1
|
Tian X, Liu T, Zhu M, Peng J, Cui J, Feng L, Huo X, Yuan J, Ma X. Endoplasmic Reticulum-Targeting Near-Infrared Fluorescent Probe for CYP2J2 Activity and Its Imaging Application in Endoplasmic Reticulum Stress and Tumor. Anal Chem 2022; 94:9572-9577. [PMID: 35770896 DOI: 10.1021/acs.analchem.2c00425] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CYP2J2 as an endoplasmic reticulum (ER)-expressed vital cytochrome P450 isoform participates in the metabolism of endogenous polyunsaturated fatty acids. Its abnormal expression and function are closely related to the progress of cancer and cardiovascular diseases. Herein, an ER-targeting near-infrared (NIR) fluorescent probe ER-BnXPI was developed for monitoring CYP2J2 activity, which possessed a high selectivity and sensitivity toward CYP2J2 among various CYP450 isoforms and exhibited excellent subcellular localization for ER. Then, the CYP2J2 variation behavior under the ER stress model was imaged by ER-BnXPI in living cells and successfully used for the in vivo imaging in different tumors that well distinguished tumor tissues from para-cancerous tissues. All these findings fully demonstrated that ER-BnXPI could be used as a promising tool for exploring the physiological function of CYP2J2 and provided some novel approach for the diagnosis and therapy of CYP2J2-related vascular inflammation and cancer.
Collapse
Affiliation(s)
- Xiangge Tian
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen 518036, China.,Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China.,Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Mingyue Zhu
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| | - Jiao Peng
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Lei Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xiaokui Huo
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| | - Jinsong Yuan
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xiaochi Ma
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen 518036, China.,Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| |
Collapse
|
2
|
Lee H, Liu Z, Dong L, Cheong SH, Lee DS. Lycopus maackianus Makino MeOH Extract Exhibits Antioxidant and Anti-Neuroinflammatory Effects in Neuronal Cells and Zebrafish Model. Antioxidants (Basel) 2022; 11:antiox11040690. [PMID: 35453375 PMCID: PMC9025111 DOI: 10.3390/antiox11040690] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 11/18/2022] Open
Abstract
Lycopus maackianus Makino belongs to the Labiatae family and is used in traditional medicine to manage postpartum edema and boils. However, few studies on its antioxidant and anti-inflammatory effects have been conducted. Here, the compounds in L. maackianus methanol (MeOH) extract were profiled using ultra-high-performance liquid chromatography–time-of-flight high-resolution mass spectrometry analysis. The antioxidant activity of L. maackianus MeOH extract was shown to increase in a concentration-dependent manner by investigating the 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity. Next, in lipopolysaccharide-treated BV2 cells, L. maackianus extract inactivated the nuclear factor-kappa B pathway, inhibiting nitric oxide, prostaglandin E2, interleukin-6, and tumor necrosis factor-α production and inducible nitric oxide synthase and cyclooxygenase-2 protein expression. Furthermore, L. maackianus extract protected against oxidative stress-induced cellular damage in glutamate-stimulated HT22 cells. L. maackianus MeOH extract induced heme oxygenase-1 expression and increased the translocation of nuclear factor E2-related factor 2 in the nucleus, thus exhibiting antioxidant and anti-inflammatory effects. Moreover, the in vivo antioxidant and anti-inflammatory effects of the extract were demonstrated in a zebrafish (Danio rerio) model treated with hydrogen peroxide and lipopolysaccharide. MeOH L. maackianus extract showed antioxidant and anti-neuroinflammatory effects by increasing the expression of heme oxygenase-1, establishing its therapeutic potential for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Hwan Lee
- College of Pharmacy, Chosun University, Dong-gu, Gwangju 61452, Korea; (H.L.); (Z.L.); (L.D.)
| | - Zhiming Liu
- College of Pharmacy, Chosun University, Dong-gu, Gwangju 61452, Korea; (H.L.); (Z.L.); (L.D.)
| | - Linsha Dong
- College of Pharmacy, Chosun University, Dong-gu, Gwangju 61452, Korea; (H.L.); (Z.L.); (L.D.)
| | - Sun Hee Cheong
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea;
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Dong-gu, Gwangju 61452, Korea; (H.L.); (Z.L.); (L.D.)
- Correspondence: ; Tel.: +82-63-230-6386
| |
Collapse
|
3
|
Tian X, Zhou M, Ning J, Deng X, Feng L, Huang H, Yao D, Ma X. The development of novel cytochrome P450 2J2 (CYP2J2) inhibitor and the underlying interaction between inhibitor and CYP2J2. J Enzyme Inhib Med Chem 2021; 36:737-748. [PMID: 33682565 PMCID: PMC7946002 DOI: 10.1080/14756366.2021.1896500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Human Cytochrome P450 2J2 (CYP2J2) as an important metabolic enzyme, plays a crucial role in metabolism of polyunsaturated fatty acids (PUFAs). Elevated levels of CYP2J2 have been associated with various types of cancer, and therefore it serves as a potential drug target. Herein, using a high-throughput screening approach based on enzymic activity of CYP2J2, we rapidly and effectively identified a novel natural inhibitor (Piperine, 9a) with IC50 value of 0.44 μM from 108 common herbal medicines. Next, a series of its derivatives were designed and synthesised based on the underlying interactions of Piperine with CYP2J2. As expected, the much stronger inhibitors 9k and 9l were developed and their inhibition activities increased about 10 folds than Piperine with the IC50 values of 40 and 50 nM, respectively. Additionally, the inhibition kinetics illustrated the competitive inhibition types of 9k and 9l towards CYP2J2, and Ki were calculated to be 0.11 and 0.074 μM, respectively. Furthermore, the detailed interaction mechanism towards CYP2J2 was explicated by docking and molecular dynamics, and our results revealed the residue Thr114 and Thr 315 of CYP2J2 were the critical sites of action, moreover the spatial distance between the carbon atom of ligand methylene and Fe atom of iron porphyrin coenzyme was the vital interaction factor towards human CYP2J2.
Collapse
Affiliation(s)
- Xiangge Tian
- Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Meirong Zhou
- Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jing Ning
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, Dalian Medical University, Dalian, China
| | - Xiaopeng Deng
- Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lei Feng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, Dalian Medical University, Dalian, China
| | - Huilian Huang
- Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, China
| | - Xiaochi Ma
- Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
4
|
Role of oxylipins in cardiovascular diseases. Acta Pharmacol Sin 2018; 39:1142-1154. [PMID: 29877318 DOI: 10.1038/aps.2018.24] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/19/2018] [Indexed: 02/07/2023] Open
Abstract
Globally, cardiovascular diseases (CVDs) are the number one cause of mortality. Approximately 18 million people died from CVDs in 2015, representing more than 30% of all global deaths. New diagnostic tools and therapies are eagerly required to decrease the prevalence of CVDs related to mortality and/or risk factors leading to CVDs. Oxylipins are a group of metabolites, generated via oxygenation of polyunsaturated fatty acids that are involved in inflammation, immunity, and vascular functions, etc. Thus far, over 100 oxylipins have been identified, and have overlapping and interconnected roles. Important CVD pathologies such as hyperlipidemia, hypertension, thrombosis, hemostasis and diabetes have been linked to abnormal oxylipin signaling. Oxylipins represent a new era of risk markers and/or therapeutic targets in several diseases including CVDs. The role of many oxylipins in the progression or regression in CVD, however, is still not fully understood. An increased knowledge of the role of these oxygenated polyunsaturated fatty acids in cardiovascular dysfunctions or CVDs including hypertension could possibly lead to the development of biomarkers for the detection and their treatment in the future.
Collapse
|
5
|
Aliwarga T, Evangelista EA, Sotoodehnia N, Lemaitre RN, Totah RA. Regulation of CYP2J2 and EET Levels in Cardiac Disease and Diabetes. Int J Mol Sci 2018; 19:E1916. [PMID: 29966295 PMCID: PMC6073148 DOI: 10.3390/ijms19071916] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022] Open
Abstract
Cytochrome P450 2J2 (CYP2J2) is a known arachidonic acid (AA) epoxygenase that mediates the formation of four bioactive regioisomers of cis-epoxyeicosatrienoic acids (EETs). Although its expression in the liver is low, CYP2J2 is mainly observed in extrahepatic tissues, including the small intestine, pancreas, lung, and heart. Changes in CYP2J2 levels or activity by xenobiotics, disease states, or polymorphisms are proposed to lead to various organ dysfunctions. Several studies have investigated the regulation of CYP2J2 and EET formation in various cell lines and have demonstrated that such regulation is tissue-dependent. In addition, studies linking CYP2J2 polymorphisms to the risk of developing cardiovascular disease (CVD) yielded contradictory results. This review will focus on the mechanisms of regulation of CYP2J2 by inducers, inhibitors, and oxidative stress modeling certain disease states in various cell lines and tissues. The implication of CYP2J2 expression, polymorphisms, activity and, as a result, EET levels in the pathophysiology of diabetes and CVD will also be discussed.
Collapse
Affiliation(s)
- Theresa Aliwarga
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98101, USA.
| | - Eric A Evangelista
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98101, USA.
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA 98195, USA.
- Department of Medicine, University of Washington, Seattle, WA 98195, USA.
- Division of Cardiology, University of Washington, Seattle, WA 98195, USA.
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA 98195, USA.
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98101, USA.
| |
Collapse
|
6
|
Xu MJ, Jiang LF, Wu T, Chu JH, Wei YD, Aa JY, Wang GJ, Hao HP, Ju WZ, Li P. Inhibitory Effects of Danshen components on CYP2C8 and CYP2J2. Chem Biol Interact 2018; 289:15-22. [PMID: 29689254 DOI: 10.1016/j.cbi.2018.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/28/2018] [Accepted: 04/10/2018] [Indexed: 01/03/2023]
Abstract
The use of Chinese herbal medicines and natural products has become increasingly popular in both China and Western societies as an alternative medicine for the treatment of diseases or as a health supplement. Danshen, the dried root of Salvia miltiorrhiza (Fam.Labiatae), which is rich in phenolic acids and tanshinones, is a widely used herbal medicine for the treatment of cardio-cerebrovascular diseases. The goal of this study was to examine the inhibitory effects of fifteen components derived from Danshen on CYP2C8 and CYP2J2, which are expressed both in human liver and cardiovascular systems. Recombinant CYP2C8 and CYP2J2 were used, and the mechanism, kinetics, and type of inhibition were determined. Taxol 6-hydroxylation and astemizole O-desmethyastemizole were determined as probe activities for CYP2C8 and CYP2J2, respectively. Metabolites formations were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results demonstrated that salvianolic acid A was a competitive inhibitor of CYP2C8 (Ki = 2.5 μM) and mixed-type inhibitor of CYP2J2 (Ki = 7.44 μM). Salvianolic acid C had moderate noncompetitive and mixed-type inhibitions on CYP2C8 (Ki = 4.82 μM) and CYP2J2 (Ki = 5.75 μM), respectively. Tanshinone IIA was a moderate competitive inhibitor of CYP2C8 (Ki = 1.18 μM). Dihydrotanshinone I had moderate noncompetitive inhibition on CYP2J2 (Ki = 6.59 μM), but mechanism-based inhibition on CYP2C8 (KI = 0.43 μM, kinact = 0.097 min-1). Tanshinone I was a moderate competitive inhibitor of CYP2C8 (Ki = 4.20 μM). These findings suggested that Danshen preparations appear not likely to pose a significant risk of drug interactions mediated by CYP2C8 after oral administration; but their inhibitory effects on intestinal CYP2J2 mediated drug metabolism should not be neglected when they are given orally in combination with other drugs. Additionally, this study provided novel insights into the underling pharmacological mechanisms of Danshen components from the perspective of CYP2C8 and CYP2J2 inhibition.
Collapse
Affiliation(s)
- Mei-Juan Xu
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Li-Feng Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ting Wu
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Ji-Hong Chu
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yi-Dan Wei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ji-Ye Aa
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Guang-Ji Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hai-Ping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Wen-Zheng Ju
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Gervasini G, Luna E, Garcia-Pino G, Azevedo L, Mota-Zamorano S, José Cubero J. Polymorphisms in genes involved in vasoactive eicosanoid synthesis affect cardiovascular risk in renal transplant recipients. Curr Med Res Opin 2018; 34:247-253. [PMID: 29022765 DOI: 10.1080/03007995.2017.1391757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Arachidonic acid metabolism by cytochrome P450 (CYP) epoxygenases leads to epoxyeicosatrienoic acids (EETs), which are eicosanoids with vasodilator and anti-inflammatory properties. We aim to determine whether genetic variability in these routes may contribute to cardiovascular (CV) risk in renal transplant recipients. METHODS In a cohort of 355 patients, we determined the presence of two polymorphisms, CYP2C8*3 and CYP2J2*7, known to affect eicosanoid levels. Associations with CV mortality, CV event-free long-term survival and graft survival were retrospectively investigated by logistic regression models. RESULTS CYP2J2*7 showed a statistical trend towards higher CV mortality (p = .06) and lower cardiac or cerebral event-free long-term survival (p = .05), whilst CYP2C8*3 displayed a significant inverse association with the risk of CV event (hazard ratio [HR] = 0.34 [0.15-0.78], p = .01). The association of CYP2J2*7 with CV mortality became significant when the analysis was restrained to 316 patients without a history of CV events prior to transplantation (HR = 15.72 [2.83-91.94], p = .005). In this subgroup of patients both single nucleotide polymorphisms (SNPs) were significantly associated with event-free survival. HR values were 5.44 (1.60-18.51), p = .007 and 0.26 (0.09-0.75), p = .012 for CYP2J2*7 and CYP2C8*3, respectively. CONCLUSIONS Our results show, for the first time to our knowledge, that two SNPs in CYP2C8 and CYP2J2, which synthesize EETs, may modify CV outcomes in renal transplant recipients, a population that is already at a high risk of suffering these events.
Collapse
Affiliation(s)
- Guillermo Gervasini
- a Department of Medical and Surgical Therapeutics, Division of Pharmacology , Medical School, University of Extremadura , Badajoz , Spain
| | - Enrique Luna
- b Service of Nephrology, Infanta Cristina University Hospital , Badajoz , Spain
| | - Guadalupe Garcia-Pino
- a Department of Medical and Surgical Therapeutics, Division of Pharmacology , Medical School, University of Extremadura , Badajoz , Spain
| | - Lilia Azevedo
- b Service of Nephrology, Infanta Cristina University Hospital , Badajoz , Spain
| | - Sonia Mota-Zamorano
- a Department of Medical and Surgical Therapeutics, Division of Pharmacology , Medical School, University of Extremadura , Badajoz , Spain
| | - Juan José Cubero
- b Service of Nephrology, Infanta Cristina University Hospital , Badajoz , Spain
| |
Collapse
|
8
|
Arun Kumar AS, Kumar SS, Umamaheswaran G, Kesavan R, Balachandar J, Adithan C. Association of CYP2C8, CYP2C9 and CYP2J2 gene polymorphisms with myocardial infarction in South Indian population. Pharmacol Rep 2015; 67:97-101. [DOI: 10.1016/j.pharep.2014.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/09/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
|
9
|
Meling DD, McDougle DR, Das A. CYP2J2 epoxygenase membrane anchor plays an important role in facilitating electron transfer from CPR. J Inorg Biochem 2014; 142:47-53. [PMID: 25450017 DOI: 10.1016/j.jinorgbio.2014.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 01/07/2023]
Abstract
CYP2J2 epoxygenase is a membrane-bound cytochrome P450 primarily expressed in the heart and plays a significant role in cardiovascular diseases. The interactions of CYP2J2 with its redox partner, cytochrome P450 reductase (CPR), and with its substrates are quite complex and can have a significant effect on the kinetics of substrate metabolism. Here we show that the N-terminus of CYP2J2 plays an important role in the formation of CYP-CPR complex for subsequent electron transfer. We demonstrate that when CYP2J2-CPR are pre-incubated before the onset of reduction, the kinetics of reduction is triphasic and is of a similar order of magnitude to previously reported rates in other cytochrome P450 systems. However, when CYP2J2 and CPR form a complex during the time course of the experiment the kinetics of the fastest phase for N-terminus containing full-length CYP2J2 is 200 times faster than the kinetics of reduction of N-terminally truncated CYP2J2. Hence, we show that the N-terminus of CYP2J2 is very important to form a productive CYP-CPR complex to facilitate electron transfer.
Collapse
Affiliation(s)
- Daryl D Meling
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Daniel R McDougle
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States; Medical Scholars Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
10
|
Zou JG, Ma YT, Xie X, Yang YN, Pan S, Adi D, Liu F, Chen BD. The association between CYP1A1 genetic polymorphisms and coronary artery disease in the Uygur and Han of China. Lipids Health Dis 2014; 13:145. [PMID: 25189712 PMCID: PMC4175619 DOI: 10.1186/1476-511x-13-145] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/02/2014] [Indexed: 11/25/2022] Open
Abstract
Background The cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) gene is expressed in the vascular endothelium, which metabolizes arachidonic acid into 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs). 20-HETE mediates cardiovascular homeostasis and growth response in vascular smooth muscle cells (VSMCs) as well as the anti-platelet effect. EETs are potent endogenous vasodilators and inhibitors of vascular inflammation. This study assessed the association between human CYP1A1 gene polymorphisms and coronary artery disease (CAD) in the Uygur and Han in China. Methods Two independent case–control studies that recruited Han (389 patients with CAD and 411 controls) and Uygur participants (293 patients with CAD and 408 controls) analyzed the relationship between CYP1A1 single nucleotide polymorphisms (SNPs: rs4886605, rs12441817, rs4646422 and rs1048943) and CAD. All patients with CAD and controls were genotyped for the four SNPs of CYP1A1 using TaqMan SNP genotyping assays. Results In the Uygur group, the distribution of the dominant model(CC vs CT + TT) of rs4886605 for the total sample and the males was significantly different between CAD patients and control participants (P = 0.001 and P = 0.012, respectively), The difference remained significant after a multivariate adjustment (P = 0.018, P = 0.015, respectively). The rs12441817 was also associated with CAD in a dominant model for all participants (P = 0.003) and men (P = 0.012), and the difference remained significant after a multivariate adjustment (P = 0.016, P = 0.002, respectively). However, we did not observe differences in the Uygur females and Han group with regard to the allele frequency or genotypic distribution of rs4886605 and rs12441817 between patients with CAD and control participants. Patients with CAD did not significantly differ from the control participants with regard to the distributions of rs4646422 and rs1048943 genotypes, the dominant model, the recessive model, or allele frequency in the Han and Uygur groups. Conclusion Both rs4886605 and rs12441817 SNPs of the CYP1A1 gene are associated with CAD in the Uygur population of China.
Collapse
Affiliation(s)
| | - Yi-Tong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Maddipati KR, Romero R, Chaiworapongsa T, Zhou SL, Xu Z, Tarca AL, Kusanovic JP, Munoz H, Honn KV. Eicosanomic profiling reveals dominance of the epoxygenase pathway in human amniotic fluid at term in spontaneous labor. FASEB J 2014; 28:4835-46. [PMID: 25059230 DOI: 10.1096/fj.14-254383] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lipid mediators play an important role in reproductive biology, especially, in parturition. Enhanced biosynthesis of eicosanoids, such as prostaglandin E2 (PGE2) and PGF2α, precedes the onset of labor as a result of increased expression of inducible cyclooxygenase 2 (COX-2) in placental tissues. Metabolism of arachidonic acid results in bioactive lipid mediators beyond prostaglandins that could significantly influence myometrial activity. Therefore, an unbiased lipidomic approach was used to profile the arachidonic acid metabolome of amniotic fluid. In this study, liquid chromatography-mass spectrometry was used for the first time to quantitate these metabolites in human amniotic fluid by comparing patients at midtrimester, at term but not in labor, and at term and in spontaneous labor. In addition to exposing novel aspects of COX pathway metabolism, this lipidomic study revealed a dramatic increase in epoxygenase- and lipoxygenase-pathway-derived lipid mediators in spontaneous labor with remarkable product selectivity. Despite their recognition as anti-inflammatory lipid mediators and regulators of ion channels, little is known about the epoxygenase pathway in labor. Epoxygenase pathway metabolites are established regulators of vascular homeostasis in cardiovascular and renal physiology. Their presence as the dominant lipid mediators in spontaneous labor at term portends a yet undiscovered physiological function in parturition.
Collapse
Affiliation(s)
- Krishna Rao Maddipati
- Bioactive Lipids Research Program, Department of Pathology, Lipidomics Core Facility, and
| | - Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA; Department of Epidemiology, Michigan State University, East Lansing, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA; Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Sen-Lin Zhou
- Bioactive Lipids Research Program, Department of Pathology, Lipidomics Core Facility, and
| | - Zhonghui Xu
- Department of Computer Science, Wayne State University, Detroit, Michigan, USA
| | - Adi L Tarca
- Department of Computer Science, Wayne State University, Detroit, Michigan, USA
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA; Department of Obstetrics and Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Sótero del Río Hospital, Santiago, Chile; and
| | | | - Kenneth V Honn
- Bioactive Lipids Research Program, Department of Pathology
| |
Collapse
|
12
|
Ivanov SM, Lagunin AA, Pogodin PV, Filimonov DA, Poroikov VV. Identification of Drug-Induced Myocardial Infarction-Related Protein Targets through the Prediction of Drug–Target Interactions and Analysis of Biological Processes. Chem Res Toxicol 2014; 27:1263-81. [DOI: 10.1021/tx500147d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sergey M. Ivanov
- Orekhovich Institute
of Biomedical Chemistry of Russian Academy of Medical Sciences, 10, Pogodinskaya str., 119121 Moscow, Russia
| | - Alexey A. Lagunin
- Orekhovich Institute
of Biomedical Chemistry of Russian Academy of Medical Sciences, 10, Pogodinskaya str., 119121 Moscow, Russia
- Medico-biological
Faculty, Pirogov Russian National Research Medical University, 1,
Ostrovitianova str., 117997 Moscow, Russia
| | - Pavel V. Pogodin
- Orekhovich Institute
of Biomedical Chemistry of Russian Academy of Medical Sciences, 10, Pogodinskaya str., 119121 Moscow, Russia
- Medico-biological
Faculty, Pirogov Russian National Research Medical University, 1,
Ostrovitianova str., 117997 Moscow, Russia
| | - Dmitry A. Filimonov
- Orekhovich Institute
of Biomedical Chemistry of Russian Academy of Medical Sciences, 10, Pogodinskaya str., 119121 Moscow, Russia
| | - Vladimir V. Poroikov
- Orekhovich Institute
of Biomedical Chemistry of Russian Academy of Medical Sciences, 10, Pogodinskaya str., 119121 Moscow, Russia
- Medico-biological
Faculty, Pirogov Russian National Research Medical University, 1,
Ostrovitianova str., 117997 Moscow, Russia
| |
Collapse
|
13
|
Xu M, Ju W, Hao H, Wang G, Li P. Cytochrome P450 2J2: distribution, function, regulation, genetic polymorphisms and clinical significance. Drug Metab Rev 2014; 45:311-52. [PMID: 23865864 DOI: 10.3109/03602532.2013.806537] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cytochrome P450 2J2 (CYP2J2) is an enzyme mainly found in human extrahepatic tissues, with predominant expression in the cardiovascular systems and lower levels in the intestine, kidney, lung, pancreas, brain, liver, etc. During the past 15 years, CYP2J2 has attracted much attention for its epoxygenase activity in arachidonic acid (AA) metabolism. It converts AA to four epoxyeicosatrienoic acids (EETs) that have various biological effects, especially in the cardiovascular systems. In recent publications, CYP2J2 is shown highly expressed in various human tumor cells, and its EET metabolites are demonstrated to implicate in the pathologic development of human cancers. CYP2J2 is also a human CYP that involved in phase I xenobiotics metabolism. Antihistamine drugs and many other compounds were identified as the substrates of CYP2J2, and studies have demonstrated that these substrates have a broad structural diversity. CYP2J2 is found not readily induced by known P450 inducers; however, its expression could be regulated in some pathological conditions, might through the activator protein-1(AP-1), the AP-1-like element and microRNA let-7b. Several genetic mutations in the CYP2J2 gene have been identified in humans, and some of them have been shown to have potential associations with some diseases. With the increasing awareness of its roles in cancer disease and drug metabolism, studies about CYP2J2 are still going on, and various inhibitors of CYP2J2 have been determined. Further studies are needed to delineate the roles of CYP2J2 in disease pathology, drug development and clinical practice.
Collapse
Affiliation(s)
- Meijuan Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | | | | | | | | |
Collapse
|
14
|
Evangelista EA, Kaspera R, Mokadam NA, Jones JP, Totah RA. Activity, inhibition, and induction of cytochrome P450 2J2 in adult human primary cardiomyocytes. Drug Metab Dispos 2013; 41:2087-94. [PMID: 24021950 DOI: 10.1124/dmd.113.053389] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cytochrome P450 2J2 plays a significant role in the epoxidation of arachidonic acid to signaling molecules important in cardiovascular events. CYP2J2 also contributes to drug metabolism and is responsible for the intestinal clearance of ebastine. However, the interaction between arachidonic acid metabolism and drug metabolism in cardiac tissue, the main expression site of CYP2J2, has not been examined. Here we investigate an adult-derived human primary cardiac cell line as a suitable model to study metabolic drug interactions (inhibition and induction) of CYP2J2 in cardiac tissue. The primary human cardiomyocyte cell line demonstrated similar mRNA-expression profiles of P450 enzymes to adult human ventricular tissue. CYP2J2 was the dominant isozyme with minor contributions from CYP2D6 and CYP2E1. Both terfenadine and astemizole oxidation were observed in this cell line, whereas midazolam was not metabolized suggesting lack of CYP3A activity. Compared with recombinant CYP2J2, terfenadine was hydroxylated in cardiomyocytes at a similar K(m) value of 1.5 μM. The V(max) of terfenadine hydroxylation in recombinant enzyme was found to be 29.4 pmol/pmol P450 per minute and in the cells 6.0 pmol/pmol P450 per minute. CYP2J2 activity in the cell line was inhibited by danazol, astemizole, and ketoconazole in submicromolar range, but also by xenobiotics known to cause cardiac adverse effects. Of the 14 compounds tested for CYP2J2 induction, only rosiglitazone increased mRNA expression, by 1.8-fold. This cell model can be a useful in vitro model to investigate the role of CYP2J2-mediated drug metabolism, arachidonic acid metabolism, and their association to drug induced cardiotoxicity.
Collapse
Affiliation(s)
- Eric A Evangelista
- Department of Medicinal Chemistry (E.A.E., R.K., J.P.J., R.A.T.) and Division of Cardiothoracic Surgery, University of Washington, Seattle, Washington (N.A.M.)
| | | | | | | | | |
Collapse
|
15
|
CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo. Proc Natl Acad Sci U S A 2013; 110:15650-5. [PMID: 24019477 DOI: 10.1073/pnas.1315006110] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bioactivation of vitamin D consists of two sequential hydroxylation steps to produce 1α,25-dihydroxyvitamin D3. It is clear that the second or 1α-hydroxylation step is carried out by a single enzyme, 25-hydroxyvitamin D 1α-hydroxylase CYP27B1. However, it is not certain what enzyme or enzymes are responsible for the initial 25-hydroxylation. An excellent case has been made for vitamin D 25-hydroxylase CYP2R1, but this hypothesis has not yet been tested. We have now produced Cyp2r1 (-/-) mice. These mice had greater than 50% reduction in serum 25-hydroxyvitamin D3. Curiously, the 1α,25-dihydroxyvitamin D3 level in the serum remained unchanged. These mice presented no health issues. A double knockout of Cyp2r1 and Cyp27a1 maintained a similar circulating level of 25-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3. Our results support the idea that the CYP2R1 is the major enzyme responsible for 25-hydroxylation of vitamin D, but clearly a second, as-yet unknown, enzyme is another contributor to this important step in vitamin D activation.
Collapse
|
16
|
Jarrar YB, Cho SA, Oh KS, Kim DH, Shin JG, Lee SJ. Identification of cytochrome P450s involved in the metabolism of arachidonic acid in human platelets. Prostaglandins Leukot Essent Fatty Acids 2013; 89:227-34. [PMID: 23932368 DOI: 10.1016/j.plefa.2013.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 05/22/2013] [Accepted: 06/30/2013] [Indexed: 01/17/2023]
Abstract
Although cytochrome P450s (CYPs) have been identified in most human cells, identification of CYPs in human platelets remains poorly explored. CYP expressions in human platelets were screened by using reverse transcriptase-polymerase chain reaction and western blot analysis followed by functional assays using arachidonic acid (ARA). CYP1A1, 2U1, 2J2, 4A11, 4F2, and 5A1 were expressed as both proteins and mRNAs in platelets. Ethoxyresorufin-O-deethylase activity was observed in platelets and this activity was significantly decreased after treatment with the general P450 inhibitor SKF-525A and the CYP1A inhibitor, α-naphthoflavone (40-45%, P<0.001). Seventeen ARA metabolites were detected in ARA-treated platelets. Among these, the levels of 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids were significantly decreased with the treatment of the P450 ω-hydroxylase inhibitor 17-octadecynoic acid (P<0.05-0.001). In summary, multiple ARA-metabolizing P450s were identified in human platelets. These findings may provide an important resource for understanding physiological function of platelet.
Collapse
Affiliation(s)
- Yazun B Jarrar
- Department of Pharmacology, Pharmacogenomics Research Center, Inje University College of Medicine, Inje University, Busan, South Korea
| | | | | | | | | | | |
Collapse
|
17
|
A novel polymorphism of the CYP2J2 gene is associated with coronary artery disease in Uygur population in China. Clin Biochem 2013; 46:1047-1054. [DOI: 10.1016/j.clinbiochem.2013.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 04/13/2013] [Accepted: 05/03/2013] [Indexed: 12/12/2022]
|
18
|
Jarrar YB, Shin JG, Lee SJ. Expression of arachidonic acid-metabolizing cytochrome P450s in human megakaryocytic Dami cells. In Vitro Cell Dev Biol Anim 2013; 49:492-500. [PMID: 23722412 PMCID: PMC3713264 DOI: 10.1007/s11626-013-9633-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/03/2013] [Indexed: 12/22/2022]
Abstract
Cytochrome P450s (P450s) are involved in the metabolism of arachidonic acid (ARA), and ARA metabolites are associated with various cellular signaling pathways, such as blood hemostasis and inflammation. The present study demonstrates the expression of ARA-metabolizing P450s in the human megakaryocytic Dami cells using reverse transcriptase-polymerase chain reaction (RT-PCR) and immunublotting analysis followed by activity assays using ARA as a substrate. In addition to the previously identified CYP5A1, both protein and mRNAs of CYP1A1, 2U1, and 2J2 bands were detected. Ethoxyresorufin-O-deethylase (EROD) activity was observed in Dami cells, and its activity was significantly decreased after treatment with the P450 inhibitor SKF-525A when compared to the control groups (60% reduction, P < 0.001). CYP1A1 protein expression in Dami cells was induced by 3-methylenecholantheren. This increase in CYP1A1 protein level was correlated with enhanced EROD activity (fourfold increase vs. the control), as well as with increased metabolites, such as 20-hydroxyeicosatrienoic acid (20-HETE), 14, 15-EET (14-,15-epoxyeicosatrienoic acid), and 14, 15-dihydroxyeicosatrienoic acid (14, 15-DHET). The expression of soluble epoxide hydrolase, an enzyme responsible for the synthesis of DHETs from EETs, was confirmed by RT-PCR. Furthermore, 15 ARA metabolites, including 8,9-EET, 14,15-EET, and 20-HETE, were detected by LC-MS/MS in ARA-treated Dami cells, and their levels were decreased with the treatment of the SKF-525A. The present data suggest the possibility that the P450s play a role in the metabolism of ARA and other CYP-related substrates in human megakaryocytes and that P450 expression in megakaryocytic cell lines may predict their existences in platelets with functional activities.
Collapse
Affiliation(s)
- Yazun Bashir Jarrar
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Inje University, 633-165 Gaegum-dong, Busanjin-gu, Busan, South Korea
| | | | | |
Collapse
|
19
|
Morisseau C, Hammock BD. Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health. Annu Rev Pharmacol Toxicol 2012; 53:37-58. [PMID: 23020295 DOI: 10.1146/annurev-pharmtox-011112-140244] [Citation(s) in RCA: 398] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The presence of epoxyeicosatrienoic acids (EETs) in tissues and their metabolism by soluble epoxide hydrolase (sEH) to 1,2-diols were first reported 30 years ago. However, appreciation of their importance in cell biology and physiology has greatly accelerated over the past decade with the discovery of metabolically stable inhibitors of sEH, the commercial availability of EETs, and the development of analytical methods for the quantification of EETs and their diols. Numerous roles of EETs in regulatory biology now are clear, and the value of sEH inhibition in various animal models of disease has been demonstrated. Here, we review these results and discuss how the pharmacological stabilization of EETs and other natural epoxy-fatty acids could lead to possible disease therapies.
Collapse
Affiliation(s)
- Christophe Morisseau
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, USA
| | | |
Collapse
|
20
|
Zhu J, DeLuca HF. Vitamin D 25-hydroxylase – Four decades of searching, are we there yet? Arch Biochem Biophys 2012; 523:30-6. [DOI: 10.1016/j.abb.2012.01.013] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 01/21/2012] [Indexed: 11/16/2022]
|
21
|
Burnett BP, Levy RM. 5-Lipoxygenase metabolic contributions to NSAID-induced organ toxicity. Adv Ther 2012; 29:79-98. [PMID: 22351432 DOI: 10.1007/s12325-011-0100-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Indexed: 01/01/2023]
Abstract
Cyclooxygenase (COX)-1, COX-2, and 5-lipoxygenase (5-LOX) enzymes produce effectors of pain and inflammation in osteoarthritis (OA) and many other diseases. All three enzymes play a key role in the metabolism of arachidonic acid (AA) to inflammatory fatty acids, which contribute to the deterioration of cartilage. AA is derived from both phospholipase A(2) (PLA(2)) conversion of cell membrane phospholipids and dietary consumption of omega-6 fatty acids. Nonsteroidal antiinflammatory drugs (NSAIDs) inhibit the COX enzymes, but show no anti-5-LOX activity to prevent the formation of leukotrienes (LTs). Cysteinyl LTs, such as LTC(4), LTD(4), LTE(4), and leukoattractive LTB(4) accumulate in several organs of mammals in response to NSAID consumption. Elevated 5-LOX-mediated AA metabolism may contribute to the side-effect profile observed for NSAIDs in OA. Current therapeutics under development, so-called "dual inhibitors" of COX and 5-LOX, show improved side-effect profiles and may represent a new option in the management of OA.
Collapse
Affiliation(s)
- Bruce P Burnett
- Department of Medical Education and Scientific Affairs, Primus Pharmaceuticals, Inc., Scottsdale, Arizona, USA.
| | | |
Collapse
|
22
|
Lisovyy AO, Dosenko VE, Parkhomenko AN, Moibenko AA. The frequency of promoter polymorphism of the gene encoding epoxygenase 2J2 in patients with acute coronary syndrome. CYTOL GENET+ 2010. [DOI: 10.3103/s0095452710020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Zordoky BNM, El-Kadi AOS. Effect of cytochrome P450 polymorphism on arachidonic acid metabolism and their impact on cardiovascular diseases. Pharmacol Ther 2010; 125:446-63. [PMID: 20093140 DOI: 10.1016/j.pharmthera.2009.12.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 12/24/2009] [Indexed: 01/27/2023]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of death in the developed countries. Taking into account the mounting evidence about the role of cytochrome P450 (CYP) enzymes in cardiovascular physiology, CYP polymorphisms can be considered one of the major determinants of individual susceptibility to CVDs. One of the important physiological roles of CYP enzymes is the metabolism of arachidonic acid. CYP epoxygenases such as CYP1A2, CYP2C, and CYP2J2 metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs) which generally possess vasodilating, anti-inflammatory, anti-apoptotic, anti-thrombotic, natriuretic, and cardioprotective effects. Therefore, genetic polymorphisms causing lower activity of these enzymes are generally associated with an increased risk of several CVDs such as hypertension and coronary artery disease. EETs are further metabolized by soluble epoxide hydrolase (sEH) to the less biologically active dihydroxyeicosatrienoic acids (DHETs). Therefore, sEH polymorphism has also been shown to affect arachidonic acid metabolism and to be associated with CVDs. On the other hand, CYP omega-hydroxylases such as CYP4A11 and CYP4F2 metabolize arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE) which has both vasoconstricting and natriuretic effects. Genetic polymorphisms causing lower activity of these enzymes are generally associated with higher risk of hypertension. Nevertheless, some studies have denied the association between polymorphisms in the arachidonic acid pathway and CVDs. Therefore, more research is needed to confirm this association and to better understand the pathophysiologic mechanisms behind it.
Collapse
Affiliation(s)
- Beshay N M Zordoky
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8
| | | |
Collapse
|
24
|
Wray JA, Sugden MC, Zeldin DC, Greenwood GK, Samsuddin S, Miller-Degraff L, Bradbury JA, Holness MJ, Warner TD, Bishop-Bailey D. The epoxygenases CYP2J2 activates the nuclear receptor PPARalpha in vitro and in vivo. PLoS One 2009; 4:e7421. [PMID: 19823578 PMCID: PMC2756622 DOI: 10.1371/journal.pone.0007421] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 09/21/2009] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Peroxisome proliferator-activated receptors (PPARs) are a family of three (PPARalpha, -beta/delta, and -gamma) nuclear receptors. In particular, PPARalpha is involved in regulation of fatty acid metabolism, cell growth and inflammation. PPARalpha mediates the cardiac fasting response, increasing fatty acid metabolism, decreasing glucose utilisation, and is the target for the fibrate lipid-lowering class of drugs. However, little is known regarding the endogenous generation of PPAR ligands. CYP2J2 is a lipid metabolising cytochrome P450, which produces anti-inflammatory mediators, and is considered the major epoxygenase in the human heart. METHODOLOGY/PRINCIPAL FINDINGS Expression of CYP2J2 in vitro results in an activation of PPAR responses with a particular preference for PPARalpha. The CYP2J2 products 8,9- and 11-12-EET also activate PPARalpha. In vitro, PPARalpha activation by its selective ligand induces the PPARalpha target gene pyruvate dehydrogenase kinase (PDK)4 in cardiac tissue. In vivo, in cardiac-specific CYP2J2 transgenic mice, fasting selectively augments the expression of PDK4. CONCLUSIONS/SIGNIFICANCE Our results establish that CYP2J2 produces PPARalpha ligands in vitro and in vivo, and suggests that lipid metabolising CYPs are prime candidates for the integration of global lipid changes to transcriptional signalling events.
Collapse
Affiliation(s)
- Jessica A Wray
- Translational Medicine and Therapeutics, William Harvey Research Institute, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Takeshita H, Tsubota E, Takatsuka H, Kunito T, Fujihara J. Cytochrome P450 2J2*7 polymorphisms in Japanese, Mongolians and Ovambos. Cell Biochem Funct 2008; 26:813-6. [PMID: 18729130 DOI: 10.1002/cbf.1512] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human cytochrome P450 2J2 (CYP2J2) is abundant in cardiovascular tissue and active in the metabolism of arachidonic acid to eicosanoids that have potent vasodilatory properties. Variability of the CYP2J2 gene is highly constrained except for its proximal promoter: there is a relatively common and functionally relevant single nucleotide polymorphism, indicated by -50G > T polymorphism (CYP2J2*7). Although genetic variation is known among ethnic groups, data for allele frequency are limited to a few Caucasian, Asian, and one African populations. In the present study, genotype distribution of CYP2J2*7 polymorphisms was investigated using polymerase chain reaction and restriction fragment length polymorphism assay in Japanese (n = 338), Mongolian (n = 118), and Ovambo (n = 186) populations and the findings compared with other populations. The mutant (CYP2J2*7) frequencies in the Japanese, Mongolians, and Ovambos were 0.0621, 0.0339, and 0.0672, respectively. Except for the Taiwanese, a general uniformity in the polymorphism in the Asian populations was observed. The mutation frequency of Ovambos was relatively lower than that of the African-American population. This study is the first to investigate the distribution of the CYP2J2*7 gene polymorphisms in Japanese, Mongolians, and Ovambos. These data will be informative and facilitate genetic association studies, in Asian and African populations for CYP2J2-related diseases such as cardiovascular disorders.
Collapse
Affiliation(s)
- Haruo Takeshita
- Department of Legal Medicine, Shimane University School of Medicine, Izumo Shimane, Japan.
| | | | | | | | | |
Collapse
|
26
|
Gross GJ, Gauthier KM, Moore J, Falck JR, Hammock BD, Campbell WB, Nithipatikom K. Effects of the selective EET antagonist, 14,15-EEZE, on cardioprotection produced by exogenous or endogenous EETs in the canine heart. Am J Physiol Heart Circ Physiol 2008; 294:H2838-44. [PMID: 18441205 DOI: 10.1152/ajpheart.00186.2008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previously, we demonstrated (17) that 11,12- and 14,15-epoxyeicosatrienoic acids (EETs) produce marked reductions in myocardial infarct size. Although it is assumed that this cardioprotective effect of the EETs is due to a specific interaction with a membrane-bound receptor, no evidence has indicated that novel EET antagonists selectively block the EET actions in dogs. Our goals were to investigate the effects of 11,12- and 14,15-EET, the soluble epoxide hydrolase inhibitor, 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA), and the putative selective EET antagonist, 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE), on infarct size of barbital anesthetized dogs subjected to 60 min of coronary artery occlusion and 3 h of reperfusion. Furthermore, the effect of 14,15-EEZE on the cardioprotective actions of the selective mitochondrial ATP-sensitive potassium channel opener diazoxide was investigated. Both 11,12- and 14,15-EET markedly reduced infarct size [expressed as a percentage of the area at risk (IS/AAR)] from 21.8 +/- 1.6% (vehicle) to 8.7 +/- 2.2 and 9.4 +/- 1.3%, respectively. Similarly, AUDA significantly reduced IS/AAR from 21.8 +/- 1.6 to 14.4 +/- 1.2% (low dose) and 9.4 +/- 1.8% (high dose), respectively. Interestingly, the combination of the low dose of AUDA with 14,15-EET reduced IS/AAR to 5.8 +/- 1.6% (P < 0.05), further than either drug alone. Diazoxide also reduced IS/AAR significantly (10.2 +/- 1.9%). In contrast, 14,15-EEZE had no effect on IS/AAR by itself (21.0 +/- 3.6%), but completely abolished the effect of 11,12-EET (17.8 +/- 1.4%) and 14,15-EET (19.2 +/- 2.4%) and AUDA (19.3 +/- 1.6%), but not that of diazoxide (10.4 +/- 1.4%). These results suggest that activation of the EET pathway, acting on a putative receptor, by exogenous EETs or indirectly by blocking EET metabolism, produced marked cardioprotection, and the combination of these two approaches resulted in a synergistic effect. These data also suggest that 14,15-EEZE is not blocking the mitochondrial ATP-sensitive potassium channel as a mechanism for antagonizing the cardioprotective effects of the EETs.
Collapse
Affiliation(s)
- Garrett J Gross
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Kirchheiner J, Meineke I, Fuhr U, Rodríguez-Antona C, Lebedeva E, Brockmöller J. Impact of genetic polymorphisms in CYP2C8 and rosiglitazone intake on the urinary excretion of dihydroxyeicosatrienoic acids. Pharmacogenomics 2008; 9:277-88. [DOI: 10.2217/14622416.9.3.277] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The cytochrome P450 enzymes CYP2C8, CYP2C9 and CYP2J2 generate 8,9-, 11,12-, and 14,15-epoxyeicosatrienic acid (EET) from arachidonic acid, and these EETs are then hydrolyzed to dihydroxyeicosatrienoic acids (DHET) before excretion into the urine. It is unknown how genetic polymorphisms affect formation of these diuretic, vasodilatory and anti-inflammatory eicosanoids, and whether the CYP2C8 substrate rosiglitazone inhibits their formation. Methods: A panel of 14, 13 and four carriers of the CYP2C8 genotypes *1/*1, *1/*3 and *3/*3, respectively was preselected for this study. Daily morning oral doses of 8 mg rosiglitazone were administered for 15 days. Urine was collected prior to rosiglitazone, and for 24 h after the first and last administration of rosiglitazone. Urinary EETs and DHETs were analyzed by tandem mass spectrometry. Results:Carriers of the high-activity CYP2C8*3 allele had higher excretion of all three DHETs (p < 0.01 for 11,12-DHET, p < 0.05 for 14,15-DHET), whereas carriers of the low-activity CYP2C8 haplotype C (genotypes GCGA at positions rs2275622, rs7909236, rs1113129 and rs11572080) had lower DHET excretion in urine before and during rosiglitazone. Rosiglitazone intake leads to a decrease in DHET excretion by approximately 10% (p < 0.02). Urinary excretion of unhydrolyzed EETs was below the limit of quantification of 50 pg/ml in all samples. Conclusion: The data consistently indicate that genetic variation in CYP2C8 moderately modulates-EET formation as reflected in urinary DHET excretion. This might impact cardiovascular functions, and may be one mechanism explaining the influence of CYP polymorphisms on myocardial infarction and hypertension.
Collapse
Affiliation(s)
- Julia Kirchheiner
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, University Ulm, Helmholtzstr. 20, 89081 Ulm, Germany
| | - Ingolf Meineke
- Department of Clinical Pharmacology, Georg August University Göttingen, Germany
| | - Uwe Fuhr
- Department of Pharmacology, Clinical Pharmacology, University of Cologne, Germany
| | | | - Elena Lebedeva
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, University Ulm, Helmholtzstr. 20, 89081 Ulm, Germany
| | - Jürgen Brockmöller
- Department of Clinical Pharmacology, Georg August University Göttingen, Germany
| |
Collapse
|
28
|
Roles of epoxyeicosatrienoic acids in vascular regulation and cardiac preconditioning. J Cardiovasc Pharmacol 2008; 50:601-8. [PMID: 18091575 DOI: 10.1097/fjc.0b013e318159cbe3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Continuing investigations of the roles of cytochrome P450 (CYP) arachidonic acid epoxygenase metabolites in the regulation of cardiovascular physiology and pathophysiology have revealed their complex and diverse biological effects. Often these metabolites demonstrate protective properties that are revealed during cardiovascular disease. In this regard, the epoxyeicosatrienoic acids (EETs) are an emerging target for pharmacological manipulation aimed at enhancing their cardiac and vascular protective mechanisms. This review will focus on the role of EETs in the regulation of vascular tone, with emphasis on the coronary circulation, their role in limiting platelet aggregation, vascular inflammation and EET contribution to preconditioning of the ischemic myocardium. Production and metabolism of EETs as well as their specific cellular signaling mechanisms are discussed.
Collapse
|
29
|
Vascular Cytochrome P450 Enzymes: Physiology and Pathophysiology. Trends Cardiovasc Med 2008; 18:20-5. [DOI: 10.1016/j.tcm.2007.11.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 11/02/2007] [Accepted: 11/05/2007] [Indexed: 11/18/2022]
|
30
|
Mechanisms by which epoxyeicosatrienoic acids (EETs) elicit cardioprotection in rat hearts. J Mol Cell Cardiol 2007; 42:687-91. [PMID: 17217955 DOI: 10.1016/j.yjmcc.2006.11.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 11/28/2006] [Accepted: 11/30/2006] [Indexed: 11/23/2022]
Abstract
Cytochrome P450 (CYP) epoxygenases and their arachidonic acid (AA) metabolites, the epoxyeicosatrienoic acids (EETs), have been shown to produce reductions in infarct size in canine myocardium following ischemia-reperfusion injury via opening of either the sarcolemmal K(ATP) (sarcK(ATP)) or mitochondrial K(ATP) (mitoK(ATP)) channel. In the present study, we subjected intact rat hearts to 30 min of left coronary artery occlusion and 2 h of reperfusion followed by tetrazolium staining to determine infarct size as a percent of the area at risk (IS/AAR, %). The results demonstrate that the two major regioisomers of the CYP epoxygenase pathway, 11,12-EET (2.5 mg/kg, iv) and 14,15-EET (2.5 mg/kg, iv) significantly reduced myocardial infarct size (IS/AAR, %) in rats as compared with control (41.9+/-2.3%, 40.9+/-1.2% versus 61.5+/-1.6%, respectively), whereas, a third regioisomer, 8,9-EET (2.5 mg/kg, iv) had no effect (55.2+/-1.4). The protective effect of pretreatment with 11,12- and 14,15-EETs was completely abolished (61.9+/-0.7%, 58.6+/-3.1%, HMR; 63.3+/-1.2%, 63.2+/-2.5%, 5-HD) in the presence of the selective sarcK(ATP) channel antagonist, HMR 1098 (6 mg/kg, iv) or the selective mitoK(ATP) channel antagonist, 5-HD (10 mg/kg, iv) given 10 min after 11,12- or 14,15-EET administration but 5 min prior to index ischemia. Furthermore, concomitant pretreatment with 11,12- or 14,15-EET in combination with the free radical scavenger, 2-mercaptopropionyl glycine (2-MPG), at a dose (20 mg/kg, iv) that had no effect on IS/AAR (57.7+/-1.3%), completely abolished the cardioprotective effect of 11,12- and 14,15-EETs (58.2+/-1.6%, 61.4+/-1.0%), respectively. These data suggest that part of the cardioprotective effects of EETs in rat hearts against infarction is the result of an initial burst of reactive oxygen species (ROS) and subsequent activation of both the sarcK(ATP) and mitoK(ATP) channel.
Collapse
|
31
|
Larsen BT, Campbell WB, Gutterman DD. Beyond vasodilatation: non-vasomotor roles of epoxyeicosatrienoic acids in the cardiovascular system. Trends Pharmacol Sci 2007; 28:32-8. [PMID: 17150260 DOI: 10.1016/j.tips.2006.11.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 09/18/2006] [Accepted: 11/20/2006] [Indexed: 01/22/2023]
Abstract
Epoxyeicosatrienoic acids (EETs), derived from arachidonic acid by cytochrome P450 epoxygenases, are potent vasodilators that function as endothelium-derived hyperpolarizing factors in some vascular beds. EETs are rapidly metabolized by soluble epoxide hydrolase to form dihydroxyeicosatrienoic acids (DHETs). Recent reports indicate that EETs have several important non-vasomotor regulatory roles in the cardiovascular system. EETs are potent anti-inflammatory agents and might function as endogenous anti-atherogenic compounds. In addition, EETs and DHETs might stimulate lipid metabolism and regulate insulin sensitivity. Thus, pharmacological inhibition of soluble epoxide hydrolase might be useful not only for hypertension but also for abating atherosclerosis, diabetes mellitus and the metabolic syndrome. Finally, although usually protective in the systemic circulation, EETs might adversely affect the pulmonary circulation.
Collapse
Affiliation(s)
- Brandon T Larsen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|