1
|
Kuldell JC, Kaplan CD. RNA Polymerase II Activity Control of Gene Expression and Involvement in Disease. J Mol Biol 2025; 437:168770. [PMID: 39214283 DOI: 10.1016/j.jmb.2024.168770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Gene expression is dependent on RNA Polymerase II (Pol II) activity in eukaryotes. In addition to determining the rate of RNA synthesis for all protein coding genes, Pol II serves as a platform for the recruitment of factors and regulation of co-transcriptional events, from RNA processing to chromatin modification and remodeling. The transcriptome can be shaped by changes in Pol II kinetics affecting RNA synthesis itself or because of alterations to co-transcriptional events that are responsive to or coupled with transcription. Genetic, biochemical, and structural approaches to Pol II in model organisms have revealed critical insights into how Pol II works and the types of factors that regulate it. The complexity of Pol II regulation generally increases with organismal complexity. In this review, we describe fundamental aspects of how Pol II activity can shape gene expression, discuss recent advances in how Pol II elongation is regulated on genes, and how altered Pol II function is linked to human disease and aging.
Collapse
Affiliation(s)
- James C Kuldell
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States
| | - Craig D Kaplan
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States.
| |
Collapse
|
2
|
Zhang W, Jiang L, Tong X, He H, Zheng Y, Xia Z. Sepsis-Induced Endothelial Dysfunction: Permeability and Regulated Cell Death. J Inflamm Res 2024; 17:9953-9973. [PMID: 39628705 PMCID: PMC11612565 DOI: 10.2147/jir.s479926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/15/2024] [Indexed: 12/06/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Endothelial cells (ECs) are an important cell type typically affected in sepsis, resulting in compromised barrier function and various forms of regulated cell death (RCD). However, the precise mechanisms underlying sepsis-induced EC damage remain unclear. This review summarizes the recent research progress on factors and mechanisms that may affect the permeability and RCD of ECs under septic conditions, including glycocalyx, damage-associated molecular patterns, and various forms of RCD in ECs, such as apoptosis, pyroptosis, ferroptosis, and autophagy. This review offers important insights into the underlying mechanisms of endothelial dysfunction in sepsis, aiming to contribute to developing small-molecule targeted clinical therapies.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Luofeng Jiang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Xirui Tong
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Heng He
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Yongjun Zheng
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Zhaofan Xia
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
- Research Unit of Key Techniques for Treatment of burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
3
|
Yanagisawa T, Murayama Y, Ehara H, Goto M, Aoki M, Sekine SI. Structural basis of eukaryotic transcription termination by the Rat1 exonuclease complex. Nat Commun 2024; 15:7854. [PMID: 39245712 PMCID: PMC11381523 DOI: 10.1038/s41467-024-52157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024] Open
Abstract
The 5´-3´ exoribonuclease Rat1/Xrn2 is responsible for the termination of eukaryotic mRNA transcription by RNAPII. Rat1 forms a complex with its partner proteins, Rai1 and Rtt103, and acts as a "torpedo" to bind transcribing RNAPII and dissociate DNA/RNA from it. Here we report the cryo-electron microscopy structures of the Rat1-Rai1-Rtt103 complex and three Rat1-Rai1-associated RNAPII complexes (type-1, type-1b, and type-2) from the yeast, Komagataella phaffii. The Rat1-Rai1-Rtt103 structure revealed that Rat1 and Rai1 form a heterotetramer with a single Rtt103 bound between two Rai1 molecules. In the type-1 complex, Rat1-Rai1 forms a heterodimer and binds to the RNA exit site of RNAPII to extract RNA into the Rat1 exonuclease active site. This interaction changes the RNA path in favor of termination (the "pre-termination" state). The type-1b and type-2 complexes have no bound DNA/RNA, likely representing the "post-termination" states. These structures illustrate the termination mechanism of eukaryotic mRNA transcription.
Collapse
Affiliation(s)
- Tatsuo Yanagisawa
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Yuko Murayama
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mie Goto
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mari Aoki
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Shun-Ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
| |
Collapse
|
4
|
Di Felice M, Pagano L, Pennacchietti V, Diop A, Pietrangeli P, Marcocci L, Di Matteo S, Malagrinò F, Toto A, Gianni S. The binding selectivity of the C-terminal SH3 domain of Grb2, but not its folding pathway, is dictated by its contiguous SH2 domain. J Biol Chem 2024; 300:107129. [PMID: 38432639 PMCID: PMC10979101 DOI: 10.1016/j.jbc.2024.107129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024] Open
Abstract
The adaptor protein Grb2, or growth factor receptor-bound protein 2, possesses a pivotal role in the transmission of fundamental molecular signals in the cell. Despite lacking enzymatic activity, Grb2 functions as a dynamic assembly platform, orchestrating intracellular signals through its modular structure. This study delves into the energetic communication of Grb2 domains, focusing on the folding and binding properties of the C-SH3 domain linked to its neighboring SH2 domain. Surprisingly, while the folding and stability of C-SH3 remain robust and unaffected by SH2 presence, significant differences emerge in the binding properties when considered within the tandem context compared with isolated C-SH3. Through a double mutant cycle analysis, we highlighted a subset of residues, located at the interface with the SH2 domain and far from the binding site, finely regulating the binding of a peptide mimicking a physiological ligand of the C-SH3 domain. Our results have mechanistic implications about the mechanisms of specificity of the C-SH3 domain, indicating that the presence of the SH2 domain optimizes binding to its physiological target, and emphasizing the general importance of considering supramodular multidomain protein structures to understand the functional intricacies of protein-protein interaction domains.
Collapse
Affiliation(s)
- Mariana Di Felice
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Livia Pagano
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Valeria Pennacchietti
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Awa Diop
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Paola Pietrangeli
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Lucia Marcocci
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Sara Di Matteo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Francesca Malagrinò
- Dipartimento di Medicina clinica, sanità pubblica, scienze della vita e dell'ambiente, Università dell'Aquila, L'Aquila, Coppito, Italy.
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.
| | - Stefano Gianni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.
| |
Collapse
|
5
|
Li N, Gao Y, Zhang Y, Yu D, Lin J, Feng J, Li J, Xu Z, Zhang Y, Dang S, Zhou K, Liu Y, Li XD, Tye BK, Li Q, Gao N, Zhai Y. Parental histone transfer caught at the replication fork. Nature 2024; 627:890-897. [PMID: 38448592 DOI: 10.1038/s41586-024-07152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024]
Abstract
In eukaryotes, DNA compacts into chromatin through nucleosomes1,2. Replication of the eukaryotic genome must be coupled to the transmission of the epigenome encoded in the chromatin3,4. Here we report cryo-electron microscopy structures of yeast (Saccharomyces cerevisiae) replisomes associated with the FACT (facilitates chromatin transactions) complex (comprising Spt16 and Pob3) and an evicted histone hexamer. In these structures, FACT is positioned at the front end of the replisome by engaging with the parental DNA duplex to capture the histones through the middle domain and the acidic carboxyl-terminal domain of Spt16. The H2A-H2B dimer chaperoned by the carboxyl-terminal domain of Spt16 is stably tethered to the H3-H4 tetramer, while the vacant H2A-H2B site is occupied by the histone-binding domain of Mcm2. The Mcm2 histone-binding domain wraps around the DNA-binding surface of one H3-H4 dimer and extends across the tetramerization interface of the H3-H4 tetramer to the binding site of Spt16 middle domain before becoming disordered. This arrangement leaves the remaining DNA-binding surface of the other H3-H4 dimer exposed to additional interactions for further processing. The Mcm2 histone-binding domain and its downstream linker region are nested on top of Tof1, relocating the parental histones to the replisome front for transfer to the newly synthesized lagging-strand DNA. Our findings offer crucial structural insights into the mechanism of replication-coupled histone recycling for maintaining epigenetic inheritance.
Collapse
Affiliation(s)
- Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Yuan Gao
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Yujie Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Daqi Yu
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Jianwei Lin
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Jianxun Feng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jian Li
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Zhichun Xu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Yingyi Zhang
- Biological Cryo-EM Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shangyu Dang
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Keda Zhou
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Yang Liu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Bik Kwoon Tye
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, USA.
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China.
| | - Yuanliang Zhai
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Li K, Li Y, Nakamura F. Identification and partial characterization of new cell density-dependent nucleocytoplasmic shuttling proteins and open chromatin. Sci Rep 2023; 13:21723. [PMID: 38066085 PMCID: PMC10709462 DOI: 10.1038/s41598-023-49100-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
The contact inhibition of proliferation (CIP) denotes the cell density-dependent inhibition of growth, and the loss of CIP represents a hallmark of cancer. However, the mechanism by which CIP regulates gene expression remains poorly understood. Chromatin is a highly complex structure consisting of DNA, histones, and trans-acting factors (TAFs). The binding of TAF proteins to specific chromosomal loci regulates gene expression. Therefore, profiling chromatin is crucial for gaining insight into the gene expression mechanism of CIP. In this study, using modified proteomics of TAFs bound to DNA, we identified a protein that shuttles between the nucleus and cytosol in a cell density-dependent manner. We identified TIPARP, PTGES3, CBFB, and SMAD4 as cell density-dependent nucleocytoplasmic shuttling proteins. In low-density cells, these proteins predominantly reside in the nucleus; however, upon reaching high density, they relocate to the cytosol. Given their established roles in gene regulation, our findings propose their involvement as CIP-dependent TAFs. We also identified and characterized potential open chromatin regions sensitive to changes in cell density. These findings provide insights into the modulation of chromatin structure by CIP.
Collapse
Affiliation(s)
- Kangjing Li
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China
| | - Yaxin Li
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|