1
|
Liberali P, Schier AF. The evolution of developmental biology through conceptual and technological revolutions. Cell 2024; 187:3461-3495. [PMID: 38906136 DOI: 10.1016/j.cell.2024.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Developmental biology-the study of the processes by which cells, tissues, and organisms develop and change over time-has entered a new golden age. After the molecular genetics revolution in the 80s and 90s and the diversification of the field in the early 21st century, we have entered a phase when powerful technologies provide new approaches and open unexplored avenues. Progress in the field has been accelerated by advances in genomics, imaging, engineering, and computational biology and by emerging model systems ranging from tardigrades to organoids. We summarize how revolutionary technologies have led to remarkable progress in understanding animal development. We describe how classic questions in gene regulation, pattern formation, morphogenesis, organogenesis, and stem cell biology are being revisited. We discuss the connections of development with evolution, self-organization, metabolism, time, and ecology. We speculate how developmental biology might evolve in an era of synthetic biology, artificial intelligence, and human engineering.
Collapse
Affiliation(s)
- Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | | |
Collapse
|
2
|
Xiao L, Liu H, Huang H, Wu S, Xue L, Geng Z, Cai L, Yan F. 3D nanofiber scaffolds from 2D electrospun membranes boost cell penetration and positive host response for regenerative medicine. J Nanobiotechnology 2024; 22:322. [PMID: 38849858 PMCID: PMC11162076 DOI: 10.1186/s12951-024-02578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
The ideal tissue engineering scaffold should facilitate rapid cell infiltration and provide an optimal immune microenvironment during interactions with the host. Electrospinning can produce two-dimensional (2D) membranes mimicking the extracellular matrix. However, their dense structure hinders cell penetration, and their thin form restricts scaffold utility. In this study, latticed hydrogels were three-dimensional (3D) printed onto electrospun membranes. This technique allowed for layer-by-layer assembly of the membranes into 3D scaffolds, which maintained their resilience impressively under both dry and wet conditions. We assessed the cellular and host responses of these 3D nanofiber scaffolds by comparing random membranes and mesh-like membranes with three different mesh sizes (250, 500, and 750 μm). It was found that scaffolds with a mesh size of 500 μm were superior for M2 macrophage phenotype polarization, vascularization, and matrix deposition. Furthermore, it was confirmed by subsequent experiments such as RNA sequencing that the mesh-like topology may promote polarization to the M2 phenotype by affecting the PI3K/AKT pathway. In conclusion, our work offers a novel method for transforming 2D nanofiber membranes into 3D scaffolds. This method boasts flexibility, allowing for the use of varied electrospun membranes and hydrogels in terms of structure and composition. It has vast potential in tissue repair and regeneration.
Collapse
Affiliation(s)
- Lingfei Xiao
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Huifan Liu
- Department of Anesthesiology, Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Huayi Huang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shujuan Wu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Longjian Xue
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Feifei Yan
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
3
|
Homan KA. Industry Adoption of Organoids and Organs-on-Chip Technology: Toward a Paradox of Choice. Adv Biol (Weinh) 2023; 7:e2200334. [PMID: 36861332 DOI: 10.1002/adbi.202200334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/28/2023] [Indexed: 03/03/2023]
Abstract
During the last decade, organoid and organs-on-chip technologies have significantly enhanced the ability to model human biology in vitro. For the pharmaceutical industry, this represents an opportunity to augment, or possibly replace, traditional preclinical animal studies with more clinically predictive tools. In the last few years, the marketplace for new human model systems has expanded rapidly. While pharma companies welcome the breadth of new options, ample choice can be paralyzing. Even for experts from the model developer community who are now filling the ranks in the industry, the pairing of the right model for a specific, fit-for-purpose biological question can be daunting. As a community, the adoption of these models can be hastened in the industry by publishing high dimensional datasets (e.g., multiomic, imaging, functional, etc.) on existing model systems, termed model-omics, and storing them in publicly accessible databases. This action will allow for quick cross-model comparisons and provide a sought-after rationale for either routine or fit-for-purpose use of organoids or organs-on-chip during drug development.
Collapse
Affiliation(s)
- Kimberly A Homan
- Director of the Complex In Vitro Systems (CiS) Group in Development Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| |
Collapse
|
4
|
Pitsalidis C, van Niekerk D, Moysidou CM, Boys AJ, Withers A, Vallet R, Owens RM. Organic electronic transmembrane device for hosting and monitoring 3D cell cultures. SCIENCE ADVANCES 2022; 8:eabo4761. [PMID: 36112689 PMCID: PMC9481123 DOI: 10.1126/sciadv.abo4761] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
3D cell models have made strides in the past decades in response to failures of 2D cultures to translate targets during the drug discovery process. Here, we report on a novel multiwell plate bioelectronic platform, namely, the e-transmembrane, capable of supporting and monitoring complex 3D cell architectures. Scaffolds made of PEDOT:PSS [poly(3,4-ethylenedioxythiophene):polystyrene sulfonate] are microengineered to function as separating membranes for compartmentalized cell cultures, as well as electronic components for real-time in situ recordings of cell growth and function. Owing to the high surface area-to-volume ratio, the e-transmembrane allows generation of deep, stratified tissues within the porous bulk and cell polarization at the apico-basal domains. Impedance spectroscopy measurements carried out throughout the tissue growth identified signatures from different cellular systems and allowed extraction of critical functional parameters. This platform has the potential to become a universal tool for biologists for the next generation of high-throughput drug screening assays.
Collapse
Affiliation(s)
- Charalampos Pitsalidis
- Department of Physics and Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, UAE
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Douglas van Niekerk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Alexander J. Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Aimee Withers
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | | | - Róisín M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| |
Collapse
|
5
|
Assali M, Kittana N, Alhaj-Qasem S, Hajjyahya M, Abu-Rass H, Alshaer W, Al-Buqain R. Noncovalent functionalization of carbon nanotubes as a scaffold for tissue engineering. Sci Rep 2022; 12:12062. [PMID: 35835926 PMCID: PMC9283586 DOI: 10.1038/s41598-022-16247-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
Tissue engineering is one of the hot topics in recent research that needs special requirements. It depends on the development of scaffolds that allow tissue formation with certain characteristics, carbon nanotubes (CNTs)-collagen composite attracted the attention of the researchers with this respect. However, CNTs suffer from low water dispersibility, which hampered their utilization. Therefore, we aim to functionalize CNTs non-covalently with pyrene moiety using an appropriate hydrophilic linker derivatized from polyethylene glycol (PEG) terminated with hydroxyl or carboxyl group to disperse them in water. The functionalization of the CNTs is successfully confirmed by TEM, absorption spectroscopy, TGA, and zeta potential analysis. 3T3 cells-based engineered connective tissues (ECTs) are generated with different concentrations of the functionalized CNTs (f-CNTs). These tissues show a significant enhancement in electrical conductivity at a concentration of 0.025%, however, the cell viability is reduced by about 10 to 20%. All ECTs containing f-CNTs show a significant reduction in tissue fibrosis and matrix porosity relative to the control tissues. Taken together, the developed constructs show great potential for further in vivo studies as engineered tissue.
Collapse
Affiliation(s)
- Mohyeddin Assali
- Department of Pharmacy, Faculty of Medicine & Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Naim Kittana
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Sahar Alhaj-Qasem
- Department of Pharmacy, Faculty of Medicine & Health Sciences, An-Najah National University, Nablus, Palestine
| | - Muna Hajjyahya
- Department of Physics, Faculty of Sciences, An-Najah National University, Nablus, Palestine
| | - Hanood Abu-Rass
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, An-Najah National University, Nablus, Palestine
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Rula Al-Buqain
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
6
|
|