1
|
Zhang X, Wang S, Qin Y, Guo H. Downregulation of microRNA‑221‑3p promotes angiogenesis of lipoprotein(a)‑injured endothelial progenitor cells by targeting silent information regulator 1 to activate the RAF/MEK/ERK signaling pathway. Mol Med Rep 2024; 30:223. [PMID: 39364751 PMCID: PMC11462396 DOI: 10.3892/mmr.2024.13347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/23/2024] [Indexed: 10/05/2024] Open
Abstract
The present study aimed to investigate the role of microRNA (miR)‑221‑3p in endothelial progenitor cells (EPCs) treated with lipoprotein(a) [LP(a)]. EPCs were identified using immunofluorescence assays and miR‑221‑3p levels were measured using reverse transcription‑quantitative PCR. EPC migration was detected using Transwell assays, proliferation was measured by staining with 5‑ethynyl‑2'‑deoxyuridine and adhesion was assessed by microscopy. Flow cytometry was used to measure apoptosis and protein expression was detected using western blotting. A dual‑luciferase reporter assay was used to confirm the target interactions. The proliferation, migration, adhesion and angiogenesis of EPCs were decreased, and apoptosis was increased after treatment with LP(a). These effects were weakened by transfection with miR‑221‑3p inhibitor. The negative effects of LP(a) on EPCs were also weakened by overexpression of silent information regulator 1 (SIRT1). Inhibition of the RAF/MEK/ERK signaling pathway blocked the effects of SIRT1 overexpression. In conclusion, miR‑221‑3p inhibitor transfection activated the RAF/MEK/ERK signaling pathway through SIRT1, promoted the proliferation, migration, adhesion and angiogenesis of EPCs, and reduced apoptosis.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Basic Medicine, Jiangsu College of Nursing, Huai'an, Jiangsu 223005, P.R. China
| | - Shizhen Wang
- Department of Basic Medicine, Jiangsu College of Nursing, Huai'an, Jiangsu 223005, P.R. China
| | - Yongting Qin
- Department of Basic Medicine, Jiangsu College of Nursing, Huai'an, Jiangsu 223005, P.R. China
| | - Hang Guo
- Department of Basic Medicine, Jiangsu College of Nursing, Huai'an, Jiangsu 223005, P.R. China
| |
Collapse
|
2
|
Hassan N, Efing J, Kiesel L, Bendas G, Götte M. The Tissue Factor Pathway in Cancer: Overview and Role of Heparan Sulfate Proteoglycans. Cancers (Basel) 2023; 15:1524. [PMID: 36900315 PMCID: PMC10001432 DOI: 10.3390/cancers15051524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Historically, the only focus on tissue factor (TF) in clinical pathophysiology has been on its function as the initiation of the extrinsic coagulation cascade. This obsolete vessel-wall TF dogma is now being challenged by the findings that TF circulates throughout the body as a soluble form, a cell-associated protein, and a binding microparticle. Furthermore, it has been observed that TF is expressed by various cell types, including T-lymphocytes and platelets, and that certain pathological situations, such as chronic and acute inflammatory states, and cancer, may increase its expression and activity. Transmembrane G protein-coupled protease-activated receptors can be proteolytically cleaved by the TF:FVIIa complex that develops when TF binds to Factor VII (PARs). The TF:FVIIa complex can activate integrins, receptor tyrosine kinases (RTKs), and PARs in addition to PARs. Cancer cells use these signaling pathways to promote cell division, angiogenesis, metastasis, and the maintenance of cancer stem-like cells. Proteoglycans play a crucial role in the biochemical and mechanical properties of the cellular extracellular matrix, where they control cellular behavior via interacting with transmembrane receptors. For TFPI.fXa complexes, heparan sulfate proteoglycans (HSPGs) may serve as the primary receptor for uptake and degradation. The regulation of TF expression, TF signaling mechanisms, their pathogenic effects, and their therapeutic targeting in cancer are all covered in detail here.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Domagkstrasse 11, 48149 Münster, Germany
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Janes Efing
- Department of Gynecology and Obstetrics, Münster University Hospital, Domagkstrasse 11, 48149 Münster, Germany
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Domagkstrasse 11, 48149 Münster, Germany
| | - Gerd Bendas
- Pharmaceutical Department, University Bonn, An der Immenburg 4, 53225 Bonn, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Domagkstrasse 11, 48149 Münster, Germany
| |
Collapse
|
3
|
MiRNA-29b and miRNA-497 Modulate the Expression of Carboxypeptidase X Member 2, a Candidate Gene Associated with Left Ventricular Hypertrophy. Int J Mol Sci 2022; 23:ijms23042263. [PMID: 35216380 PMCID: PMC8880112 DOI: 10.3390/ijms23042263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Left ventricular hypertrophy (LVH) is a major risk factor for adverse cardiovascular events. Recently, a novel candidate gene encoding the carboxypeptidase X member 2 (CPXM2) was found to be associated with hypertension-induced LVH. CPXM2 belongs to the M14 family of metallocarboxypeptidases, yet it lacks detectable enzyme activity, and its function remains unknown. Here, we investigated the impact of micro (mi)RNA-29b, miRNA-195, and miRNA-497 on the posttranscriptional expression control of CPXM2. Candidate miRNAs for CPXM2 expression control were identified in silico. CPXM2 expression in rat cardiomyocytes (H9C2) was characterized via real-time PCR, Western blotting, and immunofluorescence. Direct miRNA/target mRNA interaction was analysed by dual luciferase assay. CPXM2 was expressed in H9C2 and co-localised with z-disc associated protein PDZ and LIM domain 3 (Pdlim3). Transfection of H9C2 with miRNA-29b, miRNA-195, and miRNA-497 led to decreased levels of CPXM2 mRNA and protein, respectively. Results of dual luciferase assays revealed that miRNA-29b and miRNA-497, but not miRNA-195, directly regulated CPXM2 expression on a posttranscriptional level via binding to the 3′UTR of CPXM2 mRNA. We identified two miRNAs capable of the direct posttranscriptional expression control of CPXM2 expression in rat cardiomyocytes. This novel data may help to shed more light on the—so far—widely unexplored expression control of CPXM2 and its potential role in LVH.
Collapse
|
4
|
Wang XQ, Tu WZ, Guo JB, Song G, Zhang J, Chen CC, Chen PJ. A Bioinformatic Analysis of MicroRNAs' Role in Human Intervertebral Disc Degeneration. PAIN MEDICINE 2020; 20:2459-2471. [PMID: 30953590 DOI: 10.1093/pm/pnz015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objectives The aim of our study was to ascertain the underlying role of microRNAs (miRNAs) in human intervertebral disc degeneration (IDD). Design Bioinformatic analysis from multiple databases. Methods Studies of the association of miRNAs and IDD were identified in multiple electronic databases. All potential studies were assessed by the same inclusion and exclusion criteria. We recorded whether miRNA expression was commonly increased or suppressed in the intervertebral disc tissues and cells of IDD subjects. We used String to identify biological process and cellular component pathways of differentially expressed genes. Results We included fifty-seven articles from 1,277 records in this study. This report identified 40 different dysregulated miRNAs in 53 studies, including studies examining cell apoptosis (26 studies, 49.06%), cell proliferation (15 studies, 28.3%), extracellular matrix (ECM) degradation (10 studies, 18.86%), and inflammation (five studies, 9.43%) in IDD patients. Three upregulated miRNAs (miR-19b, miR-32, miR-130b) and three downregulated miRNAs (miR-31, miR-124a, miR-127-5p) were considered common miRNAs in IDD tissues. The top three biological process pathways for upregulated miRNAs were positive regulation of biological process, nervous system development, and negative regulation of biological process, and the top three biological process pathways for downregulated miRNAs were negative regulation of gene expression, intracellular signal transduction, and negative regulation of biological process. Conclusions This study revealed that miRNAs could be novel targets for preventing IDD and treating patients with IDD by regulating their target genes. These results provide valuable information for medical professionals, IDD patients, and health care policy makers.
Collapse
Affiliation(s)
- Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Equal contribution
| | - Wen-Zhan Tu
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Equal contribution
| | - Jia-Bao Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ge Song
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Juan Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chang-Cheng Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pei-Jie Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
High expression of miR-135b predicts malignant transformation and poor prognosis of gastric cancer. Life Sci 2020; 257:118133. [PMID: 32710946 DOI: 10.1016/j.lfs.2020.118133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022]
Abstract
AIMS MiR-135b is a downstream effector of oncogenic signaling pathways. This study aimed to reveal the underlying regulation and significance of miR-135b in gastric cancer. MATERIALS AND METHODS The influence of Wnt and PI3K/AKT signaling pathways on the transcriptional activation of the miR-135b promoter was determined by dual-luciferase reporter assays. In vitro experiments, including the cell counting kit-8 (CCK8) assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, flow cytometry analysis and malignant phenotype profiles, were conducted to determine the oncogenic role of miR-135b in gastric cancer. To analyze the clinical significance of miR-135b in gastric cancer, the expression profile of miR-135b in tissue specimens and plasma was examined by quantitative real-time PCR (qRT-PCR). KEY FINDINGS Oncogenic signaling pathways represented by Wnt and PI3K/AKT promoted the transcriptional activation of the miR-135b promoter in gastric cancer. Downregulation of miR-135b inhibited proliferation, promoted apoptosis, and suppressed the migratory, invasive, and adherent abilities as well as the cancer stem cell phenotype of gastric cancer cells. High expression of miR-135b in gastric cancer tissues was tightly associated with poor prognosis and malignant transformation represented by metastasis of gastric cancer. The miR-135b level in the plasma of gastric cancer patients was significantly higher than that in healthy individuals. SIGNIFICANCE MiR-135b is a potential downstream effector of the Wnt and PI3K/AKT signaling pathways in gastric cancer. High expression of miR-135b may predict malignant transformation and poor prognosis of gastric cancer. This study reveals the potential role of miR-135b as a target for the early diagnosis and therapy of gastric cancer.
Collapse
|
6
|
Vimentin prevents a miR-dependent negative regulation of tissue factor mRNA during epithelial-mesenchymal transitions and facilitates early metastasis. Oncogene 2020; 39:3680-3692. [PMID: 32152404 PMCID: PMC7190572 DOI: 10.1038/s41388-020-1244-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 01/31/2023]
Abstract
Epithelial-mesenchymal transitions (EMTs) are high-profile in the field of circulating tumor cells (CTCs). EMT-shifted CTCs are considered to encompass pre-metastatic subpopulations though underlying molecular mechanisms remain elusive. Our previous work identified tissue factor (TF) as an EMT-induced gene providing tumor cells with coagulant properties and supporting metastatic colonization by CTCs. We here report that vimentin, the type III intermediate filament considered a canonical EMT marker, contributes to TF regulation and positively supports coagulant properties and early metastasis. Different evidence further pointed to a new post-transcriptional regulatory mechanism of TF mRNA by vimentin: (1) vimentin silencing accelerated TF mRNA decay after actinomycin D treatment, reflecting TF mRNA stabilization, (2) RNA immunoprecipitation revealed enriched levels of TF mRNA in vimentin immunoprecipitate, (3) TF 3'-UTR-luciferase reporter vector assays implicated the 3'-UTR of TF mRNA in vimentin-dependent TF regulation, and (4) using different TF 3'UTR-luciferase reporter vectors mutated for potential miR binding sites and specific Target Site Blockers identified a key miR binding site in vimentin-dependent TF mRNA regulation. All together, these data support a novel mechanism by which vimentin interferes with a miR-dependent negative regulation of TF mRNA, thereby promoting coagulant activity and early metastasis of vimentin-expressing CTCs.
Collapse
|
7
|
Meyer AD, Rishmawi AR, Kamucheka R, Lafleur C, Batchinsky AI, Mackman N, Cap AP. Effect of blood flow on platelets, leukocytes, and extracellular vesicles in thrombosis of simulated neonatal extracorporeal circulation. J Thromb Haemost 2020; 18:399-410. [PMID: 31628728 PMCID: PMC7350929 DOI: 10.1111/jth.14661] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/10/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Extracorporeal membrane oxygenation (ECMO) has frequent and sometimes lethal thrombotic complications. The role that activated platelets, leukocytes, and small (0.3-micron to 1-micron) extracellular vesicles (EVs) play in ECMO thrombosis is not well understood. OBJECTIVES To test the effect of blood flow rate on the generation of activated platelets, leukocytes, and EVs in a simulated neonatal ECMO circuit using heparinized human whole blood. METHODS Simulated neonatal roller pump circuits circulated whole blood at low, nominal, and high flow rates (0.3, 0.5, and 0.7 L/min) for 6 h. Coagulopathy was defined by thromboelastography (TEG), STA® -procoagulant phospholipid clot time (STA®- Procoag-PPL), and calibrated automated thrombogram. High-resolution flow cytometry measured the cellular expression of prothrombotic phospholipids and proteins on platelets, leukocytes, and EV. RESULTS Despite heparinization, occlusive thrombosis halted flow in two of five circuits at 0.3 L/min and three of five circuits at 0.7 L/min. None of the five circuits at 0.5 L/min exhibited occlusive thrombosis. Phosphatidylserine (PS)-positive platelets and EVs increased at all flow rates more than blood under static conditions (P < .0002). Tissue factor (TF)-positive leukocytes and EVs increased only in low-flow and high-flow circuits (P < .0001). Tissue factor pathway inhibitor (TFPI), at 50 times more than the concentration in healthy adults, failed to suppress thrombin initiation in low-flow and high-flow circuits. CONCLUSIONS This in vitro study informs ECMO specialists to avoid low and high blood flow that increases TF expression on leukocytes and EVs, which likely initiate clot formation. Interventions to decrease TF generated by ECMO may be an effective approach to decrease thrombosis.
Collapse
Affiliation(s)
- Andrew D. Meyer
- Division of Pediatric Critical Care, Department of Pediatrics, University of Texas Health, San Antonio, Texas
- Coagulation and Blood Research, U.S. Army Institute of Surgical Research (USAISR), Ft. Sam Houston, Texas
| | - Anjana R. Rishmawi
- Division of Pediatric Critical Care, Department of Pediatrics, University of Texas Health, San Antonio, Texas
| | - Robin Kamucheka
- Coagulation and Blood Research, U.S. Army Institute of Surgical Research (USAISR), Ft. Sam Houston, Texas
| | - Crystal Lafleur
- Coagulation and Blood Research, U.S. Army Institute of Surgical Research (USAISR), Ft. Sam Houston, Texas
| | - Andriy I. Batchinsky
- Extracorporeal Life Support, U.S. Army Institute of Surgical Research (USAISR), Ft. Sam Houston, Texas
| | - Nigel Mackman
- Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Andrew P. Cap
- Coagulation and Blood Research, U.S. Army Institute of Surgical Research (USAISR), Ft. Sam Houston, Texas
| |
Collapse
|
8
|
Nourse J, Braun J, Lackner K, Hüttelmaier S, Danckwardt S. Large-scale identification of functional microRNA targeting reveals cooperative regulation of the hemostatic system. J Thromb Haemost 2018; 16:2233-2245. [PMID: 30207063 DOI: 10.1111/jth.14290] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Indexed: 12/22/2022]
Abstract
Essentials MicroRNAs (miRNAs) regulate the molecular networks controlling biological functions such as hemostasis. We utilized novel methods to analyze miRNA-mediated regulation of the hemostatic system. 52 specific miRNA interactions with 11 key hemostatic associated genes were identified. Functionality and drugability of miRNA-19b-3p against antithrombin were demonstrated in vivo. SUMMARY: Background microRNAs (miRNAs) confer robustness to complex molecular networks regulating biological functions. However, despite the involvement of miRNAs in almost all biological processes, and the importance of the hemostatic system for a multitude of actions in and beyond blood coagulation, the role of miRNAs in hemostasis is poorly defined. Objectives Here we comprehensively illuminate miRNA-mediated regulation of the hemostatic system in an unbiased manner. Methods In contrast to widely applied association studies, we used an integrative screening approach that combines functional aspects of miRNA silencing with biophysical miRNA interaction based on RNA pull-downs (miTRAP) coupled to next-generation sequencing. Results Examination of a panel of 27 hemostasis-associated gene 3'UTRs revealed the majority to possess substantial Dicer-dependent silencing capability, suggesting functional miRNA targeting. miTRAP revealed 150 specific miRNA interactions with 14 3'UTRs, of which 52, involving 40 miRNAs, were functionally confirmed. This includes cooperative miRNA regulation of key hemostatic genes comprising procoagulant (F7, F8, F11, FGA, FGG and KLKB1) and anticoagulant (SERPINA10, PROZ, SERPIND1 and SERPINC1) as well as fibrinolytic (PLG) components. Bioinformatic analysis of miRNA functionality reveals established and potential novel links between the hemostatic system and other pathologies, such as cancer, bone metabolism and renal function. Conclusions Our findings provide, along with an in-vivo proof of concept, deep insights into the network of miRNAs regulating the hemostatic system and present a foundation for biomarker discovery and novel targeted therapeutics for correction of de-regulated hemostasis and associated processes in the future. A repository of the miRNA targetome covering 14 hemostatic components is provided.
Collapse
Affiliation(s)
- J Nourse
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - J Braun
- Institute of Molecular Medicine, Martin Luther University Halle (Saale), Halle, Germany
| | - K Lackner
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - S Hüttelmaier
- Institute of Molecular Medicine, Martin Luther University Halle (Saale), Halle, Germany
| | - S Danckwardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main, University Medical Center, Mainz, Germany
| |
Collapse
|
9
|
miR-19a and miR-20a and Tissue Factor Expression in Activated Human Peripheral Blood Mononuclear Cells. THROMBOSIS 2017; 2017:1076397. [PMID: 29214079 PMCID: PMC5682915 DOI: 10.1155/2017/1076397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/10/2017] [Accepted: 09/24/2017] [Indexed: 11/17/2022]
Abstract
Background and Aims To investigate the behaviour of miR-19a and miR-20a, two microRNAs involved in posttranscriptional modulation of TF expression in peripheral blood mononuclear cells (PBMCs) exposed to high glucose (HG) and lipopolysaccharide (LPS), and to evaluate the involvement of angiotensin II in that process. Methods TF Procoagulant Activity (PCA, one-stage clotting assay), antigen (Ag, ELISA), and miR-19a and miR-20a levels (specific TaqMan® MicroRNA Assays) were evaluated in PBMCs exposed to high glucose (HG, 50 mM), LPS (100 ng/mL), and Olmesartan (OLM, 10−6 M), an angiotensin II type 1 receptor antagonist. Results HG increased TF expression and decreased both miRs as compared to control glucose conditions (11.1 mM). In HG-activated PBMCs, LPS stimulated TF expression and downregulated miR-20a, an effect reverted by OLM (10−6 M); miR-19a expression was unchanged by LPS in both CG and HG conditions. Conclusions miR-19a and miR-20a are inhibited by inflammatory stimuli active on TF expression and their response differs by the stimulus under investigation; angiotensin II may participate in that mechanism.
Collapse
|
10
|
Zhang X, Li Q, Zhao H, Ma L, Meng T, Qian J, Jin R, Shen J, Yu K. Pathological expression of tissue factor confers promising antitumor response to a novel therapeutic antibody SC1 in triple negative breast cancer and pancreatic adenocarcinoma. Oncotarget 2017; 8:59086-59102. [PMID: 28938620 PMCID: PMC5601716 DOI: 10.18632/oncotarget.19175] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/05/2017] [Indexed: 12/19/2022] Open
Abstract
The pathological presence of tissue factor (TF) in cancer cells promotes tumor-initiated thrombosis and cancer metastasis. We found that TF is aberrantly present in large percentage of aggressive triple negative breast cancer (TNBC) and pancreatic adenocarcinoma (PaC), two most lethal forms of malignancy that urgently need effective treatment. TF expression in TNBC clustered with higher levels of vimentin, basal-type keratins KRT5/14 and caveolin-1 but lower levels of luminal-type biomarkers. We developed a novel and specific anti-TF therapeutic antibody SC1, which displayed an exceedingly high potency against TF extracellular domain (EC50: 0.019 nM), TF-positive TNBC- or PaC cells (EC50: 2.5 nM), intracellular protease activated receptor 2 (PAR2) signaling (IC50: 2-3 nM) and tumor-initiated coagulation (IC50: <10 nM). Depletion of TF or SC1-treatment in TNBC or PaC cells inhibited TF-induced cell migration, lung metastasis and tumor growth in vivo, accompanied by diminished levels of tumor angiogenesis and stromal fibrosis. We further propose TF as a promising target for antibody-drug conjugate (ADC) development based on its rapid and efficient internalization of SC1-drug conjugate. Both SC1-DM1 and SC1-MMAE elicited exquisite cytotoxicity in TF-positive TNBC and PaC cells (IC50: 0.02-0.1 nM) but not in TF-negative cells (>100 nM) achieving >5000 fold target selectivity. Following a weekly intravenous administration, SC1-MMAE and its humanized hSC1-MMAE inhibited TNBC- and PaC tumor growth achieving MED of 0.3-1 mg/kg and were both well tolerated. Thus, the prevalent TF expression in TNBC and PaC renders these challenging tumors highly susceptible to TF-targeted treatment and may offer new opportunity in cancer patients.
Collapse
Affiliation(s)
- Xuesai Zhang
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Qingrou Li
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Hui Zhao
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Lanping Ma
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tao Meng
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jianchang Qian
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Rui Jin
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Jingkang Shen
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ker Yu
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| |
Collapse
|
11
|
D'Asti E, Rak J. Biological basis of personalized anticoagulation in cancer: oncogene and oncomir networks as putative regulators of coagulopathy. Thromb Res 2017; 140 Suppl 1:S37-43. [PMID: 27067976 DOI: 10.1016/s0049-3848(16)30096-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Activation of stromal response pathways in cancer is increasingly viewed as both a local and systemic extension of molecular alterations driving malignant transformation. Rather than reflecting passive and unspecific responses to anatomical abnormalities, the coagulation system is a target of oncogenic deregulation, impacting the role of clotting and fibrinolytic proteins, and integrating hemostasis, inflammation, angiogenesis and cellular growth effects in cancer. These processes signify, but do not depend on, the clinically manifest coagulopathy and thrombosis. In this regard, the role of driver mutations affecting oncoprotein coding genes such as RAS, EGFR or MET and tumour suppressors (PTEN, TP53) are well described as regulators of tissue factor (TF), protease activated receptors (PAR-1/2) and ectopic coagulation factors (FVII). Indeed, in both adult and pediatric brain tumours the expression patterns of coagulation and angiogenesis regulators (coagulome and angiome, respectively) reflect the molecular subtypes of the underlying diseases (glioblastoma or medulloblastoma) as defined by their oncogenic classifiers and clinical course. This emerging understanding is still poorly established in relation to the transforming effects of non-coding genes, including those responsible for the expression of microRNA (miR). Indeed, several miRs have been recently found to regulate TF and other effectors. We recently documented that in the context of the aggressive embryonal tumour with multilayered rosettes (ETMR) the oncogenic driver miR (miR-520g) suppresses the expression of TF and correlates with hypocoagulant tumour characteristics. Unlike in adult cancers, the growth of pediatric embryonal brain tumour cells as spheres (to maintain stem cell properties) results in upregulation of miR-520g and downregulation of TF expression and activity. We postulate that oncogenic protein and miR coding genes form alternative pathways of coagulation system regulation in different tumour settings, a property necessitating more personalised and biologically-based approaches to anticoagulation.
Collapse
Affiliation(s)
- Esterina D'Asti
- McGill University, Montreal Children's Hospital, RI MUHC, McGill University, Montreal, Quebec, Canada
| | - Janusz Rak
- McGill University, Montreal Children's Hospital, RI MUHC, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Regulation of podoplanin expression by microRNA-29b associates with its antiapoptotic effect in angiotensin II-induced injury of human podocytes. J Hypertens 2016; 34:323-31. [PMID: 26867059 DOI: 10.1097/hjh.0000000000000799] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Angiotensin (Ang)II is involved in induction of proteinuria, renal injury, and apoptosis and thus a major contributor to the development of chronic kidney disease. Podocytes are of major importance for the pathogenesis of several kidney diseases. Decrease of podoplanin (PDPN) in podocytes and podocyte loss has been associated with the development of proteinuria. Little is known about the regulation and biological function of PDPN in podocytes and its role in AngII-mediated kidney damage. Here, we determined the influence of AngII on the expression of PDPN, microRNA (miRNA)-29b and miRNA-497 in human podocytes. Further, we analyzed the impact of small interfering RNA-mediated downregulation of PDPN on AngII-induced apoptosis and viability. Moreover, we characterized the role of miRNA-29b and miRNA-497 in expression regulation of PDPN. METHODS Cell viability and apoptosis were determined by functional assays. Expression analyses were done via Real-Time PCR and western blot analyses. Dual luciferase assay was performed to characterize miRNA-mediated expression control. RESULTS AngII increased the expression of miRNA-29b and reduced PDPN. Small interfering RNA-mediated downregulation of PDPN increased proapoptotic caspase-3 activation and cytochrome C translocation, whereas cell viability and Akt phosphorylation were reduced in AngII-stimulated podocytes. In contrast to miRNA-497, transfection of cells with miRNA-29b mimics significantly decreased PDPN. Cotransfection of cells with miRNA-29b and a dual luciferase reporter vector decreased the luciferase activity compared with controls. CONCLUSION These data demonstrate the posttranscriptional control of PDPN expression by miRNA-29b and support a role of PDPN as an antiapoptotic prosurvival factor in AngII-induced injury of human podocytes.
Collapse
|
13
|
Lin J, He S, Sun X, Franck G, Deng Y, Yang D, Haemmig S, Wara AKM, Icli B, Li D, Feinberg MW. MicroRNA-181b inhibits thrombin-mediated endothelial activation and arterial thrombosis by targeting caspase recruitment domain family member 10. FASEB J 2016; 30:3216-26. [PMID: 27297585 DOI: 10.1096/fj.201500163r] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/31/2016] [Indexed: 12/12/2022]
Abstract
Thrombogenic and inflammatory mediators, such as thrombin, induce NF-κB-mediated endothelial cell (EC) activation and dysfunction, which contribute to pathogenesis of arterial thrombosis. The role of anti-inflammatory microRNA-181b (miR-181b) on thrombosis remains unknown. Our previous study demonstrated that miR-181b inhibits downstream NF-κB signaling in response to TNF-α. Here, we demonstrate that miR-181b uniquely inhibits upstream NF-κB signaling in response to thrombin. Overexpression of miR-181b inhibited thrombin-induced activation of NF-κB signaling, demonstrated by reduction of phospho-IKK-β, -IκB-α, and p65 nuclear translocation in ECs. MiR-181b also reduced expression of NF-κB target genes VCAM-1, intercellular adhesion molecule-1, E-selectin, and tissue factor. Mechanistically, miR-181b targets caspase recruitment domain family member 10 (Card10), an adaptor protein that participates in activation of the IKK complex in response to signals transduced from protease-activated receptor-1. miR-181b reduced expression of Card10 mRNA and protein, but not protease-activated receptor-1. 3'-Untranslated region reporter assays, argonaute-2 microribonucleoprotein immunoprecipitation studies, and Card10 rescue studies revealed that Card10 is a bona fide direct miR-181b target. Small interfering RNA-mediated knockdown of Card10 expression phenocopied effects of miR-181b on NF-κB signaling and targets. Card10 deficiency did not affect TNF-α-induced activation of NF-κB signaling, which suggested stimulus-specific regulation of NF-κB signaling and endothelial responses by miR-181b in ECs. Finally, in response to photochemical injury-induced arterial thrombosis, systemic delivery of miR-181b reduced thrombus formation by 73% in carotid arteries and prolonged time to occlusion by 1.6-fold, effects recapitulated by Card10 small interfering RNA. These data demonstrate that miR-181b and Card10 are important regulators of thrombin-induced EC activation and arterial thrombosis. These studies highlight the relevance of microRNA-dependent targets in response to ligand-specific signaling in ECs.-Lin, J., He, S., Sun, X., Franck, G., Deng, Y., Yang, D., Haemmig, S., Wara, A. K. M., Icli, B., Li, D., Feinberg, M. W. MicroRNA-181b inhibits thrombin-mediated endothelial activation and arterial thrombosis by targeting caspase recruitment domain family member 10.
Collapse
Affiliation(s)
- Jibin Lin
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Shaolin He
- Department of Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Xinghui Sun
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory Franck
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yihuan Deng
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Dafeng Yang
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Stefan Haemmig
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - A K M Wara
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Basak Icli
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dazhu Li
- Department of Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
14
|
Abstract
In recent years, hepatic oval cells (HOC) have gradually become a research hotspot, and their participation in the reconstruction of liver structure and function has been preliminarily confirmed. This provides a new direction for the study of the pathogenesis and treatment of liver injury, hepatitis, liver fibrosis, cirrhosis, liver neoplasms and other liver diseases. This paper will discuss the relationship between hepatic oval cells and liver diseases.
Collapse
|
15
|
Hemostatic disorders of the menopausal period: the role of microRNA. MENOPAUSE REVIEW 2015; 14:144-8. [PMID: 26327903 PMCID: PMC4498032 DOI: 10.5114/pm.2015.52155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/28/2014] [Accepted: 02/09/2015] [Indexed: 12/18/2022]
Abstract
Adverse changes in hemostasis of menopausal women, observed e.g. in atherosclerotic or neoplastic cases, are of multicausal origin. It is believed that in the development and regulation of these processes, an important role is played by microRNA particles, which presence is ascertained in endothelial cells, atherosclerotic plaques and systemic circulation. Discovered for the first time over 20 years ago, up to now over two and a half thousand types of microRNA have been identified in the human body. MicroRNAs are single stranded RNA molecules of 20-24 nucleotides, encoded by the cell's genome and then transcribed by polymerase II. They regulate the expression of a large gene pool, approximately 30% of all genes, in the human body. MicroRNA molecules, like other bioactive molecules – RNA, protein – both play important roles in tumor invasion, metastasis, inflammation, coagulation, and regeneration. What is important, they can be detected not only in tissues (e.g. tumor tissues), but also in circulation (blood serum), where they are released. Accurate understanding of the role played by certain types of microRNA (e.g. miR-126, miR-17-92, miR-33, miR-613, miR-27a/b, miR-143, miR-335, miR-370, miR-122, miR-19b, miR-520, or miR-220) in hemostatic processes may allow in the future for their use not only as specific biomarkers of cardiovascular diseases but also as the target for innovative gene therapies.
Collapse
|
16
|
Xu RH, Zheng LY, He DL, Meng J, Xia LP, Hao XB, Zhang ZZ. Profiling of differentially expressed microRNAs (miRNAs) during differentiation of rat hepatic oval cells (HOCs) into hepatocellular carcinoma (HCC) cells. Clin Transl Oncol 2015; 17:230-7. [PMID: 25257837 DOI: 10.1007/s12094-014-1218-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/16/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To explore the expression profile of miRNAs during differentiation of rat hepatic oval cells (HOCs) into hepatocellular carcinoma cells (HCC). METHODS Proliferation of rat HOCs was induced by chemical carcinogen, 3'-methyl-4-dimethylaminoazobenzene (3'-Me-DAB) in male rats. By using Percoll density gradient centrifugation method, HOCs were isolated, followed by continuous cultivation in vitro. The isolated HOCs were identified via Thy-1 and C-kit detection under laser scanning confocal microscope. Total miRNA was then extracted from HOCs during cell differentiation for microarray hybridization. Differentially expressed miRNAs among the indicated time points were identified. The target genes of identified miRNAs were predicted using PicTar, Target-Scan, and miRanda; then the functions and pathways of the genes were enriched. Y chromosome-specific polymerase chain reaction (PCR) technique was utilized to trace the differentiation of the male HOCs in carcinogen-induced HCC of female rats. RESULTS It was shown that isolated HOCs expressed stem cells markers of Thy-1 and C-kit in cytoplasm and membrane. Among 1,210 miRNAs identified, 22 were differentially expressed (P < 0.05, fold change ≥2), including 19 up-regulated and 3 down-regulated ones. The predicted target genes of these miRNAs were enriched in several functions, including axon guidance, angiogenesis, post-transcriptional protein modification, and small molecular metabolism. For PCR-based SRY detection, HCC genomic DNA of female rats from the experimental group displayed the same PCR product as that from normal male rat. CONCLUSION Differentially expressed miRNAs exerted important roles during the differentiation process of HOCs to HCC.
Collapse
Affiliation(s)
- R H Xu
- Department of Oncology Surgery, The Affiliated Hospital of Hainan Medical College, Haikou, 570102, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Han X, Guo B, Li Y, Zhu B. Tissue factor in tumor microenvironment: a systematic review. J Hematol Oncol 2014; 7:54. [PMID: 25084809 PMCID: PMC4237870 DOI: 10.1186/s13045-014-0054-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/09/2014] [Indexed: 01/01/2023] Open
Abstract
The aberrant hemostasis is a common manifestation of cancer, and venous thromboembolism (VTE) is the second leading cause of cancer patients’ mortality. Tissue factor (TF), comprising of a 47-kDa transmembrane protein that presents in subendothelial tissues and leukocytes and a soluble isoform, have distinct roles in the initiation of extrinsic coagulation cascade and thrombosis. Laboratory and clinical evidence showed the deviant expression of TF in several cancer systems and its tumor-promoting effects. TF contributes to myeloid cell recruitment in tumor stroma, thereby remodeling of tumor microenvironment. Additionally, the number of TF-positive-microparticles (TF+MP) from tumor origins correlates with the VTE rates in cancer patients. In this review, we summarize our current understanding of the TF regulation and roles in tumor progression and clinical complications.
Collapse
|
18
|
Zandman-Goddard G, Pierangeli SS, Gertel S, Blank M. Tolerogenic dendritic cells specific for β2-glycoprotein-I Domain-I, attenuate experimental antiphospholipid syndrome. J Autoimmun 2014; 54:72-80. [PMID: 24972993 DOI: 10.1016/j.jaut.2014.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 11/19/2022]
Abstract
Tolerogenic dendritic cells (tDCs) have the potential to control the outcome of autoimmunity by modulating the immune response. The aim of this study was to uncover the tolerance efficacy attributed to beta-2-glycoprotein-I (β2GPI) tDCs or β2GPI domain-I (D-I) and domain-V (D-V)-tDCs in mice with antiphospholipid syndrome (APS). tDCs were pulsed with β2GPI or D-I or D-V derivatives. Our results revealed that β2GPI related tDCs phenotype includes CD80(high), CD86(high) CD40(high) MHC class II(high). The miRNA profiling encompass miRNA 23b(high), miRNA 142-3p(low) and miRNA 221(low). In addition the β2GPI related tDCs showed reduced secretion of IL-1β, IL-12 and IL-23. D-I tDCs treatment was more efficient than β2GPI tDCs in inducing of tolerance in APS mice, manifested by lowered titers of anti- β2GPI antibodies (Abs) and reduced percentage of fetal loss. Tolerance induction was accompanied by poor T cell response to β2GPI, high numbers of CD4 + CD25 + FOXP3 + T-regulatory cells (Treg), reduced levels of IFNγ, IL-17 and increased expression of IL-10 and TGFβ. Tolerance was successfully transferred by Treg cells from the tolerized mice to β2GPI immunized mice. We conclude that predominantly D-I-tDCs and β2GPI tDCs have the potential to attenuate experimental APS by induction of Treg cells, reduction of anti- β2GPI Abs titers and increased expression of anti-inflammatory cytokines. We suggest that β2-GPI-D-I-tDCs may offer a novel approach for developing therapy for APS patients.
Collapse
Affiliation(s)
- Gisele Zandman-Goddard
- The Zabludowicz Center For Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Sackler Faculty of Medicine Tel-Aviv University, 52621, Israel; Department of Medicine C, Wolfson Medical Center, Sackler Faculty of Medicine Tel-Aviv University, Holon, Israel
| | - Silvia S Pierangeli
- Antiphospholipid Standardization Laboratory, Division of Rheumatology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Smadar Gertel
- The Zabludowicz Center For Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Sackler Faculty of Medicine Tel-Aviv University, 52621, Israel
| | - Miri Blank
- The Zabludowicz Center For Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Sackler Faculty of Medicine Tel-Aviv University, 52621, Israel.
| |
Collapse
|
19
|
Leppert U, Eisenreich A. The role of tissue factor isoforms in cancer biology. Int J Cancer 2014; 137:497-503. [PMID: 24806794 DOI: 10.1002/ijc.28959] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 05/02/2014] [Indexed: 12/17/2022]
Abstract
Tissue Factor (TF) is an evolutionary conserved glycoprotein, which is of immense importance for a variety of biologic processes. TF is expressed in two naturally occurring protein isoforms, membrane-bound "full-length" (fl)TF and soluble alternatively spliced (as)TF. The TF isoform expression is differentially modulated on post-transcriptional level via regulatory factors, such as serine/arginine-rich (SR) proteins, SR protein kinases and micro (mi)RNAs. Both isoforms mediate a variety of physiologic- and pathophysiologic-relevant functions, such as thrombogenicity, angiogenesis, cell signaling, tumor cell proliferation and metastasis. In this review, we will depict the main mechanisms regulating the TF isoform expression in cancer and under other pathophysiologic-relevant conditions. Moreover, we will summarize and discuss the latest findings regarding the role of TF and its isoforms in cancer biology.
Collapse
Affiliation(s)
- Ulrike Leppert
- Charité - Universitätsmedizin Berlin, Campus Mitte, Charite Centrum 04/13, Berlin, Germany
| | - Andreas Eisenreich
- Charité - Universitätsmedizin Berlin, Campus Mitte, Charite Centrum 04/13, Berlin, Germany
| |
Collapse
|