF (P0), it has a wide range of both positive and negative effects on their descendants (F1-F3). Remarkably, great-grandparental exposure to TF in early life reduces fitness and increases mortality risk of F3 descendants to such an extent that TF no longer promotes a lifespan extension. These findings reveal that transgenerational trade-offs accompany the instant benefits of DR, underscoring the need to consider fitness of future generations in pursuit of healthy ageing.
Collapse
Affiliation(s)
- Edward R. Ivimey-Cook
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
| | - Kris Sales
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
| | - Hanne Carlsson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
| | - Simone Immler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
| | - Alexei A. Maklakov
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
| |
Collapse
|
6
|
Su Z, Frost EL, Lammert CR, Przanowska RK, Lukens JR, Dutta A. tRNA-derived fragments and microRNAs in the maternal-fetal interface of a mouse maternal-immune-activation autism model. RNA Biol 2020; 17:1183-1195. [PMID: 31983265 DOI: 10.1080/15476286.2020.1721047] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
tRNA-derived small fragments (tRFs) and tRNA halves have emerging functions in different biological pathways, such as regulating gene expression, protein translation, retrotransposon activity, transgenerational epigenetic changes and response to environmental stress. However, small RNAs like tRFs and microRNAs in the maternal-fetal interface during gestation have not been studied extensively. Here we investigated the small RNA composition of mouse placenta/decidua, which represents the interface where the mother communicates with the foetus, to determine whether there are specific differences in tRFs and microRNAs during fetal development and in response to maternal immune activation (MIA). Global tRF expression pattern, just like microRNAs, can distinguish tissue types among placenta/decidua, fetal brain and fetal liver. In particular, 5' tRNA halves from tRNAGly, tRNAGlu, tRNAVal and tRNALys are abundantly expressed in the normal mouse placenta/decidua. Moreover, tRF and microRNA levels in the maternal-fetal interface change dynamically over the course of embryonic development. To see if stress alters non-coding RNA expression at the maternal-fetal interface, we treated pregnant mice with a viral infection mimetic, which has been shown to promote autism-related phenotypes in the offspring. Acute changes in the levels of specific tRFs and microRNAs were observed 3-6 h after MIA and are suppressed thereafter. A group of 5' tRNA halves is down-regulated by MIA, whereas a group of 18-nucleotide tRF-3a is up-regulated. In conclusion, tRFs show tissue-specificity, developmental changes and acute response to environmental stress, opening the possibility of them having a role in the fetal response to MIA.
Collapse
Affiliation(s)
- Zhangli Su
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia , Charlottesville, VA, USA
| | - Elizabeth L Frost
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia , Charlottesville, VA, USA
| | - Catherine R Lammert
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia , Charlottesville, VA, USA
| | - Roza K Przanowska
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia , Charlottesville, VA, USA
| | - John R Lukens
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia , Charlottesville, VA, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia , Charlottesville, VA, USA
| |
Collapse
|
7
|
Auboeuf D. Physicochemical Foundations of Life that Direct Evolution: Chance and Natural Selection are not Evolutionary Driving Forces. Life (Basel) 2020; 10:life10020007. [PMID: 31973071 PMCID: PMC7175370 DOI: 10.3390/life10020007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
The current framework of evolutionary theory postulates that evolution relies on random mutations generating a diversity of phenotypes on which natural selection acts. This framework was established using a top-down approach as it originated from Darwinism, which is based on observations made of complex multicellular organisms and, then, modified to fit a DNA-centric view. In this article, it is argued that based on a bottom-up approach starting from the physicochemical properties of nucleic and amino acid polymers, we should reject the facts that (i) natural selection plays a dominant role in evolution and (ii) the probability of mutations is independent of the generated phenotype. It is shown that the adaptation of a phenotype to an environment does not correspond to organism fitness, but rather corresponds to maintaining the genome stability and integrity. In a stable environment, the phenotype maintains the stability of its originating genome and both (genome and phenotype) are reproduced identically. In an unstable environment (i.e., corresponding to variations in physicochemical parameters above a physiological range), the phenotype no longer maintains the stability of its originating genome, but instead influences its variations. Indeed, environment- and cellular-dependent physicochemical parameters define the probability of mutations in terms of frequency, nature, and location in a genome. Evolution is non-deterministic because it relies on probabilistic physicochemical rules, and evolution is driven by a bidirectional interplay between genome and phenotype in which the phenotype ensures the stability of its originating genome in a cellular and environmental physicochemical parameter-depending manner.
Collapse
Affiliation(s)
- Didier Auboeuf
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie, Site Jacques Monod, F-69007, Lyon, France
| |
Collapse
|
8
|
Heinemann JA. Should dsRNA treatments applied in outdoor environments be regulated? ENVIRONMENT INTERNATIONAL 2019; 132:104856. [PMID: 31174887 DOI: 10.1016/j.envint.2019.05.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
The New Zealand Environmental Protection Authority (EPA) issued a Decision that makes the use of externally applied double-stranded (ds)RNA molecules on eukaryotic cells or organisms technically out of scope of legislation on new organisms, making risk assessments of such treatments in the open environment unnecessary. The Decision was based on its view that the treatment does not create new or genetically modified organisms and rests on the EPA's conclusions that dsRNA is not heritable and is not a mutagen. For these reasons EPA decided that treatments using dsRNA do not modify genes or other genetic material. I found from an independent review of the literature on the topic indicated, however, that each of the major scientific justifications relied upon by the EPA was based on either an inaccurate interpretation of evidence or failure to consult the research literature pertaining to additional types of eukaryotes. The Decision also did not take into account the unknown and unique eukaryotic biodiversity of New Zealand. The safe use of RNA-based technology holds promise for addressing complex and persistent challenges in public health, agriculture and conservation. However, by failing to restrict the source or means of modifying the dsRNA, the EPA removed regulatory oversight that could prevent unintended consequences of this new technology such as suppression of genes other than those selected for suppression or the release of viral genes or genomes by failing to restrict the source or means of modifying the dsRNA.
Collapse
Affiliation(s)
- Jack A Heinemann
- School of Biological Sciences, Centre for Integrative Research in Biosafety, Centre for Integrative Ecology, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
9
|
Lev I, Gingold H, Rechavi O. H3K9me3 is required for inheritance of small RNAs that target a unique subset of newly evolved genes. eLife 2019; 8:e40448. [PMID: 30869075 PMCID: PMC6417860 DOI: 10.7554/elife.40448] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/26/2019] [Indexed: 12/17/2022] Open
Abstract
In Caenorhabditis elegans, RNA interference (RNAi) responses can transmit across generations via small RNAs. RNAi inheritance is associated with Histone-3-Lysine-9 tri-methylation (H3K9me3) of the targeted genes. In other organisms, maintenance of silencing requires a feed-forward loop between H3K9me3 and small RNAs. Here, we show that in C. elegans not only is H3K9me3 unnecessary for inheritance, the modification's function depends on the identity of the RNAi-targeted gene. We found an asymmetry in the requirement for H3K9me3 and the main worm H3K9me3 methyltransferases, SET-25 and SET-32. Both methyltransferases promote heritable silencing of the foreign gene gfp, but are dispensable for silencing of the endogenous gene oma-1. Genome-wide examination of heritable endogenous small interfering RNAs (endo-siRNAs) revealed that endo-siRNAs that depend on SET-25 and SET-32 target newly acquired and highly H3K9me3 marked genes. Thus, 'repressive' chromatin marks could be important specifically for heritable silencing of genes which are flagged as 'foreign', such as gfp. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Itamar Lev
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - Hila Gingold
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
10
|
Meki IK, Kariithi HM, Parker AG, Vreysen MJB, Ros VID, Vlak JM, van Oers MM, Abd-Alla AMM. RNA interference-based antiviral immune response against the salivary gland hypertrophy virus in Glossina pallidipes. BMC Microbiol 2018; 18:170. [PMID: 30470195 PMCID: PMC6251114 DOI: 10.1186/s12866-018-1298-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Glossina pallidipes salivary gland hypertrophy virus (GpSGHV; Hytrosaviridae) is a non-occluded dsDNA virus that specifically infects the adult stages of the hematophagous tsetse flies (Glossina species, Diptera: Glossinidae). GpSGHV infections are usually asymptomatic, but unknown factors can result to a switch to acute symptomatic infection, which is characterized by the salivary gland hypertrophy (SGH) syndrome associated with decreased fecundity that can ultimately lead to a colony collapse. It is uncertain how GpSGHV is maintained amongst Glossina spp. populations but RNA interference (RNAi) machinery, a conserved antiviral defense in insects, is hypothesized to be amongst the host’s mechanisms to maintain the GpSGHV in asymptomatic (persistent or latent) infection state. Here, we investigated the involvement of RNAi during GpSGHV infections by comparing the expression of three key RNAi machinery genes, Dicer (DCR), Argonaute (AGO) and Drosha, in artificially virus injected, asymptomatic and symptomatic infected G. pallidipes flies compared to PBS injected (controls) individuals. We further assessed the impact of AGO2 knockdown on virus infection by RT-qPCR quantification of four selected GpSGHV genes, i.e. odv-e66, dnapol, maltodextrin glycosyltransferase (a tegument gene) and SGHV091 (a capsid gene). Results We show that in response to hemocoelic injections of GpSGHV into G. pallidipes flies, increased virus replication was accompanied by significant upregulation of the expression of three RNAi key genes; AGO1, AGO2 and DCR2, and a moderate increase in the expression of Drosha post injection compared to the PBS-injected controls. Furthermore, compared to asymptomatically infected individuals, symptomatic flies showed significant downregulation of AGO1, AGO2 and Drosha, but a moderate increase in the expression of DCR2. Compared to the controls, knockdown of AGO2 did not have a significant impact on virus infection in the flies as evidenced by unaltered transcript levels of the selected GpSGHV genes. Conclusion The upregulation of the expression of the RNAi genes implicate involvement of this machinery in controlling GpSGHV infections and the establishment of symptomatic GpSGHV infections in Glossina. These findings provide a strategic foundation to understand GpSGHV infections and to control latent (asymptomatic) infections in Glossina spp. and thereby control SGHVs in insect production facilities. Electronic supplementary material The online version of this article (10.1186/s12866-018-1298-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene K Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.,Laboratory of Virology, Wageningen University, 6708, PB, Wageningen, The Netherlands
| | - Henry M Kariithi
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.,Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O Box 57811, Loresho, Nairobi, Kenya
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Marc J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University, 6708, PB, Wageningen, The Netherlands
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, 6708, PB, Wageningen, The Netherlands
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University, 6708, PB, Wageningen, The Netherlands
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.
| |
Collapse
|
11
|
Kuijper B, Johnstone RA. Maternal effects and parent-offspring conflict. Evolution 2017; 72:220-233. [PMID: 29210448 DOI: 10.1111/evo.13403] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/16/2017] [Indexed: 01/03/2023]
Abstract
Maternal effects can provide offspring with reliable information about the environment they are likely to experience, but also offer scope for maternal manipulation of young when interests diverge between parents and offspring. To predict the impact of parent-offspring conflict, we model the evolution of maternal effects on local adaptation of young. We find that parent-offspring conflict strongly influences the stability of maternal effects; moreover, the nature of the disagreement between parents and young predicts how conflict is resolved: when mothers favor less extreme mixtures of phenotypes relative to offspring (i.e., when mothers stand to gain by hedging their bets), mothers win the conflict by providing offspring with limited amounts of information. When offspring favor overproduction of one and the same phenotype across all environments compared to mothers (e.g., when offspring favor a larger body size), neither side wins the conflict and signaling breaks down. Only when offspring favor less extreme mixtures relative to their mothers (something no current model predicts), offspring win the conflict and obtain full information about the environment. We conclude that a partial or complete breakdown of informative maternal effects will be the norm rather than the exception in the presence of parent-offspring conflict.
Collapse
Affiliation(s)
- Bram Kuijper
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn TR10 9FE, United Kingdom
| | - Rufus A Johnstone
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| |
Collapse
|
12
|
Abstract
In recent years, a Lamarckian theme has found its way back into academic discourse on evolution and inheritance. Especially the emerging field of transgenerational small RNAs has provided at least a proof of concept for the inheritance of acquired traits. Yet it remains unclear whether the Lamarckian concept of inheritance will in fact have its rennaisance or whether it will remain the rallying cry for the outlaws, heretics and enfants terribles of molecular biology. As unclear as the future of Lamarckian theory is its content and reference. Since the formulation of the Philosophie Zoologique, Lamarckian thought has been de- and reconfiguring in and out of the scientific literature and become an umbrella-term for all kinds of unconventional modes of inheritance. This essay will argue that heritable small RNAs might in fact provide a case of genuine Lamarckian inheritance. Moreover, it will be claimed that not only the very broad concept of “inheritance of acquired traits“ applies, but also that Lamarck's mechanistic insight into a use/disuse relation might help to explain a specific mode of transgenerational inheritance.
Collapse
|
13
|
Auboeuf D. Genome evolution is driven by gene expression-generated biophysical constraints through RNA-directed genetic variation: A hypothesis. Bioessays 2017; 39. [DOI: 10.1002/bies.201700069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Didier Auboeuf
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210; Laboratory of Biology and Modelling of the Cell; Site Jacques Monod; Lyon France
| |
Collapse
|
14
|
Ambeskovic M, Roseboom TJ, Metz GAS. Transgenerational effects of early environmental insults on aging and disease incidence. Neurosci Biobehav Rev 2017; 117:297-316. [PMID: 28807754 DOI: 10.1016/j.neubiorev.2017.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 06/18/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023]
Abstract
Adverse early life experiences are major influences on developmental trajectories with potentially life-long consequences. Prenatal or early postnatal exposure to stress, undernutrition or environmental toxicants may reprogram brain development and increase risk of behavioural and neurological disorders later in life. Not only experience within a single lifetime, but also ancestral experience affects health trajectories and chances of successful aging. The central mechanism in transgenerational programming of a disease may be the formation of epigenetic memory. This review explores transgenerational effects of early adverse experience on health and disease incidence in older age. First, we address mechanisms of developmental and transgenerational programming of disease and inheritance. Second, we discuss experimental and clinical findings linking early environmental determinants to adverse aging trajectories in association with possible parental contributions and sex-specific effects. Third, we outline the main mechanisms of age-related functional decline and suggest potential interventions to reverse negative effects of transgenerational programming. Thus, strategies that support healthy development and successful aging should take into account the potential influences of transgenerational inheritance.
Collapse
Affiliation(s)
- Mirela Ambeskovic
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K3M4, Canada
| | - Tessa J Roseboom
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Centre, Meibergdreef 9, University of Amsterdam, 1105 AZ Amsterdam, Netherlands; Department of Obstetrics and Gynaecology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K3M4, Canada.
| |
Collapse
|
15
|
Alptekin B, Langridge P, Budak H. Abiotic stress miRNomes in the Triticeae. Funct Integr Genomics 2017; 17:145-170. [PMID: 27665284 PMCID: PMC5383695 DOI: 10.1007/s10142-016-0525-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/02/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Abstract
The continued growth in world population necessitates increases in both the quantity and quality of agricultural production. Triticeae members, particularly wheat and barley, make an important contribution to world food reserves by providing rich sources of carbohydrate and protein. These crops are grown over diverse production environments that are characterized by a range of environmental or abiotic stresses. Abiotic stresses such as drought, heat, salinity, or nutrient deficiencies and toxicities cause large yield losses resulting in economic and environmental damage. The negative effects of abiotic stresses have increased at an alarming rate in recent years and are predicted to further deteriorate due to climate change, land degradation, and declining water supply. New technologies have provided an important tool with great potential for improving crop tolerance to the abiotic stresses: microRNAs (miRNAs). miRNAs are small regulators of gene expression that act on many different molecular and biochemical processes such as development, environmental adaptation, and stress tolerance. miRNAs can act at both the transcriptional and post-transcriptional levels, although post-transcriptional regulation is the most common in plants where miRNAs can inhibit the translation of their mRNA targets via complementary binding and cleavage. To date, expression of several miRNA families such as miR156, miR159, and miR398 has been detected as responsive to environmental conditions to regulate stress-associated molecular mechanisms individually and/or together with their various miRNA partners. Manipulation of these miRNAs and their targets may pave the way to improve crop performance under several abiotic stresses. Here, we summarize the current status of our knowledge on abiotic stress-associated miRNAs in members of the Triticeae tribe, specifically in wheat and barley, and the miRNA-based regulatory mechanisms triggered by stress conditions. Exploration of further miRNA families together with their functions under stress will improve our knowledge and provide opportunities to enhance plant performance to help us meet global food demand.
Collapse
Affiliation(s)
- Burcu Alptekin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Peter Langridge
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
| | - Hikmet Budak
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
16
|
Neuhof M, Levin M, Rechavi O. Vertically- and horizontally-transmitted memories - the fading boundaries between regeneration and inheritance in planaria. Biol Open 2016; 5:1177-88. [PMID: 27565761 PMCID: PMC5051648 DOI: 10.1242/bio.020149] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Weismann barrier postulates that genetic information passes only from the germline to the soma and not in reverse, thus providing an obstacle to the inheritance of acquired traits. Certain organisms such as planaria – flatworms that can reproduce through asymmetric fission – avoid the limitations of this barrier, thus blurring the distinction between the processes of inheritance and development. In this paper, we re-evaluate canonical ideas about the interaction between developmental, genetic and evolutionary processes through the lens of planaria. Biased distribution of epigenetic effects in asymmetrically produced parts of a regenerating organism could increase variation and therefore affect the species' evolution. The maintenance and fixing of somatic experiences, encoded via stable biochemical or physiological states, may contribute to evolutionary processes in the absence of classically defined generations. We discuss different mechanisms that could induce asymmetry between the two organisms that eventually develop from the regenerating parts, including one particularly fascinating source – the potential capacity of the brain to produce long-lasting epigenetic changes. Summary: In this hypothesis paper we re-evaluate canonical ideas about the interaction between developmental, genetic and evolutionary processes through the lens of planaria, an invertebrate model organism which challenges fundamental assumptions regarding reproduction.
Collapse
Affiliation(s)
- Moran Neuhof
- Department of Neurobiology, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Levin
- Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
17
|
Abstract
Understanding the molecular mechanisms behind the capacity of cancer cells to adapt to the tumor microenvironment and to anticancer therapies is a major challenge. In this context, cancer is believed to be an evolutionary process where random mutations and the selection process shape the mutational pattern and phenotype of cancer cells. This article challenges the notion of randomness of some cancer-associated mutations by describing molecular mechanisms involving stress-mediated biogenesis of mRNA-derived small RNAs able to target and increase the local mutation rate of the genomic loci they originate from. It is proposed that the probability of some mutations at specific loci could be increased in a stress-specific and RNA-depending manner. This would increase the probability of generating mutations that could alleviate stress situations, such as those triggered by anticancer drugs. Such a mechanism is made possible because tumor- and anticancer drug-associated stress situations trigger both cellular reprogramming and inflammation, which leads cancer cells to express molecular tools allowing them to “attack” and mutate their own genome in an RNA-directed manner.
Collapse
Affiliation(s)
- Didier Auboeuf
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, Lyon, France
| |
Collapse
|
18
|
Junien C, Panchenko P, Fneich S, Pirola L, Chriett S, Amarger V, Kaeffer B, Parnet P, Torrisani J, Bolaños Jimenez F, Jammes H, Gabory A. [Epigenetics in transgenerational responses to environmental impacts: from facts and gaps]. Med Sci (Paris) 2016; 32:35-44. [PMID: 26850605 DOI: 10.1051/medsci/20163201007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The existence of non-genetic and non-cultural mechanisms that transfer information on the memory of parental exposures to various environments, determining the reactivity of the following generations to their environments during their life, are of growing interest. Yet fundamental questions remain about the nature, the roles and relative importance of epigenetic marks and processes, non-coding RNAs, or other mechanisms, and their persistence over generations. A model incorporating the various transmission systems, their cross-talks and windows of susceptibility to the environment as a function of sex/gender of parent and offspring, has yet to be built.
Collapse
Affiliation(s)
- Claudine Junien
- Inra, UMR1198, biologie du développement et reproduction, Domaine de Vilvert, Bâtiment 230, F-78350 Jouy-en-Josas, France
| | - Polina Panchenko
- Inra, UMR1198, biologie du développement et reproduction, Domaine de Vilvert, Bâtiment 230, F-78350 Jouy-en-Josas, France
| | - Sara Fneich
- Inra, UMR1198, biologie du développement et reproduction, Domaine de Vilvert, Bâtiment 230, F-78350 Jouy-en-Josas, France
| | | | | | - Valérie Amarger
- Inra, UMR 1280, université de Nantes, Institut des maladies de l'appareil digestif, F-44000 Nantes, France
| | - Bertrand Kaeffer
- Inra, UMR 1280, université de Nantes, Institut des maladies de l'appareil digestif, F-44000 Nantes, France
| | - Patricia Parnet
- Inra, UMR 1280, université de Nantes, Institut des maladies de l'appareil digestif, F-44000 Nantes, France
| | - Jérome Torrisani
- Inserm UMR1037, Centre de recherches en cancérologie de Toulouse, Université de Toulouse III Paul Sabatier, F-31037 Toulouse, France
| | - Francisco Bolaños Jimenez
- Inra, UMR 1280, université de Nantes, Institut des maladies de l'appareil digestif, F-44000 Nantes, France
| | - Hélène Jammes
- Inra, UMR1198, biologie du développement et reproduction, Domaine de Vilvert, Bâtiment 230, F-78350 Jouy-en-Josas, France
| | - Anne Gabory
- Inra, UMR1198, biologie du développement et reproduction, Domaine de Vilvert, Bâtiment 230, F-78350 Jouy-en-Josas, France
| |
Collapse
|
19
|
Sharma A. Transgenerational epigenetic inheritance: resolving uncertainty and evolving biology. Biomol Concepts 2016; 6:87-103. [PMID: 25898397 DOI: 10.1515/bmc-2015-0005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/04/2015] [Indexed: 12/21/2022] Open
Abstract
Transgenerational epigenetic inheritance in animals has increasingly been reported in recent years. Controversies, however, surround this unconventional mode of heredity, especially in mammals, for several reasons. First, its existence itself has been questioned due to perceived insufficiency of available evidence. Second, it potentially implies transfer of hereditary information from soma to germline, against the established principle in biology. Third, it inherently requires survival of epigenetic memory across reprogramming, posing another fundamental challenge in biology. Fourth, evolutionary significance of epigenetic inheritance has also been under debate. This article pointwise addresses all these concerns on the basis of recent empirical, theoretical and conceptual advances. 1) Described here in detail are the key experimental findings demonstrating the occurrence of germline epigenetic inheritance in mammals. 2) Newly emerging evidence supporting soma to germline communication in transgenerational inheritance in mammals, and a role of exosome and extracellular microRNA in this transmission, is thoroughly discussed. 3) The plausibility of epigenetic information propagation across reprogramming is highlighted. 4) Analyses supporting evolutionary significance of epigenetic inheritance are briefly mentioned. Finally, an integrative model of 'evolutionary transgenerational systems biology' is proposed to provide a framework to guide future advancements in epigenetic inheritance.
Collapse
|
20
|
Forsdyke DR. Self/Not-Self? Evol Bioinform Online 2016. [DOI: 10.1007/978-3-319-28755-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Kuijper B, Johnstone RA. Parental effects and the evolution of phenotypic memory. J Evol Biol 2015; 29:265-76. [PMID: 26492510 DOI: 10.1111/jeb.12778] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 09/23/2015] [Accepted: 09/28/2015] [Indexed: 01/22/2023]
Abstract
Despite growing evidence for nongenetic inheritance, the ecological conditions that favour the evolution of heritable parental or grandparental effects remain poorly understood. Here, we systematically explore the evolution of parental effects in a patch-structured population with locally changing environments. When selection favours the production of a mix of offspring types, this mix differs according to the parental phenotype, implying that parental effects are favoured over selection for bet-hedging in which the mixture of offspring phenotypes produced does not depend on the parental phenotype. Positive parental effects (generating a positive correlation between parental and offspring phenotype) are favoured in relatively stable habitats and when different types of local environment are roughly equally abundant, and can give rise to long-term parental inheritance of phenotypes. By contrast, unstable habitats can favour negative parental effects (generating a negative correlation between parental and offspring phenotype), and under these circumstances, even slight asymmetries in the abundance of local environmental states select for marked asymmetries in transmission fidelity.
Collapse
Affiliation(s)
- B Kuijper
- CoMPLEX, Center of Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, UK.,Department of Genetics, Evolution and Environment, University College London, London, UK
| | - R A Johnstone
- Behaviour and Evolution Group, Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Pilpel Y, Rechavi O. The Lamarckian chicken and the Darwinian egg. Biol Direct 2015; 10:34. [PMID: 26126811 PMCID: PMC4486432 DOI: 10.1186/s13062-015-0062-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/22/2015] [Indexed: 11/10/2022] Open
Abstract
"Which came first, the Chicken or the Egg?" We suggest this question is not a paradox. The Modern Synthesis envisions speciation through genetic changes in germ cells via random mutations, an "Egg first" scenario, but perhaps epigenetic inheritance mechanisms can transmit adaptive changes initiated in the soma ("Chicken first").
Collapse
Affiliation(s)
- Yitzhak Pilpel
- Department of Molecular genetics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
23
|
Iranzo J, Lobkovsky AE, Wolf YI, Koonin EV. Immunity, suicide or both? Ecological determinants for the combined evolution of anti-pathogen defense systems. BMC Evol Biol 2015; 15:43. [PMID: 25881094 PMCID: PMC4372072 DOI: 10.1186/s12862-015-0324-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/24/2015] [Indexed: 01/09/2023] Open
Abstract
Background Parasite-host arms race is one of the key factors in the evolution of life. Most cellular life forms, in particular prokaryotes, possess diverse forms of defense against pathogens including innate immunity, adaptive immunity and programmed cell death (altruistic suicide). Coevolution of these different but interacting defense strategies yields complex evolutionary regimes. Results We develop and extensively analyze a computational model of coevolution of different defense strategies to show that suicide as a defense mechanism can evolve only in structured populations and when the attainable degree of immunity against pathogens is limited. The general principle of defense evolution seems to be that hosts do not evolve two costly defense mechanisms when one is sufficient. Thus, the evolutionary interplay of innate immunity, adaptive immunity and suicide, leads to an equilibrium state where the combination of all three defense strategies is limited to a distinct, small region of the parameter space. The three strategies can stably coexist only if none of them are highly effective. Coupled adaptive immunity-suicide systems, the existence of which is implied by the colocalization of genes for the two types of defense in prokaryotic genomes, can evolve either when immunity-associated suicide is more efficacious than other suicide systems or when adaptive immunity functionally depends on the associated suicide system. Conclusions Computational modeling reveals a broad range of outcomes of coevolution of anti-pathogen defense strategies depending on the relative efficacy of different mechanisms and population structure. Some of the predictions of the model appear compatible with recent experimental evolution results and call for additional experiments.
Collapse
Affiliation(s)
- Jaime Iranzo
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Alexander E Lobkovsky
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
24
|
Anava S, Posner R, Rechavi O. The soft genome. WORM 2015; 3:e989798. [PMID: 26430554 DOI: 10.4161/21624054.2014.989798] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 11/14/2014] [Indexed: 11/19/2022]
Abstract
Caenorhabditis elegans (C. elegans) nematodes transmit small RNAs across generations, a process that enables transgenerational regulation of genes. In contrast to changes to the DNA sequence, transgenerational transmission of small RNA-mediated responses is reversible, and thus enables "soft" or "flexible" inheritance of acquired characteristics. Until very recently only introduction of foreign genetic material (viruses, transposons, transgenes) was shown to directly lead to inheritance of small RNAs. New discoveries however, demonstrate that starvation also triggers inheritance of endogenous small RNAs in C.elegans. Multiple generations of worms inherit starvation-responsive endogenous small RNAs, and starvation also results in heritable extension of the progeny's lifespan. In this Commentary paper we explore the intriguing possibility that large parts of the genome and many additional traits are similarly subjected to heritable small RNA-mediated regulation, and focus on the potential influence of transgenerational RNAi on the worm's physiology. While the universal relevance of this mechanism remains to be discovered, we will examine how the discoveries made in worms already challenge long held dogmas in genetics and evolution.
Collapse
Affiliation(s)
- Sarit Anava
- Department of Neurobiology; Wise Faculty of Life Sciences & Sagol School of Neuroscience; Tel Aviv University ; Tel Aviv, Israel
| | - Rachel Posner
- Department of Neurobiology; Wise Faculty of Life Sciences & Sagol School of Neuroscience; Tel Aviv University ; Tel Aviv, Israel
| | - Oded Rechavi
- Department of Neurobiology; Wise Faculty of Life Sciences & Sagol School of Neuroscience; Tel Aviv University ; Tel Aviv, Israel
| |
Collapse
|
25
|
Sela M, Kloog Y, Rechavi O. Non-coding RNAs as the bridge between epigenetic mechanisms, lineages and domains of life. J Physiol 2015; 592:2369-73. [PMID: 24882818 DOI: 10.1113/jphysiol.2014.273045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Many cases of heritable environmental responses have been documented but the underlying mechanisms are largely unknown. Recently, inherited RNA interference has been shown to act as a multigenerational genome surveillance apparatus. We suggest that inheritance of regulatory RNAs is at the root of many other epigenetic phenomena, the trigger that induces other epigenetic mechanisms, such as the depositing of histone modifications and DNA methylation. In addition, we explore the possibility that interacting organisms influence each other's transcriptomes by exchanging heterologous non-coding RNAs.
Collapse
Affiliation(s)
- Mor Sela
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 64332, Israel
| | - Yoel Kloog
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 64332, Israel
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 64332, Israel
| |
Collapse
|
26
|
Wei Y, Schatten H, Sun QY. Environmental epigenetic inheritance through gametes and implications for human reproduction. Hum Reprod Update 2014; 21:194-208. [PMID: 25416302 DOI: 10.1093/humupd/dmu061] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Traditional studies focused on DNA as the heritable information carrier that passes the phenotype from parents to offspring. However, increasing evidence suggests that information, that is independent of the DNA sequence, termed epigenetic information, can be inherited between generations. Recently, in our lab, we found that prediabetes in fathers increases the susceptibility to diabetes in offspring through gametic cytosine methylation changes. Paternal prediabetes changed overall methylation patterns in sperm, and a large portion of differentially methylated loci can be transmitted to pancreatic islets of offspring up to the second generation. In this review, we survey the extensive examples of environmentally induced epigenetic inheritance in various species, ranging from Caenorhabditis elegans to humans. We focus mainly on elucidating the molecular basis of environmental epigenetic inheritance through gametes, which is an emerging theme and has important implications for explaining the prevalence of obesity, type 2 diabetes and other chronic non-genetic diseases, which is also important for understanding the influence of environmental exposures on reproductive and overall health in offspring. METHODS For this review, we included relevant data and information obtained through a PubMed database search for all English language articles published up to August 2014 which included the term 'environmental epigenetic inheritance' and 'transgenerational epigenetic inheritance'. We focused on research papers using animal models including Drosophila, C. elegans, mouse and rat. Human data were also included. RESULTS Evidence from animal models suggests that environmental epigenetic inheritance through gametes exists in various species. Extensive molecular evidence suggests that epigenetic information carriers including DNA methylation, non-coding RNAs and chromatin proteins in gametes play important roles in the transmission of phenotypes from parents to offspring. CONCLUSIONS Given the large number of experimental evidence from various organisms, it is clear that parental environmental alterations can affect the phenotypes of offspring through gametic epigenetic alterations. This more recent thinking based on new data may have implications in explaining the prevalence of obesity, type 2 diabetes and other chronic non-genetic diseases. This also implies that, in the near future, epigenetic factors which are heritable should be regarded important in determining the risk of certain diseases. Moreover, identification of epigenetic markers in gametes (polar body or sperm) may hold great promise for predicting susceptibility to and preventing certain non-genetic diseases in offspring, as well as providing indications on parental environmental exposures.
Collapse
Affiliation(s)
- Yanchang Wei
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Qing-Yuan Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
27
|
Why are individuals so different from each other? Heredity (Edinb) 2014; 115:285-92. [PMID: 25407080 DOI: 10.1038/hdy.2014.103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/10/2014] [Accepted: 07/24/2014] [Indexed: 02/07/2023] Open
Abstract
An important contributor to the differences between individuals derives from their plasticity. Such plasticity is widespread in organisms from the simple to the most complex. Adaptability plasticity enables the organism to cope with a novel challenge not previously encountered by its ancestors. Conditional plasticity appears to have evolved from repeated challenges from the environment so that the organism responds in a particular manner to the environment in which it finds itself. The resulting phenotypic variation can be triggered during development in a variety of ways, some mediated through the parent's phenotype. Sometimes the organism copes in suboptimal conditions trading off reproductive success against survival. Whatever the adaptedness of the phenotype, each of the many types of plasticity demonstrates how a given genotype will express itself differently in different environmental conditions-a field of biology referred to as the study of epigenetics. The ways in which epigenetic mechanisms may have evolved are discussed, as are the potential impacts on the evolution of their descendants.
Collapse
|
28
|
Abstract
Epigenetic inheritance of resistance to exogenous nucleic acids via small interfering (si) RNA is well established in animal models. Rechavi et al. demonstrate epigenetic inheritance of a starvation-induced pattern of gene silencing caused by endogenous siRNAs and resulting in an increased longevity in the third generation progeny. Combined with recent findings in prokaryotes, these results suggest that Lamarckian-type inheritance of acquired traits is a major evolutionary phenomenon.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
29
|
Rechavi O, Houri-Ze'evi L, Anava S, Goh WSS, Kerk SY, Hannon GJ, Hobert O. Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 2014; 158:277-287. [PMID: 25018105 PMCID: PMC4377509 DOI: 10.1016/j.cell.2014.06.020] [Citation(s) in RCA: 343] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 05/30/2014] [Accepted: 06/11/2014] [Indexed: 01/03/2023]
Abstract
Evidence from animal studies and human famines suggests that starvation may affect the health of the progeny of famished individuals. However, it is not clear whether starvation affects only immediate offspring or has lasting effects; it is also unclear how such epigenetic information is inherited. Small RNA-induced gene silencing can persist over several generations via transgenerationally inherited small RNA molecules in C. elegans, but all known transgenerational silencing responses are directed against foreign DNA introduced into the organism. We found that starvation-induced developmental arrest, a natural and drastic environmental change, leads to the generation of small RNAs that are inherited through at least three consecutive generations. These small, endogenous, transgenerationally transmitted RNAs target genes with roles in nutrition. We defined genes that are essential for this multigenerational effect. Moreover, we show that the F3 offspring of starved animals show an increased lifespan, corroborating the notion of a transgenerational memory of past conditions.
Collapse
Affiliation(s)
- Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; Columbia University Medical Center, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, New York, NY 10032, USA.
| | - Leah Houri-Ze'evi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sarit Anava
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Wee Siong Sho Goh
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, Howard Hughes Medical Institute, New York 11724, USA
| | - Sze Yen Kerk
- Columbia University Medical Center, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, New York, NY 10032, USA
| | - Gregory J Hannon
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, Howard Hughes Medical Institute, New York 11724, USA
| | - Oliver Hobert
- Columbia University Medical Center, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, New York, NY 10032, USA
| |
Collapse
|
30
|
Berezovskaya FS, Wolf YI, Koonin EV, Karev GP. Pseudo-chaotic oscillations in CRISPR-virus coevolution predicted by bifurcation analysis. Biol Direct 2014; 9:13. [PMID: 24986220 PMCID: PMC4096434 DOI: 10.1186/1745-6150-9-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/26/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The CRISPR-Cas systems of adaptive antivirus immunity are present in most archaea and many bacteria, and provide resistance to specific viruses or plasmids by inserting fragments of foreign DNA into the host genome and then utilizing transcripts of these spacers to inactivate the cognate foreign genome. The recent development of powerful genome engineering tools on the basis of CRISPR-Cas has sharply increased the interest in the diversity and evolution of these systems. Comparative genomic data indicate that during evolution of prokaryotes CRISPR-Cas loci are lost and acquired via horizontal gene transfer at high rates. Mathematical modeling and initial experimental studies of CRISPR-carrying microbes and viruses reveal complex coevolutionary dynamics. RESULTS We performed a bifurcation analysis of models of coevolution of viruses and microbial host that possess CRISPR-Cas hereditary adaptive immunity systems. The analyzed Malthusian and logistic models display complex, and in particular, quasi-chaotic oscillation regimes that have not been previously observed experimentally or in agent-based models of the CRISPR-mediated immunity. The key factors for the appearance of the quasi-chaotic oscillations are the non-linear dependence of the host immunity on the virus load and the partitioning of the hosts into the immune and susceptible populations, so that the system consists of three components. CONCLUSIONS Bifurcation analysis of CRISPR-host coevolution model predicts complex regimes including quasi-chaotic oscillations. The quasi-chaotic regimes of virus-host coevolution are likely to be biologically relevant given the evolutionary instability of the CRISPR-Cas loci revealed by comparative genomics. The results of this analysis might have implications beyond the CRISPR-Cas systems, i.e. could describe the behavior of any adaptive immunity system with a heritable component, be it genetic or epigenetic. These predictions are experimentally testable. REVIEWERS' REPORTS This manuscript was reviewed by Sandor Pongor, Sergei Maslov and Marek Kimmel. For the complete reports, go to the Reviewers' Reports section.
Collapse
Affiliation(s)
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Georgy P Karev
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
31
|
Li X, Wang Q, Liu Y. Inherited small RNAs: new insights into Darwin's cell theory. Trends Cell Biol 2014; 24:387-8. [PMID: 24815682 DOI: 10.1016/j.tcb.2014.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Xiuju Li
- Henan Institute of Science and Technology, Xinxiang, 453003, China; Department of Biochemistry, Faculty of Medicine, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Qinglian Wang
- Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yongsheng Liu
- Henan Institute of Science and Technology, Xinxiang, 453003, China; Department of Biochemistry, Faculty of Medicine, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|