1
|
Granzier HL, Labeit S. Discovery of Titin and Its Role in Heart Function and Disease. Circ Res 2025; 136:135-157. [PMID: 39745989 DOI: 10.1161/circresaha.124.323051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/04/2025]
Abstract
This review examines the giant elastic protein titin and its critical roles in heart function, both in health and disease, as discovered since its identification nearly 50 years ago. Encoded by the TTN (titin gene), titin has emerged as a major disease locus for cardiac disorders. Functionally, titin acts as a third myofilament type, connecting sarcomeric Z-disks and M-bands, and regulating myocardial passive stiffness and stretch sensing. Its I-band segment, which includes the N2B element and the PEVK (proline, glutamate, valine, and lysine-rich regions), serves as a viscoelastic spring, adjusting sarcomere length and force in response to cardiac stretch. The review details how alternative splicing of titin pre-mRNA produces different isoforms that greatly impact passive tension and cardiac function, under physiological and pathological conditions. Key posttranslational modifications, especially phosphorylation, play crucial roles in adjusting titin's stiffness, allowing for rapid adaptation to changing hemodynamic demands. Abnormal titin modifications and dysregulation of isoforms are linked to cardiac diseases such as heart failure with preserved ejection fraction, where increased stiffness impairs diastolic function. In addition, the review discusses the importance of the A-band region of titin in setting thick filament length and enhancing Ca²+ sensitivity, contributing to the Frank-Starling Mechanism of the heart. TTN truncating variants are frequently associated with dilated cardiomyopathy, and the review outlines potential disease mechanisms, including haploinsufficiency, sarcomere disarray, and altered thick filament regulation. Variants in TTN have also been linked to conditions such as peripartum cardiomyopathy and chemotherapy-induced cardiomyopathy. Therapeutic avenues are explored, including targeting splicing factors such as RBM20 (RNA binding motif protein 20) to adjust isoform ratios or using engineered heart tissues to study disease mechanisms. Advances in genetic engineering, including CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), offer promise for modifying TTN to treat titin-related cardiomyopathies. This comprehensive review highlights titin's structural, mechanical, and signaling roles in heart function and the impact of TTN mutations on cardiac diseases.
Collapse
Affiliation(s)
- Henk L Granzier
- Department of Cellular and Molecular Medicine, Molecular Cardiovascular Research Program, The University of Arizona, Tucson (H.L.G.)
| | - Siegfried Labeit
- Department of Integrative Pathophysiology, Medical Faculty Mannheim, DZHK Partnersite Mannheim-Heidelberg, University of Heidelberg, Germany (S.L.)
| |
Collapse
|
2
|
Morotti I, Caremani M, Marcello M, Pertici I, Squarci C, Bianco P, Narayanan T, Piazzesi G, Reconditi M, Lombardi V, Linari M. An integrated picture of the structural pathways controlling the heart performance. Proc Natl Acad Sci U S A 2024; 121:e2410893121. [PMID: 39630866 DOI: 10.1073/pnas.2410893121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
The regulation of heart function is attributed to a dual filament mechanism: i) the Ca2+-dependent structural changes in the regulatory proteins of the thin, actin-containing filament making actin available for myosin motor attachment, and ii) the release of motors from their folded (OFF) state on the surface of the thick filament allowing them to attach and pull the actin filament. Thick filament mechanosensing is thought to control the number of motors switching ON in relation to the systolic performance, but its molecular basis is still controversial. Here, we use high spatial resolution X-ray diffraction data from electrically paced rat trabeculae and papillary muscles to provide a molecular explanation of the modulation of heart performance that calls for a revision of the mechanosensing hypothesis. We find that upon stimulation, titin-mediated structural changes in the thick filament switch motors ON throughout the filament within ~½ the maximum systolic force. These structural changes also drive Myosin Binding Protein-C (MyBP-C) to promote first motor attachments to actin from the central 1/3 of the half-thick filament. Progression of attachments toward the periphery of half-thick filament with increase in systolic force is carried on by near-neighbor cooperative thin filament activation by attached motors. The identification of the roles of MyBP-C, titin, thin and thick filaments in heart regulation enables their targeting for potential therapeutic interventions.
Collapse
Affiliation(s)
- Ilaria Morotti
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Marco Caremani
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Matteo Marcello
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Irene Pertici
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Caterina Squarci
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Pasquale Bianco
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | | | - Gabriella Piazzesi
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Massimo Reconditi
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Vincenzo Lombardi
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Marco Linari
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| |
Collapse
|
3
|
Vahle B, Heilmann L, Schauer A, Augstein A, Jarabo MEP, Barthel P, Mangner N, Labeit S, Bowen TS, Linke A, Adams V. Modulation of Titin and Contraction-Regulating Proteins in a Rat Model of Heart Failure with Preserved Ejection Fraction: Limb vs. Diaphragmatic Muscle. Int J Mol Sci 2024; 25:6618. [PMID: 38928324 PMCID: PMC11203682 DOI: 10.3390/ijms25126618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by biomechanically dysfunctional cardiomyocytes. Underlying cellular changes include perturbed myocardial titin expression and titin hypophosphorylation leading to titin filament stiffening. Beside these well-studied alterations at the cardiomyocyte level, exercise intolerance is another hallmark of HFpEF caused by molecular alterations in skeletal muscle (SKM). Currently, there is a lack of data regarding titin modulation in the SKM of HFpEF. Therefore, the aim of the present study was to analyze molecular alterations in limb SKM (tibialis anterior (TA)) and in the diaphragm (Dia), as a more central SKM, with a focus on titin, titin phosphorylation, and contraction-regulating proteins. This study was performed with muscle tissue, obtained from 32-week old female ZSF-1 rats, an established a HFpEF rat model. Our results showed a hyperphosphorylation of titin in limb SKM, based on enhanced phosphorylation at the PEVK region, which is known to lead to titin filament stiffening. This hyperphosphorylation could be reversed by high-intensity interval training (HIIT). Additionally, a negative correlation occurring between the phosphorylation state of titin and the muscle force in the limb SKM was evident. For the Dia, no alterations in the phosphorylation state of titin could be detected. Supported by data of previous studies, this suggests an exercise effect of the Dia in HFpEF. Regarding the expression of contraction regulating proteins, significant differences between Dia and limb SKM could be detected, supporting muscle atrophy and dysfunction in limb SKM, but not in the Dia. Altogether, these data suggest a correlation between titin stiffening and the appearance of exercise intolerance in HFpEF, as well as a differential regulation between different SKM groups.
Collapse
Affiliation(s)
- Beatrice Vahle
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Leonard Heilmann
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Antje Schauer
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Antje Augstein
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Maria-Elisa Prieto Jarabo
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Peggy Barthel
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Norman Mangner
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Siegfried Labeit
- DZHK Partner Site Mannheim-Heidelberg, Medical Faculty Mannheim, University of Heidelberg, 68169 Mannheim, Germany;
- Myomedix GmbH, 69151 Neckargemünd, Germany
| | - T. Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Axel Linke
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Volker Adams
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| |
Collapse
|
4
|
Usui Y, Hanashima A, Hashimoto K, Kimoto M, Ohira M, Mohri S. Comparative analysis of ventricular stiffness across species. Physiol Rep 2024; 12:e16013. [PMID: 38644486 PMCID: PMC11033294 DOI: 10.14814/phy2.16013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
Investigating ventricular diastolic properties is crucial for understanding the physiological cardiac functions in organisms and unraveling the pathological mechanisms of cardiovascular disorders. Ventricular stiffness, a fundamental parameter that defines ventricular diastolic functions in chordates, is typically analyzed using the end-diastolic pressure-volume relationship (EDPVR). However, comparing ventricular stiffness accurately across chambers of varying maximum volume capacities has been a long-standing challenge. As one of the solutions to this problem, we propose calculating a relative ventricular stiffness index by applying an exponential approximation formula to the EDPVR plot data of the relationship between ventricular pressure and values of normalized ventricular volume by the ventricular weight. This article reviews the potential, utility, and limitations of using normalized EDPVR analysis in recent studies. Herein, we measured and ranked ventricular stiffness in differently sized and shaped chambers using ex vivo ventricular pressure-volume analysis data from four animals: Wistar rats, red-eared slider turtles, masu salmon, and cherry salmon. Furthermore, we have discussed the mechanical effects of intracellular and extracellular viscoelastic components, Titin (Connectin) filaments, collagens, physiological sarcomere length, and other factors that govern ventricular stiffness. Our review provides insights into the comparison of ventricular stiffness in different-sized ventricles between heterologous and homologous species, including non-model organisms.
Collapse
Grants
- JP22K15155 Japan Society for the Promotion of Science, Grant/Award Number
- JP20K21453 Japan Society for the Promotion of Science, Grant/Award Number
- JP20H04508 Japan Society for the Promotion of Science, Grant/Award Number
- JP21K19933 Japan Society for the Promotion of Science, Grant/Award Number
- JP20H04521 Japan Society for the Promotion of Science, Grant/Award Number
- JP17H02092 Japan Society for the Promotion of Science, Grant/Award Number
- JP23H00556 Japan Society for the Promotion of Science, Grant/Award Number
- JP17H06272 Japan Society for the Promotion of Science, Grant/Award Number
- JP17H00859 Japan Society for the Promotion of Science, Grant/Award Number
- JP25560214 Japan Society for the Promotion of Science, Grant/Award Number
- JP16K01385 Japan Society for the Promotion of Science, Grant/Award Number
- JP26282127 Japan Society for the Promotion of Science, Grant/Award Number
- The Futaba research grant program
- Research Grant from the Kawasaki Foundation in 2016 from Medical Science and Medical Welfare
- Medical Research Grant in 2010 from Takeda Science Foundation
- R03S005 Research Project Grant from Kawasaki Medical School
- R03B050 Research Project Grant from Kawasaki Medical School
- R01B054 Research Project Grant from Kawasaki Medical School
- H30B041 Research Project Grant from Kawasaki Medical School
- H30B016 Research Project Grant from Kawasaki Medical School
- H27B10 Research Project Grant from Kawasaki Medical School
- R02B039 Research Project Grant from Kawasaki Medical School
- H28B80 Research Project Grant from Kawasaki Medical School
- R05B016 Research Project Grant from Kawasaki Medical School
- Japan Society for the Promotion of Science, Grant/Award Number
Collapse
Affiliation(s)
- Yuu Usui
- First Department of PhysiologyKawasaki Medical SchoolKurashikiOkayamaJapan
| | - Akira Hanashima
- First Department of PhysiologyKawasaki Medical SchoolKurashikiOkayamaJapan
| | - Ken Hashimoto
- First Department of PhysiologyKawasaki Medical SchoolKurashikiOkayamaJapan
| | - Misaki Kimoto
- First Department of PhysiologyKawasaki Medical SchoolKurashikiOkayamaJapan
| | - Momoko Ohira
- First Department of PhysiologyKawasaki Medical SchoolKurashikiOkayamaJapan
| | - Satoshi Mohri
- First Department of PhysiologyKawasaki Medical SchoolKurashikiOkayamaJapan
| |
Collapse
|
5
|
Jolfayi AG, Kohansal E, Ghasemi S, Naderi N, Hesami M, MozafaryBazargany M, Moghadam MH, Fazelifar AF, Maleki M, Kalayinia S. Exploring TTN variants as genetic insights into cardiomyopathy pathogenesis and potential emerging clues to molecular mechanisms in cardiomyopathies. Sci Rep 2024; 14:5313. [PMID: 38438525 PMCID: PMC10912352 DOI: 10.1038/s41598-024-56154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/01/2024] [Indexed: 03/06/2024] Open
Abstract
The giant protein titin (TTN) is a sarcomeric protein that forms the myofibrillar backbone for the components of the contractile machinery which plays a crucial role in muscle disorders and cardiomyopathies. Diagnosing TTN pathogenic variants has important implications for patient management and genetic counseling. Genetic testing for TTN variants can help identify individuals at risk for developing cardiomyopathies, allowing for early intervention and personalized treatment strategies. Furthermore, identifying TTN variants can inform prognosis and guide therapeutic decisions. Deciphering the intricate genotype-phenotype correlations between TTN variants and their pathologic traits in cardiomyopathies is imperative for gene-based diagnosis, risk assessment, and personalized clinical management. With the increasing use of next-generation sequencing (NGS), a high number of variants in the TTN gene have been detected in patients with cardiomyopathies. However, not all TTN variants detected in cardiomyopathy cohorts can be assumed to be disease-causing. The interpretation of TTN variants remains challenging due to high background population variation. This narrative review aimed to comprehensively summarize current evidence on TTN variants identified in published cardiomyopathy studies and determine which specific variants are likely pathogenic contributors to cardiomyopathy development.
Collapse
Affiliation(s)
- Amir Ghaffari Jolfayi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Erfan Kohansal
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Serwa Ghasemi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hesami
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Hosseini Moghadam
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Farjam Fazelifar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Forer A, Otsuka S. Structural evidence for elastic tethers connecting separating chromosomes in crane-fly spermatocytes. Life Sci Alliance 2023; 6:e202302303. [PMID: 37591724 PMCID: PMC10435969 DOI: 10.26508/lsa.202302303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
Different types of anaphase bridges are reported to form between segregating chromosomes during cell division. Previous studies using laser microsurgery suggested that elastic tethers connect the telomeres of separating anaphase chromosomes in many animal meiotic and mitotic cells. However, structural evidence is lacking for their existence. In this study, by correlating live imaging with electron tomography, we examined whether visible structures connect separating telomeres in meiosis I of crane-fly primary spermatocytes. We found structures extending between separating telomeres in all stages of anaphase. The structures consist of two components: one is darkly stained, looking somewhat like chromatin, whereas the other is more lightly stained, appearing filamentous. Although in early anaphase both structures extend between telomeres, in later anaphase, the darker structure extends shorter distances from the telomeres but the lighter structure still extends between the separating telomeres. From these observations, we deduced that these structures represent the "tethers" inferred from the laser-cutting experiments. Because elastic tethers have been detected in a variety of animal cells, they probably are present during anaphase in all animal cells.
Collapse
Affiliation(s)
- Arthur Forer
- Biology Department, York University, North York, Canada
| | - Shotaro Otsuka
- Max Perutz Labs, Vienna Biocenter Campus, Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Vienna, Austria
| |
Collapse
|
7
|
Tomalka A. Eccentric muscle contractions: from single muscle fibre to whole muscle mechanics. Pflugers Arch 2023; 475:421-435. [PMID: 36790515 PMCID: PMC10011336 DOI: 10.1007/s00424-023-02794-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/16/2023]
Abstract
Eccentric muscle loading encompasses several unique features compared to other types of contractions. These features include increased force, work, and performance at decreased oxygen consumption, reduced metabolic cost, improved energy efficiency, as well as decreased muscle activity. This review summarises explanatory approaches to long-standing questions in terms of muscular contraction dynamics and molecular and cellular mechanisms underlying eccentric muscle loading. Moreover, this article intends to underscore the functional link between sarcomeric components, emphasising the fundamental role of titin in skeletal muscle. The giant filament titin reveals versatile functions ranging from sarcomere organisation and maintenance, providing passive tension and elasticity, and operates as a mechanosensory and signalling platform. Structurally, titin consists of a viscoelastic spring segment that allows activation-dependent coupling to actin. This titin-actin interaction can explain linear force increases in active lengthening experiments in biological systems. A three-filament model of skeletal muscle force production (mediated by titin) is supposed to overcome significant deviations between experimental observations and predictions by the classic sliding-filament and cross-bridge theories. Taken together, this review intends to contribute to a more detailed understanding of overall muscle behaviour and force generation-from a microscopic sarcomere level to a macroscopic multi-joint muscle level-impacting muscle modelling, the understanding of muscle function, and disease.
Collapse
Affiliation(s)
- André Tomalka
- Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
8
|
Salhi HE, Shettigar V, Salyer L, Sturgill S, Brundage EA, Robinett J, Xu Z, Abay E, Lowe J, Janssen PML, Rafael-Fortney JA, Weisleder N, Ziolo MT, Biesiadecki BJ. The lack of Troponin I Ser-23/24 phosphorylation is detrimental to in vivo cardiac function and exacerbates cardiac disease. J Mol Cell Cardiol 2023; 176:84-96. [PMID: 36724829 PMCID: PMC10074981 DOI: 10.1016/j.yjmcc.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/11/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023]
Abstract
Troponin I (TnI) is a key regulator of cardiac contraction and relaxation with TnI Ser-23/24 phosphorylation serving as a myofilament mechanism to modulate cardiac function. Basal cardiac TnI Ser-23/24 phosphorylation is high such that both increased and decreased TnI phosphorylation may modulate cardiac function. While the effects of increasing TnI Ser-23/24 phosphorylation on heart function are well established, the effects of decreasing TnI Ser-23/24 phosphorylation are not clear. To understand the in vivo role of decreased TnI Ser-23/24 phosphorylation, mice expressing TnI with Ser-23/24 mutated to alanine (TnI S23/24A) that lack the ability to be phosphorylated at these residues were subjected to echocardiography and pressure-volume hemodynamic measurements in the absence or presence of physiological (pacing increasing heart rate or adrenergic stimulation) or pathological (transverse aortic constriction (TAC)) stress. In the absence of pathological stress, the lack of TnI Ser-23/24 phosphorylation impaired systolic and diastolic function. TnI S23/24A mice also had an impaired systolic and diastolic response upon stimulation increased heart rate and an impaired adrenergic response upon dobutamine infusion. Following pathological cardiac stress induced by TAC, TnI S23/24A mice had a greater increase in ventricular mass, worse diastolic function, and impaired systolic and diastolic function upon increasing heart rate. These findings demonstrate that mice lacking the ability to phosphorylate TnI at Ser-23/24 have impaired in vivo systolic and diastolic cardiac function, a blunted cardiac reserve and a worse response to pathological stress supporting decreased TnI Ser23/24 phosphorylation is a modulator of these processes in vivo.
Collapse
Affiliation(s)
- Hussam E Salhi
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Vikram Shettigar
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Lorien Salyer
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Sarah Sturgill
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Elizabeth A Brundage
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Joel Robinett
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Zhaobin Xu
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Eaman Abay
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Jeovanna Lowe
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Paul M L Janssen
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Jill A Rafael-Fortney
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Noah Weisleder
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Mark T Ziolo
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America.
| |
Collapse
|
9
|
Sevrieva IR, Ponnam S, Yan Z, Irving M, Kampourakis T, Sun YB. Phosphorylation-dependent interactions of myosin-binding protein C and troponin coordinate the myofilament response to protein kinase A. J Biol Chem 2023; 299:102767. [PMID: 36470422 PMCID: PMC9826837 DOI: 10.1016/j.jbc.2022.102767] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
PKA-mediated phosphorylation of sarcomeric proteins enhances heart muscle performance in response to β-adrenergic stimulation and is associated with accelerated relaxation and increased cardiac output for a given preload. At the cellular level, the latter translates to a greater dependence of Ca2+ sensitivity and maximum force on sarcomere length (SL), that is, enhanced length-dependent activation. However, the mechanisms by which PKA phosphorylation of the most notable sarcomeric PKA targets, troponin I (cTnI) and myosin-binding protein C (cMyBP-C), lead to these effects remain elusive. Here, we specifically altered the phosphorylation level of cTnI in heart muscle cells and characterized the structural and functional effects at different levels of background phosphorylation of cMyBP-C and with two different SLs. We found Ser22/23 bisphosphorylation of cTnI was indispensable for the enhancement of length-dependent activation by PKA, as was cMyBP-C phosphorylation. This high level of coordination between cTnI and cMyBP-C may suggest coupling between their regulatory mechanisms. Further evidence for this was provided by our finding that cardiac troponin (cTn) can directly interact with cMyBP-C in vitro, in a phosphorylation- and Ca2+-dependent manner. In addition, bisphosphorylation at Ser22/Ser23 increased Ca2+ sensitivity at long SL in the presence of endogenously phosphorylated cMyBP-C. When cMyBP-C was dephosphorylated, bisphosphorylation of cTnI increased Ca2+ sensitivity and decreased cooperativity at both SLs, which may translate to deleterious effects in physiological settings. Our results could have clinical relevance for disease pathways, where PKA phosphorylation of cTnI may be functionally uncoupled from cMyBP-C phosphorylation due to mutations or haploinsufficiency.
Collapse
Affiliation(s)
- Ivanka R Sevrieva
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom.
| | - Saraswathi Ponnam
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Ziqian Yan
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Yin-Biao Sun
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| |
Collapse
|
10
|
Koser F, Hobbach AJ, Abdellatif M, Herbst V, Türk C, Reinecke H, Krüger M, Sedej S, Linke WA. Acetylation and phosphorylation changes to cardiac proteins in experimental HFpEF due to metabolic risk reveal targets for treatment. Life Sci 2022; 309:120998. [PMID: 36179815 DOI: 10.1016/j.lfs.2022.120998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/24/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022]
Abstract
AIMS Despite the high prevalence of heart failure with preserved ejection fraction (HFpEF), the pathomechanisms remain elusive and specific therapy is lacking. Disease-causing factors include metabolic risk, notably obesity. However, proteomic changes in HFpEF are poorly understood, hampering therapeutic strategies. We sought to elucidate how metabolic syndrome affects cardiac protein expression, phosphorylation and acetylation in the Zucker diabetic fatty/Spontaneously hypertensive heart failure F1 (ZSF1) rat HFpEF model, and to evaluate changes regarding their potential for treatment. MAIN METHODS ZSF1 obese and lean rats were fed a Purina diet up to the onset of HFpEF in the obese animals. We quantified the proteome, phosphoproteome and acetylome of ZSF1 obese versus lean heart tissues by mass spectrometry and singled out targets for site-specific evaluation. KEY FINDINGS The acetylome of ZSF1 obese versus lean hearts was more severely altered (21 % of proteins changed) than the phosphoproteome (9 %) or proteome (3 %). Proteomic alterations, confirmed by immunoblotting, indicated low-grade systemic inflammation and endothelial remodeling in obese hearts, but low nitric oxide-dependent oxidative/nitrosative stress. Altered acetylation in ZSF1 obese hearts mainly affected pathways important for metabolism, energy production and mechanical function, including hypo-acetylation of mechanical proteins but hyper-acetylation of proteins regulating fatty acid metabolism. Hypo-acetylation and hypo-phosphorylation of elastic titin in ZSF1 obese hearts could explain myocardial stiffening. SIGNIFICANCE Cardiometabolic syndrome alters posttranslational modifications, notably acetylation, in experimental HFpEF. Pathway changes implicate a HFpEF signature of low-grade inflammation, endothelial dysfunction, metabolic and mechanical impairment, and suggest titin stiffness and mitochondrial metabolism as promising therapeutic targets.
Collapse
Affiliation(s)
- Franziska Koser
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Anastasia J Hobbach
- Department of Cardiology I, Coronary, Peripheral Vascular Disease and Heart Failure, University Hospital Münster, Münster, Germany
| | | | - Viktoria Herbst
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Clara Türk
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging- Associated Diseases, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Holger Reinecke
- Department of Cardiology I, Coronary, Peripheral Vascular Disease and Heart Failure, University Hospital Münster, Münster, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging- Associated Diseases, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Münster, Münster, Germany.
| |
Collapse
|
11
|
Valero-Muñoz M, Saw EL, Hekman RM, Blum BC, Hourani Z, Granzier H, Emili A, Sam F. Proteomic and phosphoproteomic profiling in heart failure with preserved ejection fraction (HFpEF). Front Cardiovasc Med 2022; 9:966968. [PMID: 36093146 PMCID: PMC9452734 DOI: 10.3389/fcvm.2022.966968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Although the prevalence of heart failure with preserved ejection fraction (HFpEF) is increasing, evidence-based therapies for HFpEF remain limited, likely due to an incomplete understanding of this disease. This study sought to identify the cardiac-specific features of protein and phosphoprotein changes in a murine model of HFpEF using mass spectrometry. HFpEF mice demonstrated moderate hypertension, left ventricle (LV) hypertrophy, lung congestion and diastolic dysfunction. Proteomics analysis of the LV tissue showed that 897 proteins were differentially expressed between HFpEF and Sham mice. We observed abundant changes in sarcomeric proteins, mitochondrial-related proteins, and NAD-dependent protein deacetylase sirtuin-3 (SIRT3). Upregulated pathways by GSEA analysis were related to immune modulation and muscle contraction, while downregulated pathways were predominantly related to mitochondrial metabolism. Western blot analysis validated SIRT3 downregulated cardiac expression in HFpEF vs. Sham (0.8 ± 0.0 vs. 1.0 ± 0.0; P < 0.001). Phosphoproteomics analysis showed that 72 phosphosites were differentially regulated between HFpEF and Sham LV. Aberrant phosphorylation patterns mostly occurred in sarcomere proteins and nuclear-localized proteins associated with contractile dysfunction and cardiac hypertrophy. Seven aberrant phosphosites were observed at the z-disk binding region of titin. Additional agarose gel analysis showed that while total titin cardiac expression remained unaltered, its stiffer N2B isoform was significantly increased in HFpEF vs. Sham (0.144 ± 0.01 vs. 0.127 ± 0.01; P < 0.05). In summary, this study demonstrates marked changes in proteins related to mitochondrial metabolism and the cardiac contractile apparatus in HFpEF. We propose that SIRT3 may play a role in perpetuating these changes and may be a target for drug development in HFpEF.
Collapse
Affiliation(s)
- María Valero-Muñoz
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Eng Leng Saw
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Ryan M. Hekman
- Department of Biology, Boston University, Boston, MA, United States
- Department of Biochemistry, Cell Biology and Genomics, Boston University, Boston, MA, United States
| | - Benjamin C. Blum
- Department of Biochemistry, Cell Biology and Genomics, Boston University, Boston, MA, United States
- Center for Network Systems Biology, Boston University, Boston, MA, United States
| | - Zaynab Hourani
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, United States
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, United States
| | - Andrew Emili
- Department of Biology, Boston University, Boston, MA, United States
- Department of Biochemistry, Cell Biology and Genomics, Boston University, Boston, MA, United States
| | - Flora Sam
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
12
|
Querceto S, Santoro R, Gowran A, Grandinetti B, Pompilio G, Regnier M, Tesi C, Poggesi C, Ferrantini C, Pioner JM. The harder the climb the better the view: The impact of substrate stiffness on cardiomyocyte fate. J Mol Cell Cardiol 2022; 166:36-49. [PMID: 35139328 PMCID: PMC11270945 DOI: 10.1016/j.yjmcc.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/22/2021] [Accepted: 02/02/2022] [Indexed: 12/27/2022]
Abstract
The quest for novel methods to mature human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for cardiac regeneration, modelling and drug testing has emphasized a need to create microenvironments with physiological features. Many studies have reported on how cardiomyocytes sense substrate stiffness and adapt their morphological and functional properties. However, these observations have raised new biological questions and a shared vision to translate it into a tissue or organ context is still elusive. In this review, we will focus on the relevance of substrates mimicking cardiac extracellular matrix (cECM) rigidity for the understanding of the biomechanical crosstalk between the extracellular and intracellular environment. The ability to opportunely modulate these pathways could be a key to regulate in vitro hiPSC-CM maturation. Therefore, both hiPSC-CM models and substrate stiffness appear as intriguing tools for the investigation of cECM-cell interactions. More understanding of these mechanisms may provide novel insights on how cECM affects cardiac cell function in the context of genetic cardiomyopathies.
Collapse
Affiliation(s)
- Silvia Querceto
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Rosaria Santoro
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy; Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy
| | - Aoife Gowran
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Bruno Grandinetti
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, FI, Italy
| | - Giulio Pompilio
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Chiara Tesi
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Corrado Poggesi
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Cecilia Ferrantini
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Josè Manuel Pioner
- Department of Biology, Università degli Studi di Firenze, Florence, Italy.
| |
Collapse
|
13
|
van der Pijl RJ, Domenighetti AA, Sheikh F, Ehler E, Ottenheijm CAC, Lange S. The titin N2B and N2A regions: biomechanical and metabolic signaling hubs in cross-striated muscles. Biophys Rev 2021; 13:653-677. [PMID: 34745373 PMCID: PMC8553726 DOI: 10.1007/s12551-021-00836-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Muscle specific signaling has been shown to originate from myofilaments and their associated cellular structures, including the sarcomeres, costameres or the cardiac intercalated disc. Two signaling hubs that play important biomechanical roles for cardiac and/or skeletal muscle physiology are the N2B and N2A regions in the giant protein titin. Prominent proteins associated with these regions in titin are chaperones Hsp90 and αB-crystallin, members of the four-and-a-half LIM (FHL) and muscle ankyrin repeat protein (Ankrd) families, as well as thin filament-associated proteins, such as myopalladin. This review highlights biological roles and properties of the titin N2B and N2A regions in health and disease. Special emphasis is placed on functions of Ankrd and FHL proteins as mechanosensors that modulate muscle-specific signaling and muscle growth. This region of the sarcomere also emerged as a hotspot for the modulation of passive muscle mechanics through altered titin phosphorylation and splicing, as well as tethering mechanisms that link titin to the thin filament system.
Collapse
Affiliation(s)
| | - Andrea A. Domenighetti
- Shirley Ryan AbilityLab, Chicago, IL USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL USA
| | - Farah Sheikh
- Division of Cardiology, School of Medicine, UC San Diego, La Jolla, CA USA
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Cardiovascular Medicine and Sciences, King’s College London, London, UK
| | - Coen A. C. Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ USA
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Stephan Lange
- Division of Cardiology, School of Medicine, UC San Diego, La Jolla, CA USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Guo W, Zhu C, Yin Z, Zhang Y, Wang C, Walk AS, Lin Y, McKinsey TA, Woulfe KC, Ren J, Chew HG. The ryanodine receptor stabilizer S107 ameliorates contractility of adult Rbm20 knockout rat cardiomyocytes. Physiol Rep 2021; 9:e15011. [PMID: 34523260 PMCID: PMC8440945 DOI: 10.14814/phy2.15011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 02/07/2023] Open
Abstract
RNA binding motif 20 (RBM20) cardiomyopathy has been detected in approximately 3% of populations afflicted with dilated cardiomyopathy (DCM). It is well conceived that RBM20 cardiomyopathy is provoked by titin isoform switching in combination with resting Ca2+ leaking. In this study, we characterized the cardiac function in Rbm20 knockout (KO) rats at 3-, 6-, 9-, and 12-months of age and examined the effect of the ryanodine receptor stabilizer S107 on resting intracellular levels and cardiomyocyte contractile properties. Our results revealed that even though Rbm20 depletion promoted expression of larger titin isoform and reduced myocardial stiffness in young rats (3 months of age), the established DCM phenotype required more time to embellish. S107 restored elevated intracellular Ca2+ to normal levels and ameliorated cardiomyocyte contractile properties in isolated cardiomyocytes from 6-month-old Rbm20 KO rats. However, S107 failed to preserve cardiac homeostasis in Rbm20 KO rats at 12 months of age, unexpectedly, likely due to the existence of multiple pathogenic mechanisms. Taken together, our data suggest the therapeutic promises of S107 in the management of RBM20 cardiomyopathy.
Collapse
Affiliation(s)
- Wei Guo
- Department of Animal and Dairy SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Chaoqun Zhu
- Department of Animal ScienceUniversity of WyomingLaramieWyomingUSA
- Department of PharmacologyUniversity of CaliforniaDavisCalifornia95616USA
| | - Zhiyong Yin
- Department of Animal ScienceUniversity of WyomingLaramieWyomingUSA
- Department of Cardiovascular MedicineXijing HospitalFourth Military Medical University15 Changle West RoadXi'anShanxiChina
| | - Yanghai Zhang
- Department of Animal and Dairy SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Chunyan Wang
- Department of Animal and Dairy SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - Ying‐Hsi Lin
- Division of Cardiology, and Consortium for Fibrosis Research & TranslationDepartment of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Timothy A. McKinsey
- Division of Cardiology, and Consortium for Fibrosis Research & TranslationDepartment of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Kathleen C. Woulfe
- Division of Cardiology, and Consortium for Fibrosis Research & TranslationDepartment of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Jun Ren
- School of PharmacyUniversity of WyomingLaramieWyomingUSA
| | - Herbert G. Chew
- Department of BiologyWestern Wyoming CollegeRock SpringsWyomingUSA
| |
Collapse
|
15
|
van der Pijl RJ, van den Berg M, van de Locht M, Shen S, Bogaards SJP, Conijn S, Langlais P, Hooijman PE, Labeit S, Heunks LMA, Granzier H, Ottenheijm CAC. Muscle ankyrin repeat protein 1 (MARP1) locks titin to the sarcomeric thin filament and is a passive force regulator. J Gen Physiol 2021; 153:212403. [PMID: 34152365 PMCID: PMC8222902 DOI: 10.1085/jgp.202112925] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
Muscle ankyrin repeat protein 1 (MARP1) is frequently up-regulated in stressed muscle, but its effect on skeletal muscle function is poorly understood. Here, we focused on its interaction with the titin–N2A element, found in titin’s molecular spring region. We show that MARP1 binds to F-actin, and that this interaction is stronger when MARP1 forms a complex with titin–N2A. Mechanics and super-resolution microscopy revealed that MARP1 “locks” titin–N2A to the sarcomeric thin filament, causing increased extension of titin’s elastic PEVK element and, importantly, increased passive force. In support of this mechanism, removal of thin filaments abolished the effect of MARP1 on passive force. The clinical relevance of this mechanism was established in diaphragm myofibers of mechanically ventilated rats and of critically ill patients. Thus, MARP1 regulates passive force by locking titin to the thin filament. We propose that in stressed muscle, this mechanism protects the sarcomere from mechanical damage.
Collapse
Affiliation(s)
- Robbert J van der Pijl
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Department of Cellular and Molecular Medicine, University of Arizona, Tuscon, AZ
| | - Marloes van den Berg
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Department of Cellular and Molecular Medicine, University of Arizona, Tuscon, AZ
| | - Martijn van de Locht
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Shengyi Shen
- Department of Cellular and Molecular Medicine, University of Arizona, Tuscon, AZ
| | - Sylvia J P Bogaards
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Stefan Conijn
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Paul Langlais
- Division of Endocrinology, University of Arizona, Tucson, AZ
| | - Pleuni E Hooijman
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Siegfried Labeit
- Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Leo M A Heunks
- Intensive Care Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tuscon, AZ
| | - Coen A C Ottenheijm
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Department of Cellular and Molecular Medicine, University of Arizona, Tuscon, AZ
| |
Collapse
|
16
|
Forer A, Adil A, Berns MW. Blocking Protein Phosphatase 1 [PP1] Prevents Loss of Tether Elasticity in Anaphase Crane-Fly Spermatocytes. Front Mol Biosci 2021; 8:636746. [PMID: 34169091 PMCID: PMC8218814 DOI: 10.3389/fmolb.2021.636746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/16/2021] [Indexed: 11/24/2022] Open
Abstract
In normal anaphase cells, telomeres of each separating chromosome pair are connected to each other by tethers. Tethers are elastic at the start of anaphase: arm fragments cut from anaphase chromosomes in early anaphase move across the equator to the oppositely-moving chromosome, telomere moving toward telomere. Tethers become inelastic later in anaphase as the tethers become longer: arm fragments no longer move to their partners. When early anaphase cells are treated with Calyculin A (CalA), an inhibitor of protein phosphatases 1 (PP1) and 2A (PP2A), at the end of anaphase chromosomes move backward from the poles, with telomeres moving toward partner telomeres. Experiments described herein show that in cells treated with CalA, backwards movements are stopped in a variety of ways, by cutting the tethers of backwards moving chromosomes, by severing arms of backwards moving chromosomes, by severing arms before the chromosomes reach the poles, and by cutting the telomere toward which a chromosome is moving backwards. Measurements of arm-fragment velocities show that CalA prevents tethers from becoming inelastic as they lengthen. Since treatment with CalA causes tethers to remain elastic throughout anaphase and since inhibitors of PP2A do not cause the backwards movements, PP1 activity during anaphase causes the tethers to become inelastic.
Collapse
Affiliation(s)
- Arthur Forer
- Biology Department, York University, Toronto, ON, Canada
| | - Aisha Adil
- Biology Department, York University, Toronto, ON, Canada
| | - Michael W Berns
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, United States.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States.,Department of Surgery, University of California, Irvine, Irvine, CA, United States.,Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States.,Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
17
|
Complex functionality of protein phosphatase 1 isoforms in the heart. Cell Signal 2021; 85:110059. [PMID: 34062239 DOI: 10.1016/j.cellsig.2021.110059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 02/04/2023]
Abstract
Protein phosphatase 1(PP1) is a key regulator of cardiac function through dephosphorylating serine/threonine residues within target proteins to oppose the function of protein kinases. Studies from failing hearts of animal models and human patients have demonstrated significant increase of PP1 activity in myocardium, while elevated PP1 activity in transgenic mice leads to cardiac dysfunction, suggesting that PP1 might be a therapeutic target to ameliorate cardiac dysfunction in failing hearts. In fact, cardiac overexpression of inhibitor 1, the endogenous inhibitor of PP1, increases cardiac contractility and suppresses heart failure progression. However, this notion of PP1 inhibition for heart failure treatment has been challenged by recent studies on the isoform-specific roles of PP1 in the heart. PP1 is a holoenzyme composed of catalytic subunits (PP1α, PP1β, or PP1γ) and regulatory proteins that target them to distinct subcellular locations for functional specificity. This review will summarize how PP1 regulates phosphorylation of some of the key cardiac proteins involved in Ca2+ handling and cardiac contraction, and the potential role of PP1 isoforms in controlling cardiac physiology and pathophysiology.
Collapse
|
18
|
Solís C, Solaro RJ. Novel insights into sarcomere regulatory systems control of cardiac thin filament activation. J Gen Physiol 2021; 153:211903. [PMID: 33740037 PMCID: PMC7988513 DOI: 10.1085/jgp.202012777] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Our review focuses on sarcomere regulatory mechanisms with a discussion of cardiac-specific modifications to the three-state model of thin filament activation from a blocked to closed to open state. We discuss modulation of these thin filament transitions by Ca2+, by crossbridge interactions, and by thick filament–associated proteins, cardiac myosin–binding protein C (cMyBP-C), cardiac regulatory light chain (cRLC), and titin. Emerging evidence supports the idea that the cooperative activation of the thin filaments despite a single Ca2+ triggering regulatory site on troponin C (cTnC) cannot be considered in isolation of other functional domains of the sarcomere. We discuss long- and short-range interactions among these domains with the regulatory units of thin filaments, including proteins at the barbed end at the Z-disc and the pointed end near the M-band. Important to these discussions is the ever-increasing understanding of the role of cMyBP-C, cRLC, and titin filaments. Detailed knowledge of these control processes is critical to the understanding of mechanisms sustaining physiological cardiac state with varying hemodynamic load, to better defining genetic and acquired cardiac disorders, and to developing targets for therapies at the level of the sarcomeres.
Collapse
Affiliation(s)
- Christopher Solís
- University of Illinois at Chicago, College of Medicine, Department of Physiology and Biophysics and Center for Cardiovascular Research, Chicago, IL
| | - R John Solaro
- University of Illinois at Chicago, College of Medicine, Department of Physiology and Biophysics and Center for Cardiovascular Research, Chicago, IL
| |
Collapse
|
19
|
Methawasin M, Granzier H. Response by Methawasin and Granzier to Letter Regarding Article, "Phosphodiesterase 9a Inhibition in Mouse Models of Diastolic Dysfunction". Circ Heart Fail 2021; 14:e007755. [PMID: 33464951 DOI: 10.1161/circheartfailure.120.007755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mei Methawasin
- Department of Cellular and Molecular Medicine, Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona
| |
Collapse
|
20
|
Ovchinnikov AG, Ageev FT, Alekhin MN, Belenkov YN, Vasyuk YA, Galyavich AS, Gilyarevskiy SR, Lopatin YM, Mareev VY, Mareev YV, Mitkov VV, Potekhina AV, Prostakova TS, Rybakova MK, Saidova MA, Khadzegova AB, Chernov MY, Yuschuk EN, Boytsov SA. [The role of diastolic transthoracic stress echocardiography with incremental workload in the evaluation of heart failure with preserved ejection fraction: indications, methodology, interpretation. Expert consensus developed under the auspices of the National Medical Research Center of Cardiology, Society of Experts in Heart Failure (SEHF), and Russian Association of Experts in Ultrasound Diagnosis in Medicine (REUDM)]. ACTA ACUST UNITED AC 2021; 60:48-63. [PMID: 33522468 DOI: 10.18087/cardio.2020.12.n1219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 11/18/2022]
Abstract
Diagnosis of heart failure with preserved ejection fraction (HFpEF) is associated with certain difficulties since many patients with HFpEF have a slight left ventricular diastolic dysfunction and normal filling pressure at rest. Diagnosis of HFpEF is improved by using diastolic transthoracic stress-echocardiography with dosed exercise (or diastolic stress test), which allows detection of increased filling pressure during the exercise. The present expert consensus explains the requirement for using the diastolic stress test in diagnosing HFpEF from clinical and pathophysiological standpoints; defines indications for the test with a description of its methodological aspects; and addresses issues of using the test in special patient groups.
Collapse
Affiliation(s)
- A G Ovchinnikov
- National medical research center of cardiology, Moscow A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - F T Ageev
- National medical research center of cardiology, Moscow, Russia
| | - M N Alekhin
- Central State Medical Academy of the Presidential Administration of Russian Federation, Moscow, Russia
| | - Yu N Belenkov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yu A Vasyuk
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | | | - S R Gilyarevskiy
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Y M Lopatin
- Volgograd State Medical University, Volgograd, Russia Volgograd regional clinical cardiology center, Volgograd, Russia
| | - V Yu Mareev
- Lomonosov Moscow State University, Moscow, Russia
| | - Yu V Mareev
- National Research Center for Therapy and Preventive Medicine, Moscow, Russia Robertson Centre for Biostatistics, Glasgow, Great Britain
| | - V V Mitkov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Potekhina
- National medical research center of cardiology, Moscow, Russia
| | - T S Prostakova
- National medical research center of cardiology, Moscow, Russia
| | - M K Rybakova
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - M A Saidova
- National medical research center of cardiology, Moscow, Russia
| | - A B Khadzegova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M Yu Chernov
- N.N. Burdenko Main Military Clinical Hospital, Moscow, Russia
| | - E N Yuschuk
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - S A Boytsov
- National medical research center of cardiology, Moscow, Russia
| |
Collapse
|
21
|
Kite E, Forer A. The role of phosphorylation in the elasticity of the tethers that connect telomeres of separating anaphase chromosomes. Nucleus 2020; 11:19-31. [PMID: 31948316 PMCID: PMC6973318 DOI: 10.1080/19491034.2019.1710329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Elastic tethers, connecting telomeres of all separating anaphase chromosome pairs, lose elasticity when they lengthen during anaphase. Treatment with phosphatase inhibitor CalyculinA causes anaphase chromosomes to move backwards after they reach the poles, suggesting that dephosphorylation causes loss of tether elasticity. We added 50nM CalyculinA to living anaphase crane-fly spermatocytes with different length tethers. When tethers were short, almost all partner chromosomes moved backwards after nearing the poles. When tethers were longer, fewer chromosomes moved backwards. With yet longer tethers none moved backward. This is consistent with tether elasticity being lost by dephosphorylation. 50nM CalyculinA blocks both PP1 and PP2A. To distinguish between PP1 and PP2A we treated cells with short tethers with 50nM okadaic acid which blocks solely PP2A, or with 1µM okadaic acid which blocks both PP1 and PP2A. Only 1µM okadaic acid caused chromosomes to move backward. Thus, tether elasticity is lost because of dephosphorylation by PP1.
Collapse
Affiliation(s)
- Emma Kite
- Biology Department, York University, Toronto, Ontario, Canada
| | - Arthur Forer
- Biology Department, York University, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Ovchinnikov AG, Gvozdeva AD, Blankova ZN, Borisov AA, Ageev FT. The Role of Neprilysin Inhibitors in the Treatment of Heart Failure with Preserved Ejection Fraction. ACTA ACUST UNITED AC 2020; 60:1352. [PMID: 33487158 DOI: 10.18087/cardio.2020.11.n1352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/23/2020] [Indexed: 11/18/2022]
Abstract
Clinical and hemodynamic aggravation of heart failure with preserved ejection fraction (HFpEF) is largely due to progression of left ventricular (LV) diastolic dysfunction. The key role in the normal maintenance of diastolic function is played by a high level of activity of the intracellular signaling axis, cyclic guanosine-monophosphate-protein kinase G, the activity of which is significantly reduced in HFpEF. The activity of this axis can be increased by increasing the bioavailability of natriuretic peptides by blocking the enzyme neutral endopeptidase (neprilisin), which is responsible for the destruction of natriuretic peptides.This review presents experimental and clinical data on the use of neprilysin inhibitors in HFpEF and addresses prospects of this treatment.
Collapse
Affiliation(s)
| | - A D Gvozdeva
- National Medical Research Center of Cardiology, Moscow
| | - Z N Blankova
- National Medical Research Center of Cardiology, Moscow
| | - A A Borisov
- National Medical Research Center of Cardiology, Moscow
| | - F T Ageev
- National Medical Research Center of Cardiology, Moscow
| |
Collapse
|
23
|
Campbell KS, Chrisman BS, Campbell SG. Multiscale Modeling of Cardiovascular Function Predicts That the End-Systolic Pressure Volume Relationship Can Be Targeted via Multiple Therapeutic Strategies. Front Physiol 2020; 11:1043. [PMID: 32973561 PMCID: PMC7466769 DOI: 10.3389/fphys.2020.01043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 07/29/2020] [Indexed: 01/01/2023] Open
Abstract
Most patients who develop heart failure are unable to elevate their cardiac output on demand due to impaired contractility and/or reduced ventricular filling. Despite decades of research, few effective therapies for heart failure have been developed. In part, this may reflect the difficulty of predicting how perturbations to molecular-level mechanisms that are induced by drugs will scale up to modulate system-level properties such as blood pressure. Computer modeling might help with this process and thereby accelerate the development of better therapies for heart failure. This manuscript presents a new multiscale model that uses a single contractile element to drive an idealized ventricle that pumps blood around a closed circulation. The contractile element was formed by linking an existing model of dynamically coupled myofilaments with a well-established model of myocyte electrophysiology. The resulting framework spans from molecular-level events (including opening of ion channels and transitions between different myosin states) to properties such as ejection fraction that can be measured in patients. Initial calculations showed that the model reproduces many aspects of normal cardiovascular physiology including, for example, pressure-volume loops. Subsequent sensitivity tests then quantified how each model parameter influenced a range of system level properties. The first key finding was that the End Systolic Pressure Volume Relationship, a classic index of cardiac contractility, was ∼50% more sensitive to parameter changes than any other system-level property. The second important result was that parameters that primarily affect ventricular filling, such as passive stiffness and Ca2+ reuptake via sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), also have a major impact on systolic properties including stroke work, myosin ATPase, and maximum ventricular pressure. These results reinforce the impact of diastolic function on ventricular performance and identify the End Systolic Pressure Volume Relationship as a particularly sensitive system-level property that can be targeted using multiple therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth S Campbell
- Division of Cardiovascular Medicine, Department of Physiology, University of Kentucky, Lexington, KY, United States
| | | | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| |
Collapse
|
24
|
Modifications of Titin Contribute to the Progression of Cardiomyopathy and Represent a Therapeutic Target for Treatment of Heart Failure. J Clin Med 2020; 9:jcm9092770. [PMID: 32859027 PMCID: PMC7564493 DOI: 10.3390/jcm9092770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Titin is the largest human protein and an essential component of the cardiac sarcomere. With multiple immunoglobulin(Ig)-like domains that serve as molecular springs, titin contributes significantly to the passive tension, systolic function, and diastolic function of the heart. Mutations leading to early termination of titin are the most common genetic cause of dilated cardiomyopathy. Modifications of titin, which change protein length, and relative stiffness affect resting tension of the ventricle and are associated with acquired forms of heart failure. Transcriptional and post-translational changes that increase titin’s length and extensibility, making the sarcomere longer and softer, are associated with systolic dysfunction and left ventricular dilation. Modifications of titin that decrease its length and extensibility, making the sarcomere shorter and stiffer, are associated with diastolic dysfunction in animal models. There has been significant progress in understanding the mechanisms by which titin is modified. As molecular pathways that modify titin’s mechanical properties are elucidated, they represent therapeutic targets for treatment of both systolic and diastolic dysfunction. In this article, we review titin’s contribution to normal cardiac physiology, the pathophysiology of titin truncation variations leading to dilated cardiomyopathy, and transcriptional and post-translational modifications of titin. Emphasis is on how modification of titin can be utilized as a therapeutic target for treatment of heart failure.
Collapse
|
25
|
Sirtuin 3, Endothelial Metabolic Reprogramming, and Heart Failure With Preserved Ejection Fraction. J Cardiovasc Pharmacol 2020; 74:315-323. [PMID: 31425381 DOI: 10.1097/fjc.0000000000000719] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The incidences of heart failure with preserved ejection fraction (HFpEF) are increased in aged populations as well as diabetes and hypertension. Coronary microvascular dysfunction has contributed to the development of HFpEF. Endothelial cells (ECs) depend on glycolysis rather than oxidative phosphorylation for generating adenosine triphosphate to maintain vascular homeostasis. Glycolytic metabolism has a critical role in the process of angiogenesis, because ECs rely on the energy produced predominantly from glycolysis for migration and proliferation. Sirtuin 3 (SIRT3) is found predominantly in mitochondria and its expression declines progressively with aging, diabetes, obesity, and hypertension. Emerging evidence indicates that endothelial SIRT3 regulates a metabolic switch between glycolysis and mitochondrial respiration. SIRT3 deficiency in EC resulted in a significant decrease in glycolysis, whereas, it exhibited higher mitochondrial respiration and more prominent production of reactive oxygen species. SIRT3 deficiency also displayed striking increases in acetylation of p53, EC apoptosis, and senescence. Impairment of SIRT3-mediated EC metabolism may lead to a disruption of EC/pericyte/cardiomyocyte communications and coronary microvascular rarefaction, which promotes cardiomyocyte hypoxia, Titin-based cardiomyocyte stiffness, and myocardial fibrosis, thus leading to a diastolic dysfunction and HFpEF. This review summarizes current knowledge of SIRT3 in EC metabolic reprograming, EC/pericyte interactions, coronary microvascular dysfunction, and HFpEF.
Collapse
|
26
|
van der Pijl RJ, Hudson B, Granzier-Nakajima T, Li F, Knottnerus AM, Smith J, Chung CS, Gotthardt M, Granzier HL, Ottenheijm CAC. Deleting Titin's C-Terminal PEVK Exons Increases Passive Stiffness, Alters Splicing, and Induces Cross-Sectional and Longitudinal Hypertrophy in Skeletal Muscle. Front Physiol 2020; 11:494. [PMID: 32547410 PMCID: PMC7274174 DOI: 10.3389/fphys.2020.00494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
The Proline, Glutamate, Valine and Lysine-rich (PEVK) region of titin constitutes an entropic spring that provides passive tension to striated muscle. To study the functional and structural repercussions of a small reduction in the size of the PEVK region, we investigated skeletal muscles of a mouse with the constitutively expressed C-terminal PEVK exons 219-225 deleted, the TtnΔ219-225 model (MGI: TtnTM 2.1Mgot ). Based on this deletion, passive tension in skeletal muscle was predicted to be increased by ∼17% (sarcomere length 3.0 μm). In contrast, measured passive tension (sarcomere length 3.0 μm) in both soleus and EDL muscles was increased 53 ± 11% and 62 ± 4%, respectively. This unexpected increase was due to changes in titin, not to alterations in the extracellular matrix, and is likely caused by co-expression of two titin isoforms in TtnΔ219-225 muscles: a larger isoform that represents the TtnΔ219-225 N2A titin and a smaller isoform, referred to as N2A2. N2A2 represents a splicing adaption with reduced expression of spring element exons, as determined by titin exon microarray analysis. Maximal tetanic tension was increased in TtnΔ219-225 soleus muscle (WT 240 ± 9; TtnΔ219-225 276 ± 17 mN/mm2), but was reduced in EDL muscle (WT 315 ± 9; TtnΔ219-225 280 ± 14 mN/mm2). The changes in active tension coincided with a switch toward slow fiber types and, unexpectedly, faster kinetics of tension generation and relaxation. Functional overload (FO; ablation) and hindlimb suspension (HS; unloading) experiments were also conducted. TtnΔ219-225 mice showed increases in both longitudinal hypertrophy (increased number of sarcomeres in series) and cross-sectional hypertrophy (increased number of sarcomeres in parallel) in response to FO and attenuated cross-sectional atrophy in response to HS. In summary, slow- and fast-twitch muscles in a mouse model devoid of titin's PEVK exons 219-225 have high passive tension, due in part to alterations elsewhere in splicing of titin's spring region, increased kinetics of tension generation and relaxation, and altered trophic responses to both functional overload and unloading. This implicates titin's C-terminal PEVK region in regulating passive and active muscle mechanics and muscle plasticity.
Collapse
Affiliation(s)
- Robbert J van der Pijl
- Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States.,Department of Physiology, Amsterdam UMC, Amsterdam, Netherlands
| | - Brian Hudson
- Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | | | - Frank Li
- Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Anne M Knottnerus
- Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - John Smith
- Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Charles S Chung
- Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States.,Department of Physiology, Wayne State University, Detroit, MI, United States
| | - Michael Gotthardt
- Max-Delbruck-Center for Molecular Medicine, Berlin, Germany.,Cardiology, Virchow Klinikum, Charité University Medicine, Berlin, Germany
| | - Henk L Granzier
- Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Coen A C Ottenheijm
- Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States.,Department of Physiology, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
27
|
Implications of the complex biology and micro-environment of cardiac sarcomeres in the use of high affinity troponin antibodies as serum biomarkers for cardiac disorders. J Mol Cell Cardiol 2020; 143:145-158. [PMID: 32442660 PMCID: PMC7235571 DOI: 10.1016/j.yjmcc.2020.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023]
Abstract
Cardiac troponin I (cTnI), the inhibitory-unit, and cardiac troponin T (cTnT), the tropomyosin-binding unit together with the Ca-binding unit (cTnC) of the hetero-trimeric troponin complex signal activation of the sarcomeres of the adult cardiac myocyte. The unique structure and heart myocyte restricted expression of cTnI and cTnT led to their worldwide use as biomarkers for acute myocardial infarction (AMI) beginning more than 30 years ago. Over these years, high sensitivity antibodies (hs-cTnI and hs-cTnT) have been developed. Together with careful determination of history, physical examination, and EKG, determination of serum levels using hs-cTnI and hs-cTnT permits risk stratification of patients presenting in the Emergency Department (ED) with chest pain. With the ability to determine serum levels of these troponins with high sensitivity came the question of whether such measurements may be of diagnostic and prognostic value in conditions beyond AMI. Moreover, the finding of elevated serum troponins in physiological states such as exercise and pathological states where cardiac myocytes may be affected requires understanding of how troponins may be released into the blood and whether such release may be benign. We consider these questions by relating membrane stability to the complex biology of troponin with emphasis on its sensitivity to the chemo-mechanical and micro-environment of the cardiac myocyte. We also consider the role determinations of serum troponins play in the precise phenotyping in personalized and precision medicine approaches to promote cardiac health. Serum levels of cardiac TnI and cardiac TnT permit stratification of patients with chest pain. Release of troponins into blood involves not only frank necrosis but also programmed necroptosis. Genome wide analysis of serum troponin levels in the general population may be prognostic about cardiovascular health. Significant levels of serum troponins with exhaustive exercise may not be benign. Troponin in serum can lead to important data related to personalized and precision medicine.
Collapse
|
28
|
Fochi S, Lorenzi P, Galasso M, Stefani C, Trabetti E, Zipeto D, Romanelli MG. The Emerging Role of the RBM20 and PTBP1 Ribonucleoproteins in Heart Development and Cardiovascular Diseases. Genes (Basel) 2020; 11:genes11040402. [PMID: 32276354 PMCID: PMC7230170 DOI: 10.3390/genes11040402] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing is a regulatory mechanism essential for cell differentiation and tissue organization. More than 90% of human genes are regulated by alternative splicing events, which participate in cell fate determination. The general mechanisms of splicing events are well known, whereas only recently have deep-sequencing, high throughput analyses and animal models provided novel information on the network of functionally coordinated, tissue-specific, alternatively spliced exons. Heart development and cardiac tissue differentiation require thoroughly regulated splicing events. The ribonucleoprotein RBM20 is a key regulator of the alternative splicing events required for functional and structural heart properties, such as the expression of TTN isoforms. Recently, the polypyrimidine tract-binding protein PTBP1 has been demonstrated to participate with RBM20 in regulating splicing events. In this review, we summarize the updated knowledge relative to RBM20 and PTBP1 structure and molecular function; their role in alternative splicing mechanisms involved in the heart development and function; RBM20 mutations associated with idiopathic dilated cardiovascular disease (DCM); and the consequences of RBM20-altered expression or dysfunction. Furthermore, we discuss the possible application of targeting RBM20 in new approaches in heart therapies.
Collapse
|
29
|
Lanzicher T, Zhou T, Saripalli C, Keschrumrus V, Smith III JE, Mayans O, Sbaizero O, Granzier H. Single-Molecule Force Spectroscopy on the N2A Element of Titin: Effects of Phosphorylation and CARP. Front Physiol 2020; 11:173. [PMID: 32256378 PMCID: PMC7093598 DOI: 10.3389/fphys.2020.00173] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/13/2020] [Indexed: 01/08/2023] Open
Abstract
Titin is a large filamentous protein that forms a sarcomeric myofilament with a molecular spring region that develops force in stretched sarcomeres. The molecular spring has a complex make-up that includes the N2A element. This element largely consists of a 104-residue unique sequence (N2A-Us) flanked by immunoglobulin domains (I80 and I81). The N2A element is of interest because it assembles a signalosome with CARP (Cardiac Ankyrin Repeat Protein) as an important component; CARP both interacts with the N2A-Us and I81 and is highly upregulated in response to mechanical stress. The mechanical properties of the N2A element were studied using single-molecule force spectroscopy, including how these properties are affected by CARP and phosphorylation. Three protein constructs were made that consisted of 0, 1, or 2 N2A-Us elements with flanking I80 and I81 domains and with specific handles at their ends for study by atomic force microscopy (AFM). The N2A-Us behaved as an entropic spring with a persistence length (Lp) of ∼0.35 nm and contour length (Lc) of ∼39 nm. CARP increased the Lp of the N2A-Us and the unfolding force of the Ig domains; force clamp experiments showed that CARP reduced the Ig domain unfolding kinetics. These findings suggest that CARP might function as a molecular chaperone that protects I81 from unfolding when mechanical stress is high. The N2A-Us was found to be a PKA substrate, and phosphorylation was blocked by CARP. Mass spectrometry revealed a PKA phosphosite (Ser-9895 in NP_001254479.2) located at the border between the N2A-Us and I81. AFM studies showed that phosphorylation affected neither the Lp of the N2A-Us nor the Ig domain unfolding force (Funfold). Simulating the force-sarcomere length relation of a single titin molecule containing all spring elements showed that the compliance of the N2A-Us only slightly reduces passive force (1.4%) with an additional small reduction by CARP (0.3%). Thus, it is improbable that the compliance of the N2A element has a mechanical function per se. Instead, it is likely that this compliance has local effects on binding of signaling molecules and that it contributes thereby to strain- and phosphorylation- dependent mechano-signaling.
Collapse
Affiliation(s)
- Thomas Lanzicher
- Department of Cellular & Molecular Medicine, The University of Arizona, Tucson, AZ, United States
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Tiankun Zhou
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Chandra Saripalli
- Department of Cellular & Molecular Medicine, The University of Arizona, Tucson, AZ, United States
| | - Vic Keschrumrus
- Department of Cellular & Molecular Medicine, The University of Arizona, Tucson, AZ, United States
| | - John E. Smith III
- Department of Cellular & Molecular Medicine, The University of Arizona, Tucson, AZ, United States
| | - Olga Mayans
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Henk Granzier
- Department of Cellular & Molecular Medicine, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
30
|
Russell MA. Synemin Redefined: Multiple Binding Partners Results in Multifunctionality. Front Cell Dev Biol 2020; 8:159. [PMID: 32258037 PMCID: PMC7090255 DOI: 10.3389/fcell.2020.00159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Historically synemin has been studied as an intermediate filament protein. However, synemin also binds the type II regulatory (R) subunit α of protein kinase A (PKA) and protein phosphatase type 2A, thus participating in the PKA and phosphoinositide 3-kinase (PI3K)-Akt and signaling pathways. In addition, recent studies using transgenic mice indicate that a significant function of synemin is its role in signaling pathways in various tissues, including the heart. Recent clinical reports have shown that synemin mutations led to multiple cases of dilated cardiomyopathy. Additionally, a single case of the rare condition ulnar-mammary-like syndrome with left ventricular tachycardia due to a mutation in the synemin gene (SYNM) has been reported. Therefore, this review uses these recent studies to provide a new framework for detailed discussions on synemin tissue distribution, binding partners and synemin in disease. Differences between α- and β-synemin are highlighted. The studies presented here indicate that while synemin does function as an intermediate filament protein, it is unique among this large family of proteins as it is also a regulator of signaling pathways and a crosslinker. Also evident is that the dominant function(s) are isoform-, developmental-, and tissue-specific.
Collapse
Affiliation(s)
- Mary A Russell
- Department of Biological Sciences, Kent State University at Trumbull, Warren, OH, United States
| |
Collapse
|
31
|
Ward M, Iskratsch T. Mix and (mis-)match - The mechanosensing machinery in the changing environment of the developing, healthy adult and diseased heart. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118436. [PMID: 30742931 PMCID: PMC7042712 DOI: 10.1016/j.bbamcr.2019.01.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/07/2019] [Accepted: 01/29/2019] [Indexed: 01/01/2023]
Abstract
The composition and the stiffness of cardiac microenvironment change during development and/or in heart disease. Cardiomyocytes (CMs) and their progenitors sense these changes, which decides over the cell fate and can trigger CM (progenitor) proliferation, differentiation, de-differentiation or death. The field of mechanobiology has seen a constant increase in output that also includes a wealth of new studies specific to cardiac or cardiomyocyte mechanosensing. As a result, mechanosensing and transduction in the heart is increasingly being recognised as a main driver of regulating the heart formation and function. Recent work has for instance focused on measuring the molecular, physical and mechanical changes of the cellular environment - as well as intracellular contributors to the passive stiffness of the heart. On the other hand, a variety of new studies shed light into the molecular machinery that allow the cardiomyocytes to sense these properties. Here we want to discuss the recent work on this topic, but also specifically focus on how the different components are regulated at various stages during development, in health or disease in order to highlight changes that might contribute to disease progression and heart failure.
Collapse
Key Words
- cm, cardiomyocytes
- hcm, hypertrophic cardiomyopathy
- dcm, dilated cardiomyopathy
- icm, idiopathic cardiomyopathy
- myh, myosin heavy chain
- tnnt, troponin t
- tnni, troponin i
- afm, atomic force microscope
- mre, magnetic resonance elastography
- swe, ultrasound cardiac shear-wave elastography
- lv, left ventricle
- lox, lysyl oxidase
- loxl, lysyl oxidase like protein
- lh, lysyl hydroxylase
- lys, lysin
- lccs, lysald-derived collagen crosslinks
- hlccs, hylald-derived collagen crosslinks
- pka, protein kinase a
- pkc, protein kinase c
- vash1, vasohibin-1
- svbp, small vasohibin binding protein
- tcp, tubulin carboxypeptidase
- ttl, tubulin tyrosine ligase
- mrtf, myocardin-related transcription factor
- gap, gtpase activating protein
- gef, guanine nucleotide exchange factor
Collapse
Affiliation(s)
- Matthew Ward
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, United Kingdom
| | - Thomas Iskratsch
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, United Kingdom.
| |
Collapse
|
32
|
Angiotensin II Influences Pre-mRNA Splicing Regulation by Enhancing RBM20 Transcription Through Activation of the MAPK/ELK1 Signaling Pathway. Int J Mol Sci 2019; 20:ijms20205059. [PMID: 31614708 PMCID: PMC6829565 DOI: 10.3390/ijms20205059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022] Open
Abstract
RNA binding motif 20 (RBM20) is a key regulator of pre-mRNA splicing of titin and other genes that are associated with cardiac diseases. Hormones, like insulin, triiodothyronine (T3), and angiotensin II (Ang II), can regulate gene-splicing through RBM20, but the detailed mechanism remains unclear. This study was aimed at investigating the signaling mechanism by which hormones regulate pre-mRNA splicing through RBM20. We first examined the role of RBM20 in Z-, I-, and M-band titin splicing at different ages in wild type (WT) and RBM20 knockout (KO) rats using RT-PCR; we found that RBM20 is the predominant regulator of I-band titin splicing at all ages. Then we treated rats with propylthiouracil (PTU), T3, streptozotocin (STZ), and Ang II and evaluated the impact of these hormones on the splicing of titin, LIM domain binding 3 (Ldb3), calcium/calmodulin-dependent protein kinase II gamma (Camk2g), and triadin (Trdn). We determined the activation of mitogen-activated protein kinase (MAPK) signaling in primary cardiomyocytes treated with insulin, T3, and Ang II using western blotting; MAPK signaling was activated and RBM20 expression increased after treatment. Two downstream transcriptional factors c-jun and ETS Transcription Factor (ELK1) can bind the promoter of RBM20. A dual-luciferase activity assay revealed that Ang II, but not insulin and T3, can trigger ELK1 and thus promote transcription of RBM20. This study revealed that Ang II can trigger ELK1 through activation of MAPK signaling by enhancing RBM20 expression which regulates pre-mRNA splicing. Our study provides a potential therapeutic target for the treatment of cardiac diseases in RBM20-mediated pre-mRNA splicing.
Collapse
|
33
|
Samuel TJ, Beaudry R, Sarma S, Zaha V, Haykowsky MJ, Nelson MD. Diastolic Stress Testing Along the Heart Failure Continuum. Curr Heart Fail Rep 2019; 15:332-339. [PMID: 30171472 DOI: 10.1007/s11897-018-0409-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW This review summarizes recent developments highlighting the clinical utility of diastolic stress testing along the heart failure continuum. RECENT FINDINGS Invasive hemodynamic assessment of cardiac filling pressures during physiological stress is the gold-standard technique for unmasking diastolic dysfunction. Non-invasive surrogate techniques, such as Doppler ultrasound, have shown excellent agreement with invasive approaches and are now recommended by the American Society of Echocardiography and the European Association of Cardiovascular Imaging. While cycle exercise is often advocated, recent evidence supports the use of isometric handgrip as a viable alternative stressor. Diastolic stress testing is a powerful tool to enhance detection of diastolic dysfunction, is able to differentiate between cardiac and non-cardiac pathology, and should be incorporated into routine clinical assessment.
Collapse
Affiliation(s)
- T Jake Samuel
- The University of Texas at Arlington, Engineering Research Building 453, 500 UTA Blvd, Arlington, TX, 76019, USA
| | - Rhys Beaudry
- The University of Texas at Arlington, Engineering Research Building 453, 500 UTA Blvd, Arlington, TX, 76019, USA
| | - Satyam Sarma
- The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Institute of Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA
| | - Vlad Zaha
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mark J Haykowsky
- The University of Texas at Arlington, Engineering Research Building 453, 500 UTA Blvd, Arlington, TX, 76019, USA
| | - Michael D Nelson
- The University of Texas at Arlington, Engineering Research Building 453, 500 UTA Blvd, Arlington, TX, 76019, USA.
| |
Collapse
|
34
|
Ovchinnikov AG, Potekhina AV, Ibragimova NM, Barabanova EA, Yushchyuk EN, Ageev FT. [Mechanisms of exercise intolerance in patients with heart failure and preserved ejection fraction. Part I: The role of impairments in the left heart chambers]. ACTA ACUST UNITED AC 2019; 59:4-16. [PMID: 31340744 DOI: 10.18087/cardio.n394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 11/18/2022]
Abstract
During exercise an increase in oxygen delivery to working muscles is achieved through well‑coordinated interaction of many organs and systems: the heart, lungs, blood vessels, skeletal muscles, and the autonomic nervous system. In heart failure with preserved left ventricular ejection fraction, all mechanisms involved in the normal exercise tolerance are impaired. In the first part of this review, the impairments of the left heart chambers are considered ‑ left ventricular diastolic dysfunction, the weakening of the contractile and chronotropic reserves, left atrium dysfunction; the possible ways of their medical correction are also presented.
Collapse
Affiliation(s)
- A G Ovchinnikov
- FSBO National Medical research center of cardiology of the Ministry of healthcare of the Russian Federation
| | - A V Potekhina
- FSBO National Medical research center of cardiology of the Ministry of healthcare of the Russian Federation
| | - N M Ibragimova
- FSBO National Medical research center of cardiology of the Ministry of healthcare of the Russian Federation
| | - E A Barabanova
- I. M. Sechenov First Moscow State Medical University (Sechenov University)
| | - E N Yushchyuk
- A. I. Evdokimov Moscow State University for Medicine and Dentistry
| | - F T Ageev
- FSBO National Medical research center of cardiology of the Ministry of healthcare of the Russian Federation
| |
Collapse
|
35
|
Olver TD, Edwards JC, Jurrissen TJ, Veteto AB, Jones JL, Gao C, Rau C, Warren CM, Klutho PJ, Alex L, Ferreira-Nichols SC, Ivey JR, Thorne PK, McDonald KS, Krenz M, Baines CP, Solaro RJ, Wang Y, Ford DA, Domeier TL, Padilla J, Rector RS, Emter CA. Western Diet-Fed, Aortic-Banded Ossabaw Swine: A Preclinical Model of Cardio-Metabolic Heart Failure. JACC Basic Transl Sci 2019; 4:404-421. [PMID: 31312763 PMCID: PMC6610000 DOI: 10.1016/j.jacbts.2019.02.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022]
Abstract
The development of new treatments for heart failure lack animal models that encompass the increasingly heterogeneous disease profile of this patient population. This report provides evidence supporting the hypothesis that Western Diet-fed, aortic-banded Ossabaw swine display an integrated physiological, morphological, and genetic phenotype evocative of cardio-metabolic heart failure. This new preclinical animal model displays a distinctive constellation of findings that are conceivably useful to extending the understanding of how pre-existing cardio-metabolic syndrome can contribute to developing HF.
Collapse
Key Words
- AB, aortic-banded
- CON, control
- EDPVR, end-diastolic pressure−volume relationship
- EF, ejection fraction
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- IL1RL1, interleukin 1 receptor-like 1
- LV, left ventricle
- NF, nuclear factor
- PTX3, pentraxin-3
- WD, Western Diet
- cardio-metabolic disease
- heart failure
- integrative pathophysiology
- preclinical model of cardiovascular disease
Collapse
Affiliation(s)
- T. Dylan Olver
- Department of Biomedical Science, University of Missouri-Columbia, Columbia, Missouri
| | - Jenna C. Edwards
- Department of Biomedical Science, University of Missouri-Columbia, Columbia, Missouri
| | - Thomas J. Jurrissen
- Department of Nutrition and Exercise Physiology, University of Missouri-Columbia, Columbia, Missouri
| | - Adam B. Veteto
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
| | - John L. Jones
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
| | - Chen Gao
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Christoph Rau
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Chad M. Warren
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois
| | - Paula J. Klutho
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Linda Alex
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | | | - Jan R. Ivey
- Department of Biomedical Science, University of Missouri-Columbia, Columbia, Missouri
| | - Pamela K. Thorne
- Department of Biomedical Science, University of Missouri-Columbia, Columbia, Missouri
| | - Kerry S. McDonald
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Christopher P. Baines
- Department of Biomedical Science, University of Missouri-Columbia, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - R. John Solaro
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois
| | - Yibin Wang
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - David A. Ford
- Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University- School of Medicine, St. Louis, Missouri
| | - Timothy L. Domeier
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri-Columbia, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
- Department of Child Health, University of Missouri-Columbia, Columbia, Missouri
| | - R. Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri-Columbia, Columbia, Missouri
- Department of Medicine – University of Missouri-Columbia, Columbia, Missouri
- Research Service, Harry S Truman Memorial VA Hospital, University of Missouri-Columbia, Columbia, Missouri
| | - Craig A. Emter
- Department of Biomedical Science, University of Missouri-Columbia, Columbia, Missouri
| |
Collapse
|
36
|
Kellermayer D, Smith JE, Granzier H. Titin mutations and muscle disease. Pflugers Arch 2019; 471:673-682. [PMID: 30919088 DOI: 10.1007/s00424-019-02272-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022]
Abstract
The introduction of next-generation sequencing technology has revealed that mutations in the gene that encodes titin (TTN) are linked to multiple skeletal and cardiac myopathies. The most prominent of these myopathies is dilated cardiomyopathy (DCM). Over 60 genes are linked to the etiology of DCM, but by far, the leading cause of DCM is mutations in TTN with truncating variants in TTN (TTNtvs) associated with familial DCM in ∼ 20% of the cases. Titin is a large (3-4 MDa) and abundant protein that forms the third myofilament type of striated muscle where it spans half the sarcomere, from the Z-disk to the M-line. The underlying mechanisms by which titin mutations induce disease are poorly understood and targeted therapies are not available. Here, we review what is known about TTN mutations in muscle disease, with a major focus on DCM. We highlight that exon skipping might provide a possible therapeutic avenue to address diseases that arise from TTNtvs.
Collapse
Affiliation(s)
- Dalma Kellermayer
- Department of Cellular and Molecular Medicine, University of Arizona, MRB 325. 1656 E Mabel Street, Tucson, AZ, 85724-5217, USA.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85721, USA
| | - John E Smith
- Department of Cellular and Molecular Medicine, University of Arizona, MRB 325. 1656 E Mabel Street, Tucson, AZ, 85724-5217, USA.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85721, USA
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, MRB 325. 1656 E Mabel Street, Tucson, AZ, 85724-5217, USA. .,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
37
|
van der Velden J, Stienen GJM. Cardiac Disorders and Pathophysiology of Sarcomeric Proteins. Physiol Rev 2019; 99:381-426. [PMID: 30379622 DOI: 10.1152/physrev.00040.2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The sarcomeric proteins represent the structural building blocks of heart muscle, which are essential for contraction and relaxation. During recent years, it has become evident that posttranslational modifications of sarcomeric proteins, in particular phosphorylation, tune cardiac pump function at rest and during exercise. This delicate, orchestrated interaction is also influenced by mutations, predominantly in sarcomeric proteins, which cause hypertrophic or dilated cardiomyopathy. In this review, we follow a bottom-up approach starting from a description of the basic components of cardiac muscle at the molecular level up to the various forms of cardiac disorders at the organ level. An overview is given of sarcomere changes in acquired and inherited forms of cardiac disease and the underlying disease mechanisms with particular reference to human tissue. A distinction will be made between the primary defect and maladaptive/adaptive secondary changes. Techniques used to unravel functional consequences of disease-induced protein changes are described, and an overview of current and future treatments targeted at sarcomeric proteins is given. The current evidence presented suggests that sarcomeres not only form the basis of cardiac muscle function but also represent a therapeutic target to combat cardiac disease.
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Ger J M Stienen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| |
Collapse
|
38
|
Slater RE, Strom JG, Methawasin M, Liss M, Gotthardt M, Sweitzer N, Granzier HL. Metformin improves diastolic function in an HFpEF-like mouse model by increasing titin compliance. J Gen Physiol 2018; 151:42-52. [PMID: 30567709 PMCID: PMC6314384 DOI: 10.1085/jgp.201812259] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a syndrome characterized by increased diastolic stiffness, for which effective therapies are lacking. Slater et al. show that metformin lowers titin-based passive stiffness in an HFpEF mouse model and may therefore be of therapeutic benefit. Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome characterized by a preserved ejection fraction but increased diastolic stiffness and abnormalities of filling. Although the prevalence of HFpEF is high and continues to rise, no effective therapies exist; however, the diabetic drug metformin has been associated with improved diastolic function in diabetic patients. Here we determine the therapeutic potential of metformin for improving diastolic function in a mouse model with HFpEF-like symptoms. We combine transverse aortic constriction (TAC) surgery with deoxycorticosterone acetate (DOCA) supplementation to obtain a mouse model with increased diastolic stiffness and exercise intolerance. Echocardiography and pressure–volume analysis reveal that providing metformin to TAC/DOCA mice improves diastolic function in the left ventricular (LV) chamber. Muscle mechanics show that metformin lowers passive stiffness of the LV wall muscle. Concomitant with this improvement in diastolic function, metformin-treated TAC/DOCA mice also demonstrate preserved exercise capacity. No metformin effects are seen in sham operated mice. Extraction experiments on skinned ventricular muscle strips show that the metformin-induced reduction of passive stiffness in TAC/DOCA mice is due to an increase in titin compliance. Using phospho-site-specific antibodies, we assay the phosphorylation of titin’s PEVK and N2B spring elements. Metformin-treated mice have unaltered PEVK phosphorylation but increased phosphorylation of PKA sites in the N2B element, a change which has previously been shown to lower titin’s stiffness. Consistent with this result, experiments with a mouse model deficient in the N2B element reveal that the beneficial effect of metformin on LV chamber and muscle stiffness requires the presence of the N2B element. We conclude that metformin offers therapeutic benefit during HFpEF by lowering titin-based passive stiffness.
Collapse
Affiliation(s)
- Rebecca E Slater
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Joshua G Strom
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Mei Methawasin
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Martin Liss
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.,German Center for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.,German Center for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
| | - Nancy Sweitzer
- Sarver Heart Center, College of Medicine, University of Arizona, Tucson, AZ
| | - Henk L Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ .,Sarver Heart Center, College of Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
39
|
Brynnel A, Hernandez Y, Kiss B, Lindqvist J, Adler M, Kolb J, van der Pijl R, Gohlke J, Strom J, Smith J, Ottenheijm C, Granzier HL. Downsizing the molecular spring of the giant protein titin reveals that skeletal muscle titin determines passive stiffness and drives longitudinal hypertrophy. eLife 2018; 7:40532. [PMID: 30565562 PMCID: PMC6300359 DOI: 10.7554/elife.40532] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/26/2018] [Indexed: 12/25/2022] Open
Abstract
Titin, the largest protein known, forms an elastic myofilament in the striated muscle sarcomere. To establish titin’s contribution to skeletal muscle passive stiffness, relative to that of the extracellular matrix, a mouse model was created in which titin’s molecular spring region was shortened by deleting 47 exons, the TtnΔ112-158 model. RNA sequencing and super-resolution microscopy predicts a much stiffer titin molecule. Mechanical studies with this novel mouse model support that titin is the main determinant of skeletal muscle passive stiffness. Unexpectedly, the in vivo sarcomere length working range was shifted to shorter lengths in TtnΔ112-158 mice, due to a ~ 30% increase in the number of sarcomeres in series (longitudinal hypertrophy). The expected effect of this shift on active force generation was minimized through a shortening of thin filaments that was discovered in TtnΔ112-158 mice. Thus, skeletal muscle titin is the dominant determinant of physiological passive stiffness and drives longitudinal hypertrophy. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Ambjorn Brynnel
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| | - Yaeren Hernandez
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| | - Balazs Kiss
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| | - Johan Lindqvist
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| | - Maya Adler
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| | - Justin Kolb
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| | - Robbert van der Pijl
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| | - Jochen Gohlke
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| | - Joshua Strom
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| | - John Smith
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| | - Coen Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| | - Henk L Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| |
Collapse
|
40
|
Caremani M, Pinzauti F, Powers JD, Governali S, Narayanan T, Stienen GJM, Reconditi M, Linari M, Lombardi V, Piazzesi G. Inotropic interventions do not change the resting state of myosin motors during cardiac diastole. J Gen Physiol 2018; 151:53-65. [PMID: 30510036 PMCID: PMC6314382 DOI: 10.1085/jgp.201812196] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/26/2018] [Indexed: 11/20/2022] Open
Abstract
When striated (skeletal and cardiac) muscle is in its relaxed state, myosin motors are packed in helical tracks on the surface of the thick filament, folded toward the center of the sarcomere, and unable to bind actin or hydrolyze ATP (OFF state). This raises the question of whatthe mechanism is that integrates the Ca2+-dependent thin filament activation, making myosin heads available for interaction with actin. Here we test the interdependency of the thin and thick filament regulatory mechanisms in intact trabeculae from the rat heart. We record the x-ray diffraction signals that mark the state of the thick filament during inotropic interventions (increase in sarcomere length from 1.95 to 2.25 µm and addition of 10-7 M isoprenaline), which potentiate the twitch force developed by an electrically paced trabecula by up to twofold. During diastole, none of the signals related to the OFF state of the thick filament are significantly affected by these interventions, except the intensity of both myosin-binding protein C- and troponin-related meridional reflections, which reduce by 20% in the presence of isoprenaline. These results indicate that recruitment of myosin motors from their OFF state occurs independently and downstream from thin filament activation. This is in agreement with the recently discovered mechanism based on thick filament mechanosensing in which the number of motors available for interaction with actin rapidly adapts to the stress on the thick filament and thus to the loading conditions of the contraction. The gain of this positive feedback may be modulated by both sarcomere length and the degree of phosphorylation of myosin-binding protein C.
Collapse
Affiliation(s)
| | | | | | | | | | - Ger J M Stienen
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Marco Linari
- PhysioLab, University of Florence, Firenze, Italy
| | | | | |
Collapse
|
41
|
Watanabe T, Kimura A, Kuroyanagi H. Alternative Splicing Regulator RBM20 and Cardiomyopathy. Front Mol Biosci 2018; 5:105. [PMID: 30547036 PMCID: PMC6279932 DOI: 10.3389/fmolb.2018.00105] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022] Open
Abstract
RBM20 is a vertebrate-specific RNA-binding protein with two zinc finger (ZnF) domains, one RNA-recognition motif (RRM)-type RNA-binding domain and an arginine/serine (RS)-rich region. RBM20 has initially been identified as one of dilated cardiomyopathy (DCM)-linked genes. RBM20 is a regulator of heart-specific alternative splicing and Rbm20ΔRRM mice lacking the RRM domain are defective in the splicing regulation. The Rbm20ΔRRM mice, however, do not exhibit a characteristic DCM-like phenotype such as dilatation of left ventricles or systolic dysfunction. Considering that most of the RBM20 mutations identified in familial DCM cases were heterozygous missense mutations in an arginine-serine-arginine-serine-proline (RSRSP) stretch whose phosphorylation is crucial for nuclear localization of RBM20, characterization of a knock-in animal model is awaited. One of the major targets for RBM20 is the TTN gene, which is comprised of the largest number of exons in mammals. Alternative splicing of the TTN gene is exceptionally complicated and RBM20 represses >160 of its consecutive exons, yet detailed mechanisms for such extraordinary regulation are to be elucidated. The TTN gene encodes the largest known protein titin, a multi-functional sarcomeric structural protein specific to striated muscles. As titin is the most important factor for passive tension of cardiomyocytes, extensive heart-specific and developmentally regulated alternative splicing of the TTN pre-mRNA by RBM20 plays a critical role in passive stiffness and diastolic function of the heart. In disease models with diastolic dysfunctions, the phenotypes were rescued by increasing titin compliance through manipulation of the Ttn pre-mRNA splicing, raising RBM20 as a potential therapeutic target.
Collapse
Affiliation(s)
- Takeshi Watanabe
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Psychosomatic Dentistry, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akinori Kimura
- Division of Pathology, Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Laboratory for Integrated Research Projects on Intractable Diseases Advanced Technology Laboratories, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Laboratory for Integrated Research Projects on Intractable Diseases Advanced Technology Laboratories, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
42
|
Affiliation(s)
- Mei Methawasin
- From the Cellular and Molecular Medicine Department and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson
| | - Henk Granzier
- From the Cellular and Molecular Medicine Department and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson.
| |
Collapse
|
43
|
Pinzauti F, Pertici I, Reconditi M, Narayanan T, Stienen GJM, Piazzesi G, Lombardi V, Linari M, Caremani M. The force and stiffness of myosin motors in the isometric twitch of a cardiac trabecula and the effect of the extracellular calcium concentration. J Physiol 2018; 596:2581-2596. [PMID: 29714038 PMCID: PMC6023834 DOI: 10.1113/jp275579] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/13/2018] [Indexed: 01/22/2023] Open
Abstract
KEY POINTS Fast sarcomere-level mechanics in intact trabeculae, which allows the definition of the mechano-kinetic properties of cardiac myosin in situ, is a fundamental tool not only for understanding the molecular mechanisms of heart performance and regulation, but also for investigating the mechanisms of the cardiomyopathy-causing mutations in the myosin and testing small molecules for therapeutic interventions. The approach has been applied to measure the stiffness and force of the myosin motor and the fraction of motors attached during isometric twitches of electrically paced trabeculae under different extracellular Ca2+ concentrations. Although the average force of the cardiac myosin motor (∼6 pN) is similar to that of the fast myosin isoform of skeletal muscle, the stiffness (1.07 pN nm-1 ) is 2- to 3-fold smaller. The increase in the twitch force developed in the presence of larger extracellular Ca2+ concentrations is fully accounted for by a proportional increase in the number of attached motors. ABSTRACT The mechano-kinetic properties of the cardiac myosin were studied in situ, in trabeculae dissected from the right ventricle of the rat heart, by measuring the stiffness of the half-sarcomere both at the twitch force peak (Tp ) of an electrically paced intact trabecula at different extracellular Ca2+ concentrations ([Ca2+ ]o ), and in the same trabecula after skinning and induction of rigor. Taking into account the contribution of filament compliance to half-sarcomere compliance and the lattice geometry, we found that the stiffness of the cardiac myosin motor is 1.07 ± 0.09 pN nm-1 , which is slightly larger than that of the slow myosin isoform of skeletal muscle (0.6-0.8 pN nm-1 ) and 2- to 3-fold smaller than that of the fast skeletal muscle isoform. The increase in Tp from 61 ± 4 kPa to 93 ± 9 kPa, induced by raising [Ca2+ ]o from 1 to 2.5 mm at sarcomere length ∼2.2 μm, is accompanied by an increase of the half-sarcomere stiffness that is explained by an increase of the fraction of actin-attached motors from 0.08 ± 0.01 to 0.12 ± 0.02, proportional to Tp . Consequently, each myosin motor bears an average force of 6.14 ± 0.52 pN independently of Tp and [Ca2+ ]o . The application of fast sarcomere-level mechanics to intact trabeculae to define the mechano-kinetic properties of the cardiac myosin in situ represents a powerful tool for investigating cardiomyopathy-causing mutations in the myosin motor and testing specific therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | - Ger J. M. Stienen
- Department of PhysiologyVU University Medical CenterAmsterdamThe Netherlands
| | | | | | | | | |
Collapse
|
44
|
Piazzesi G, Caremani M, Linari M, Reconditi M, Lombardi V. Thick Filament Mechano-Sensing in Skeletal and Cardiac Muscles: A Common Mechanism Able to Adapt the Energetic Cost of the Contraction to the Task. Front Physiol 2018; 9:736. [PMID: 29962967 PMCID: PMC6010558 DOI: 10.3389/fphys.2018.00736] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/28/2018] [Indexed: 11/29/2022] Open
Abstract
A dual regulation of contraction operates in both skeletal and cardiac muscles. The first mechanism, based on Ca2+-dependent structural changes of the regulatory proteins in the thin filament, makes the actin sites available for binding of the myosin motors. The second recruits the myosin heads from the OFF state, in which they are unable to split ATP and bind to actin, in relation to the force during contraction. Comparison of the relevant X-ray diffraction signals marking the state of the thick filament demonstrates that the force feedback that controls the regulatory state of the thick filament works in the same way in skeletal as in cardiac muscles: even if in an isometric tetanus of skeletal muscle force is under the control of the firing frequency of the motor unit, while in a heartbeat force is controlled by the afterload, the stress-sensor switching the motors ON plays the same role in adapting the energetic cost of the contraction to the force. A new aspect of the Frank-Starling law of the heart emerges: independent of the diastolic filling of the ventricle, the number of myosin motors switched ON during systole, and thus the energetic cost of contraction, are tuned to the arterial pressure. Deterioration of the thick-filament regulation mechanism may explain the hyper-contractility related to hypertrophic cardiomyopathy, an inherited heart disease that in 40% of cases is due to mutations in cardiac myosin.
Collapse
Affiliation(s)
| | | | - Marco Linari
- PhysioLab, University of Florence, Florence, Italy
| | | | | |
Collapse
|
45
|
Liss M, Radke MH, Eckhard J, Neuenschwander M, Dauksaite V, von Kries JP, Gotthardt M. Drug discovery with an RBM20 dependent titin splice reporter identifies cardenolides as lead structures to improve cardiac filling. PLoS One 2018; 13:e0198492. [PMID: 29889873 PMCID: PMC5995442 DOI: 10.1371/journal.pone.0198492] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/20/2018] [Indexed: 02/07/2023] Open
Abstract
Diastolic dysfunction is increasingly prevalent in our ageing society and an important contributor to heart failure. The giant protein titin could serve as a therapeutic target, as its elastic properties are a main determinant of cardiac filling in diastole. This study aimed to develop a high throughput pharmacological screen to identify small molecules that affect titin isoform expression through differential inclusion of exons encoding the elastic PEVK domains. We used a dual luciferase splice reporter assay that builds on the titin splice factor RBM20 to screen ~34,000 small molecules and identified several compounds that inhibit the exclusion of PEVK exons. These compounds belong to the class of cardenolides and affect RBM20 dependent titin exon exclusion but did not affect RBFOX1 mediated splicing of FMNL3. We provide evidence that cardenolides do not bind to the RNA interacting domain of RBM20, but reduce RBM20 protein levels and alter transcription of select splicing factors that interact with RBM20. Cardenolides affect titin isoform expression. Understanding their mode of action and harnessing the splice effects through chemical modifications that suppress the effects on ion homeostasis and more selectively affect cardiac splicing has the potential to improve cardiac filling and thus help patients with diastolic heart failure, for which currently no targeted therapy exists.
Collapse
Affiliation(s)
- Martin Liss
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Michael H. Radke
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Jamina Eckhard
- Screening Unit, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Vita Dauksaite
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
46
|
Wang L, Geist J, Grogan A, Hu LYR, Kontrogianni-Konstantopoulos A. Thick Filament Protein Network, Functions, and Disease Association. Compr Physiol 2018; 8:631-709. [PMID: 29687901 PMCID: PMC6404781 DOI: 10.1002/cphy.c170023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018.
Collapse
Affiliation(s)
- Li Wang
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Janelle Geist
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Alyssa Grogan
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Li-Yen R. Hu
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | | |
Collapse
|
47
|
Stretch your heart-but not too far: The role of titin mutations in dilated cardiomyopathy. J Thorac Cardiovasc Surg 2018; 156:209-214. [PMID: 29685583 DOI: 10.1016/j.jtcvs.2017.10.160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/29/2017] [Accepted: 10/24/2017] [Indexed: 12/23/2022]
|
48
|
Chen Z, Song J, Chen L, Zhu C, Cai H, Sun M, Stern A, Mozdziak P, Ge Y, Means WJ, Guo W. Characterization of TTN Novex Splicing Variants across Species and the Role of RBM20 in Novex-Specific Exon Splicing. Genes (Basel) 2018; 9:genes9020086. [PMID: 29438341 PMCID: PMC5852582 DOI: 10.3390/genes9020086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 11/22/2022] Open
Abstract
Titin (TTN) is a major disease-causing gene in cardiac muscle. Titin (TTN) contains 363 exons in human encoding various sizes of TTN protein due to alternative splicing regulated mainly by RNA binding motif 20 (RBM20). Three isoforms of TTN protein are produced by mutually exclusive exons 45 (Novex 1), 46 (Novex 2), and 48 (Novex 3). Alternatively splicing in Novex isoforms across species and whether Novex isoforms are associated with heart disease remains completely unknown. Cross-species exon comparison with the mVISTA online tool revealed that exon 45 is more highly conserved across all species than exons 46 and 48. Importantly, a conserved region between exons 47 and 48 across species was revealed for the first time. Reverse transcript polymerase chain reaction (RT-PCR) and DNA sequencing confirmed a new exon named as 48′ in Novex 3. In addition, with primer pairs for Novex 1, a new truncated form preserving introns 44 and 45 was discovered. We discovered that Novex 2 is not expressed in the pig, mouse, and rat with Novex 2 primer pairs. Unexpectedly, three truncated forms were identified. One TTN variant with intron 46 retention is mainly expressed in the human and frog heart, another variant with co-expression of exons 45 and 46 exists predominantly in chicken and frog heart, and a third with retention of introns 45 and 46 is mainly expressed in pig, mouse, rat, and chicken. Using Rbm20 knockout rat heart, we revealed that RBM20 is not a splicing regulator of Novex variants. Furthermore, the expression levels of Novex variants in human hearts with cardiomyopathies suggested that Novexes 2 and 3 could be associated with dilated cardiomyopathy (DCM) and/or arrhythmogenic right ventricular cardiomyopathy (ARVC). Taken together, our study reveals that splicing diversity of Novex exons across species and Novex variants might play a role in cardiomyopathy.
Collapse
Affiliation(s)
- Zhilong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
- Animal Science, University of Wyoming, Laramie, WY 82071, USA.
| | - Jiangping Song
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Liang Chen
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Chaoqun Zhu
- Animal Science, University of Wyoming, Laramie, WY 82071, USA.
| | - Hanfang Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
- Animal Science, University of Wyoming, Laramie, WY 82071, USA.
| | - Mingming Sun
- Animal Science, University of Wyoming, Laramie, WY 82071, USA.
| | - Allysa Stern
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA.
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA.
| | - Ying Ge
- Department of Cell and Regenerative Biology, Department of Chemistry, Human Proteomics Program, University of Wisconsin, Madison, WI 53705, USA.
| | - Warrie J Means
- Animal Science, University of Wyoming, Laramie, WY 82071, USA.
| | - Wei Guo
- Animal Science, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
49
|
Guo W, Sun M. RBM20, a potential target for treatment of cardiomyopathy via titin isoform switching. Biophys Rev 2018; 10:15-25. [PMID: 28577155 PMCID: PMC5803173 DOI: 10.1007/s12551-017-0267-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022] Open
Abstract
Cardiomyopathy, also known as heart muscle disease, is an unfavorable condition leading to alterations in myocardial contraction and/or impaired ability of ventricular filling. The onset and development of cardiomyopathy have not currently been well defined. Titin is a giant multifunctional sarcomeric filament protein that provides passive stiffness to cardiomyocytes and has been implicated to play an important role in the origin and development of cardiomyopathy and heart failure. Titin-based passive stiffness can be mainly adjusted by isoform switching and post-translational modifications in the spring regions. Recently, genetic mutations of TTN have been identified that can also contribute to variable passive stiffness, though the detailed mechanisms remain unclear. In this review, we will discuss titin isoform switching as it relates to alternative splicing during development stages and differences between species and muscle types. We provide an update on the regulatory mechanisms of TTN splicing controlled by RBM20 and cover the roles of TTN splicing in adjusting the diastolic stiffness and systolic compliance of the healthy and the failing heart. Finally, this review attempts to provide future directions for RBM20 as a potential target for pharmacological intervention in cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Wei Guo
- Animal Science, University of Wyoming, Laramie, WY, 82071, USA.
- Center for Cardiovascular Research and Integrative Medicine, University of Wyoming, Laramie, WY, 82071, USA.
| | - Mingming Sun
- Animal Science, University of Wyoming, Laramie, WY, 82071, USA
- Center for Cardiovascular Research and Integrative Medicine, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
50
|
Muscle-Specific Mis-Splicing and Heart Disease Exemplified by RBM20. Genes (Basel) 2018; 9:genes9010018. [PMID: 29304022 PMCID: PMC5793171 DOI: 10.3390/genes9010018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/23/2017] [Accepted: 12/27/2017] [Indexed: 11/17/2022] Open
Abstract
Alternative splicing is an essential post-transcriptional process to generate multiple functional RNAs or proteins from a single transcript. Progress in RNA biology has led to a better understanding of muscle-specific RNA splicing in heart disease. The recent discovery of the muscle-specific splicing factor RNA-binding motif 20 (RBM20) not only provided great insights into the general alternative splicing mechanism but also demonstrated molecular mechanism of how this splicing factor is associated with dilated cardiomyopathy. Here, we review our current knowledge of muscle-specific splicing factors and heart disease, with an emphasis on RBM20 and its targets, RBM20-dependent alternative splicing mechanism, RBM20 disease origin in induced Pluripotent Stem Cells (iPSCs), and RBM20 mutations in dilated cardiomyopathy. In the end, we will discuss the multifunctional role of RBM20 and manipulation of RBM20 as a potential therapeutic target for heart disease.
Collapse
|