1
|
Niego B, Jupp B, Zia NA, Xu R, Jap E, Ezeani M, Noor A, Donnelly PS, Hagemeyer CE, Alt K. Molecular Imaging of Diffuse Cardiac Fibrosis with a Radiotracer That Targets Proteolyzed Collagen IV. Radiol Cardiothorac Imaging 2024; 6:e230098. [PMID: 38512024 PMCID: PMC11056764 DOI: 10.1148/ryct.230098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/19/2023] [Accepted: 01/22/2024] [Indexed: 03/22/2024]
Abstract
Purpose To develop an approach for in vivo detection of interstitial cardiac fibrosis using PET with a peptide tracer targeting proteolyzed collagen IV (T-peptide). Materials and Methods T-peptide was conjugated to the copper chelator MeCOSar (chemical name, 5-(8-methyl-3,6,10,13,16,19-hexaaza-bicyclo[6.6.6]icosan-1-ylamino)-5-oxopentanoic acid) and radiolabeled with copper 64 (64Cu). PET/CT scans were acquired following intravenous delivery of 64Cu-T-peptide-MeCOSar (0.25 mg/kg; 18 MBq ± 2.7 [SD]) to male transgenic mice overexpressing β2-adrenergic receptors with intermediate (7 months of age; n = 4 per group) to severe (10 months of age; n = 11 per group) cardiac fibrosis and their wild-type controls. PET scans were also performed following coadministration of the radiolabeled probe with nonlabeled T-peptide in excess to confirm binding specificity. PET data were analyzed by t tests for static scans and analysis of variance tests (one- or two-way) for dynamic scans. Results PET/CT scans revealed significantly elevated (2.24-4.26-fold; P < .05) 64Cu-T-peptide-MeCOSar binding in the fibrotic hearts of aged transgenic β2-adrenergic receptor mice across the entire 45-minute acquisition period compared with healthy controls. The cardiac tracer accumulation and presence of diffuse cardiac fibrosis in older animals were confirmed by gamma counting (P < .05) and histologic evaluation, respectively. Coadministration of a nonradiolabeled probe in excess abolished the elevated radiotracer binding in the aged transgenic hearts. Importantly, PET tracer accumulation was also detected in younger (7 months of age) transgenic mice with intermediate cardiac fibrosis, although this was only apparent from 20 minutes following injection (1.6-2.2-fold binding increase; P < .05). Conclusion The T-peptide PET tracer targeting proteolyzed collagen IV provided a sensitive and specific approach of detecting diffuse cardiac fibrosis at varying degrees of severity in a transgenic mouse model. Keywords: Diffuse Cardiac Fibrosis, Molecular Peptide Probe, Molecular Imaging, PET/CT © RSNA, 2024.
Collapse
Affiliation(s)
| | | | - Nicholas A. Zia
- From the NanoBiotechnology Laboratory (B.N., R.X., M.E., C.E.H.) and
NanoTheranostics Laboratory (E.J., K.A.), Australian Centre for Blood Diseases,
Central Clinical School, Monash University, Melbourne, VIC 3004, Australia;
Department of Neuroscience, Central Clinical School, Monash University,
Melbourne, Australia (B.J.); and School of Chemistry and Bio21 Molecular Science
and Biotechnology Institute, University of Melbourne, Melbourne, Australia
(N.A.Z., A.N., P.S.D.)
| | - Rong Xu
- From the NanoBiotechnology Laboratory (B.N., R.X., M.E., C.E.H.) and
NanoTheranostics Laboratory (E.J., K.A.), Australian Centre for Blood Diseases,
Central Clinical School, Monash University, Melbourne, VIC 3004, Australia;
Department of Neuroscience, Central Clinical School, Monash University,
Melbourne, Australia (B.J.); and School of Chemistry and Bio21 Molecular Science
and Biotechnology Institute, University of Melbourne, Melbourne, Australia
(N.A.Z., A.N., P.S.D.)
| | - Edwina Jap
- From the NanoBiotechnology Laboratory (B.N., R.X., M.E., C.E.H.) and
NanoTheranostics Laboratory (E.J., K.A.), Australian Centre for Blood Diseases,
Central Clinical School, Monash University, Melbourne, VIC 3004, Australia;
Department of Neuroscience, Central Clinical School, Monash University,
Melbourne, Australia (B.J.); and School of Chemistry and Bio21 Molecular Science
and Biotechnology Institute, University of Melbourne, Melbourne, Australia
(N.A.Z., A.N., P.S.D.)
| | - Martin Ezeani
- From the NanoBiotechnology Laboratory (B.N., R.X., M.E., C.E.H.) and
NanoTheranostics Laboratory (E.J., K.A.), Australian Centre for Blood Diseases,
Central Clinical School, Monash University, Melbourne, VIC 3004, Australia;
Department of Neuroscience, Central Clinical School, Monash University,
Melbourne, Australia (B.J.); and School of Chemistry and Bio21 Molecular Science
and Biotechnology Institute, University of Melbourne, Melbourne, Australia
(N.A.Z., A.N., P.S.D.)
| | - Asif Noor
- From the NanoBiotechnology Laboratory (B.N., R.X., M.E., C.E.H.) and
NanoTheranostics Laboratory (E.J., K.A.), Australian Centre for Blood Diseases,
Central Clinical School, Monash University, Melbourne, VIC 3004, Australia;
Department of Neuroscience, Central Clinical School, Monash University,
Melbourne, Australia (B.J.); and School of Chemistry and Bio21 Molecular Science
and Biotechnology Institute, University of Melbourne, Melbourne, Australia
(N.A.Z., A.N., P.S.D.)
| | - Paul S. Donnelly
- From the NanoBiotechnology Laboratory (B.N., R.X., M.E., C.E.H.) and
NanoTheranostics Laboratory (E.J., K.A.), Australian Centre for Blood Diseases,
Central Clinical School, Monash University, Melbourne, VIC 3004, Australia;
Department of Neuroscience, Central Clinical School, Monash University,
Melbourne, Australia (B.J.); and School of Chemistry and Bio21 Molecular Science
and Biotechnology Institute, University of Melbourne, Melbourne, Australia
(N.A.Z., A.N., P.S.D.)
| | | | | |
Collapse
|
2
|
Tubeeckx MRL, De Keulenaer GW, Heidbuchel H, Segers VFM. Pathophysiology and clinical relevance of atrial myopathy. Basic Res Cardiol 2024; 119:215-242. [PMID: 38472506 DOI: 10.1007/s00395-024-01038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Atrial myopathy is a condition that consists of electrical, structural, contractile, and autonomic remodeling of the atria and is the substrate for development of atrial fibrillation, the most common arrhythmia. Pathophysiologic mechanisms driving atrial myopathy are inflammation, oxidative stress, atrial stretch, and neurohormonal signals, e.g., angiotensin-II and aldosterone. These mechanisms initiate the structural and functional remodeling of the atrial myocardium. Novel therapeutic strategies are being developed that target the pathophysiologic mechanisms of atrial myopathy. In this review, we will discuss the pathophysiology of atrial myopathy, as well as diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Michiel R L Tubeeckx
- Laboratory of Physiopharmacology, Universiteitsplein 1, Building T (2nd Floor), 2610, Antwerp, Belgium.
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, Universiteitsplein 1, Building T (2nd Floor), 2610, Antwerp, Belgium
- Department of Cardiology, ZNA Middelheim Hospital Antwerp, Antwerp, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
| | - Vincent F M Segers
- Laboratory of Physiopharmacology, Universiteitsplein 1, Building T (2nd Floor), 2610, Antwerp, Belgium
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
| |
Collapse
|
3
|
Lu S, Zhang K, Liu Y, Zhan X, Savari R. Polymeric nanocomposite electrode for enhanced electrochemical detection of α-lipoic acid: Application in neuroinflammation prevention and clinical analysis. ENVIRONMENTAL RESEARCH 2024; 245:117369. [PMID: 37827372 DOI: 10.1016/j.envres.2023.117369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Using poly (vanillin-co-chitosan)/functionalized MWCNTs/GCE (PV-CS/f-MWCNTs/GCE) as a polymeric nanocomposite modified electrode, the present investigation has been conducted on the electrochemical detection of α-lipoic acid (α-LA) to prevent the activation of microglia inflammation of the nervous system. The manufacture of modified polymeric nanocomposite electrodes was carried out using the established electropolymerization process. Field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) analyses of structure revealed that the electropolymerization of poly (vanillin-co-chitosan) on the surface of the f-MWCNTs modified electrode was successful. Vanillin-co-chitosan electropolymerization on f-MWCNTs as electroactive sheets can enhance the signal for α-LA electrochemical sensors, according to research on the electrochemical characteristics utilizing cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methodologies. The PV-CS/f-MWCNTs/GCE demonstrated that it had a sensitivity of 0.04664 μA/μM, a detection limit of 0.012 μM, and an excellent response, linear range, and wide linear range to α-LA from 0 to 3000 μM. The results of the application of PV-CS/f-MWCNTs/GCE for determining the concentration of α-LA in a prepared real sample of human serum by DPV and human lipoic acid ELISA Kit analyses via standard addition method illustrated the substantial conformity between the findings of both assays. The results of the DPV analyses resulted in acceptable recovery values (97.60%-99.10%) and appropriate values of the Relative Standard Deviation (RSD) (3.58%-5.07%), which demonstrated the great applicability and accuracy of the results of PV-CS/f-MWCNTs/GCE for determining α-LA concentration in biological fluids and pharmaceutical specimens.
Collapse
Affiliation(s)
- Shenyi Lu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
| | - Ke Zhang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yu Liu
- Guangxi Medical university, Nanning, 530021, China
| | | | - Rojan Savari
- School of Physics, College of Science, University of Tehran, North-Kargar Street, Tehran, 1439955961, Iran
| |
Collapse
|
4
|
Farhat K, Elkholey K, Asad ZUA, Stavrakis S. Atrial Myopathy and Ischemic Stroke in Heart Failure With Preserved Ejection Fraction. Am J Cardiol 2023; 203:248-252. [PMID: 37506671 PMCID: PMC10530472 DOI: 10.1016/j.amjcard.2023.07.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/01/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023]
Abstract
Recent studies suggested an association between atrial myopathy and stroke independent of atrial fibrillation (AF). We examined the hypothesis that atrial myopathy may be associated with ischemic stroke in patients with heart failure with preserved ejection fraction. This is an exploratory, post hoc analysis of the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) trial. Patients with sinus rhythm documented at baseline electrocardiogram and without known AF were included in this analysis. Atrial myopathy was defined by echocardiographic evidence of left atrial (LA) enlargement (LA diameter >46 mm or LA volume index >36 ml/m2) or elevated natriuretic peptides (brain natriuretic peptide >100 pg/ml or N-terminal Pro-B-type natriuretic peptide >400 pg/ml). We used Cox regression to investigate the effect of atrial myopathy on incident ischemic stroke over the study period. In 3,445 patients in the TOPCAT trial, 2,225 (mean age 67.5 ± 4.9 years; female 54.8%) had normal sinus rhythm at baseline and no history of AF. Atrial myopathy was present in 756 patients (34.0%). During a median follow-up of 2 years, 56 patients (2.5%) developed ischemic stroke, including 25 with atrial myopathy. Atrial myopathy was associated with increased risk of stroke (hazard ratio = 1.74, 95% confidence interval 1.01 to 2.98, p = 0.04) in multivariate analysis. Diabetes mellitus (hazard ratio = 2.02, 95% confidence interval 1.19 to 3.43 p = 0.01) was the only other independent predictor of stroke. In patients with heart failure with preserved ejection fraction, atrial myopathy increases the risk of ischemic stroke, in the absence of AF. Further investigations are needed to better characterize this association and implement stroke prevention strategies.
Collapse
Affiliation(s)
- Kassem Farhat
- Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Khaled Elkholey
- Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Zain Ul Abideen Asad
- Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Stavros Stavrakis
- Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| |
Collapse
|
5
|
Schnabel RB, Marinelli EA, Arbelo E, Boriani G, Boveda S, Buckley CM, Camm AJ, Casadei B, Chua W, Dagres N, de Melis M, Desteghe L, Diederichsen SZ, Duncker D, Eckardt L, Eisert C, Engler D, Fabritz L, Freedman B, Gillet L, Goette A, Guasch E, Svendsen JH, Hatem SN, Haeusler KG, Healey JS, Heidbuchel H, Hindricks G, Hobbs FDR, Hübner T, Kotecha D, Krekler M, Leclercq C, Lewalter T, Lin H, Linz D, Lip GYH, Løchen ML, Lucassen W, Malaczynska-Rajpold K, Massberg S, Merino JL, Meyer R, Mont L, Myers MC, Neubeck L, Niiranen T, Oeff M, Oldgren J, Potpara TS, Psaroudakis G, Pürerfellner H, Ravens U, Rienstra M, Rivard L, Scherr D, Schotten U, Shah D, Sinner MF, Smolnik R, Steinbeck G, Steven D, Svennberg E, Thomas D, True Hills M, van Gelder IC, Vardar B, Palà E, Wakili R, Wegscheider K, Wieloch M, Willems S, Witt H, Ziegler A, Daniel Zink M, Kirchhof P. Early diagnosis and better rhythm management to improve outcomes in patients with atrial fibrillation: the 8th AFNET/EHRA consensus conference. Europace 2022; 25:6-27. [PMID: 35894842 PMCID: PMC9907557 DOI: 10.1093/europace/euac062] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Despite marked progress in the management of atrial fibrillation (AF), detecting AF remains difficult and AF-related complications cause unacceptable morbidity and mortality even on optimal current therapy. This document summarizes the key outcomes of the 8th AFNET/EHRA Consensus Conference of the Atrial Fibrillation NETwork (AFNET) and the European Heart Rhythm Association (EHRA). Eighty-three international experts met in Hamburg for 2 days in October 2021. Results of the interdisciplinary, hybrid discussions in breakout groups and the plenary based on recently published and unpublished observations are summarized in this consensus paper to support improved care for patients with AF by guiding prevention, individualized management, and research strategies. The main outcomes are (i) new evidence supports a simple, scalable, and pragmatic population-based AF screening pathway; (ii) rhythm management is evolving from therapy aimed at improving symptoms to an integrated domain in the prevention of AF-related outcomes, especially in patients with recently diagnosed AF; (iii) improved characterization of atrial cardiomyopathy may help to identify patients in need for therapy; (iv) standardized assessment of cognitive function in patients with AF could lead to improvement in patient outcomes; and (v) artificial intelligence (AI) can support all of the above aims, but requires advanced interdisciplinary knowledge and collaboration as well as a better medico-legal framework. Implementation of new evidence-based approaches to AF screening and rhythm management can improve outcomes in patients with AF. Additional benefits are possible with further efforts to identify and target atrial cardiomyopathy and cognitive impairment, which can be facilitated by AI.
Collapse
Affiliation(s)
- Renate B Schnabel
- Atrial Fibrillation Network (AFNET), Muenster, Germany,Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,German Centre for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | | | - Elena Arbelo
- Arrhythmia Section, Cardiology Department, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain,IDIBAPS, Institut d'Investigació August Pi i Sunyer, Barcelona, Spain,CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Giuseppe Boriani
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Polyclinic of Modena, Modena, Italy
| | - Serge Boveda
- Cardiology—Heart Rhythm Management Department, Clinique Pasteur, 45 Avenue de Lombez, 31076 Toulouse, France,Universiteit Ziekenhuis, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - A John Camm
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Institute, St. George's University of London, London, UK
| | - Barbara Casadei
- RDM, Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Winnie Chua
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Nikolaos Dagres
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Mirko de Melis
- Medtronic Bakken Research Center, Maastricht, The Netherlands
| | - Lien Desteghe
- Research Group Cardiovascular Diseases, University of Antwerp, Antwerp, Belgium,Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium,Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium,Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium
| | - Søren Zöga Diederichsen
- Department of Cardiology, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - David Duncker
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Lars Eckardt
- Atrial Fibrillation Network (AFNET), Muenster, Germany,Division of Electrophysiology, Department of Cardiology and Angiology, Münster, Germany
| | | | - Daniel Engler
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,German Centre for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Larissa Fabritz
- Atrial Fibrillation Network (AFNET), Muenster, Germany,Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,German Centre for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck, Hamburg, Germany,Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK,University Center of Cardiovascular Science Hamburg, Hamburg, Germany
| | - Ben Freedman
- Heart Research Institute, The University of Sydney, Sydney, Australia
| | | | - Andreas Goette
- Atrial Fibrillation Network (AFNET), Muenster, Germany,St Vincenz Hospital, Paderborn, Germany
| | - Eduard Guasch
- Arrhythmia Section, Cardiology Department, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain,IDIBAPS, Institut d'Investigació August Pi i Sunyer, Barcelona, Spain,CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Jesper Hastrup Svendsen
- Department of Cardiology, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Karl Georg Haeusler
- Atrial Fibrillation Network (AFNET), Muenster, Germany,Department of Neurology, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Jeff S Healey
- Population Health Research Institute, McMaster University Hamilton, ON, Canada
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, University of Antwerp, Antwerp, Belgium,Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Gerhard Hindricks
- Atrial Fibrillation Network (AFNET), Muenster, Germany,Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | | | | | - Dipak Kotecha
- University of Birmingham & University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | | | - Thorsten Lewalter
- Atrial Fibrillation Network (AFNET), Muenster, Germany,Hospital Munich South, Department of Cardiology, Munich, Germany,Department of Cardiology, University of Bonn, Bonn, Germany
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dominik Linz
- Department of Cardiology, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Maja Lisa Løchen
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Wim Lucassen
- Amsterdam UMC (location AMC), Department General Practice, Amsterdam, The Netherlands
| | | | - Steffen Massberg
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany,German Centre for Cardiovascular Research (DZHK), partner site: Munich Heart Alliance, Munich, Germany
| | - Jose L Merino
- Arrhythmia & Robotic EP Unit, La Paz University Hospital, IDIPAZ, Madrid, Spain
| | | | - Lluıs Mont
- Arrhythmia Section, Cardiology Department, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain,IDIBAPS, Institut d'Investigació August Pi i Sunyer, Barcelona, Spain,CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | | | - Lis Neubeck
- Arrhythmia & Robotic EP Unit, La Paz University Hospital, IDIPAZ, Madrid, Spain
| | - Teemu Niiranen
- Medtronic, Dublin, Ireland,Centre for Cardiovascular Health Edinburgh Napier University, Edinburgh, UK
| | - Michael Oeff
- Atrial Fibrillation Network (AFNET), Muenster, Germany
| | - Jonas Oldgren
- University of Turku and Turku University Hospital, Turku, Finland
| | | | - George Psaroudakis
- Uppsala Clinical Research Center and Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Helmut Pürerfellner
- School of Medicine, Belgrade University, Cardiology Clinic, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Ursula Ravens
- Atrial Fibrillation Network (AFNET), Muenster, Germany,Bayer AG, Leverkusen, Germany
| | - Michiel Rienstra
- Ordensklinikum Linz, Elisabethinen, Cardiological Department, Linz, Austria
| | - Lena Rivard
- Institute of Experimental Cardiovascular Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Daniel Scherr
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ulrich Schotten
- Atrial Fibrillation Network (AFNET), Muenster, Germany,Montreal Heart Institute, University of Montreal, Montreal, Canada
| | - Dipen Shah
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Moritz F Sinner
- Atrial Fibrillation Network (AFNET), Muenster, Germany,Amsterdam UMC (location AMC), Department General Practice, Amsterdam, The Netherlands,Royal Brompton Hospital, London, UK
| | | | - Gerhard Steinbeck
- Atrial Fibrillation Network (AFNET), Muenster, Germany,MUMC+, Maastricht, The Netherlands
| | - Daniel Steven
- Atrial Fibrillation Network (AFNET), Muenster, Germany,University Hospital of Geneva, Cardiac Electrophysiology Unit, Geneva, Switzerland
| | - Emma Svennberg
- Center for Cardiology at Clinic Starnberg, Starnberg, Germany
| | - Dierk Thomas
- Atrial Fibrillation Network (AFNET), Muenster, Germany,University Hospital Cologne, Heart Center, Department of Electrophysiology, Cologne, Germany,Karolinska Institutet, Department of Medicine Huddinge, Karolinska University Hospital, Stockholm, Sweden,Department of Cardiology, Medical University Hospital, Heidelberg, Germany
| | - Mellanie True Hills
- HCR (Heidelberg Center for Heart Rhythm Disorders), Medical University Hospital Heidelberg, Heidelberg, Germany
| | - Isabelle C van Gelder
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Burcu Vardar
- Uppsala Clinical Research Center and Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Elena Palà
- StopAfib.org, American Foundation for Women’s Health, Decatur, TX, USA
| | - Reza Wakili
- Atrial Fibrillation Network (AFNET), Muenster, Germany,Department of Cardiology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Karl Wegscheider
- Atrial Fibrillation Network (AFNET), Muenster, Germany,German Centre for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck, Hamburg, Germany,Neurovascular Research Laboratory, Vall d’Hebron Institute of Research (VHIR), Autonomous University of Barcelona, Barcelona, Spain
| | - Mattias Wieloch
- Department of Cardiology and Vascular Medicine, Westgerman Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany,Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Germany
| | - Stephan Willems
- Atrial Fibrillation Network (AFNET), Muenster, Germany,German Centre for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck, Hamburg, Germany,Department of Coagulation Disorders, Skane University Hospital, Lund University, Malmö, Sweden
| | | | | | - Matthias Daniel Zink
- Asklepios Hospital St Georg, Department of Cardiology and Internal Intensive Care Medicine, Faculty of Medicine, Semmelweis University Campus Hamburg, Hamburg, Germany
| | - Paulus Kirchhof
- Corresponding author. Tel: +49 40 7410 52438; Fax: +49 40 7410 55862. E-mail address:
| |
Collapse
|
6
|
Wang Y, Yang Y, He F. Insights into Concomitant Atrial Fibrillation and Chronic Kidney Disease. Rev Cardiovasc Med 2022; 23:105. [PMID: 35345272 DOI: 10.31083/j.rcm2303105] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 01/03/2025] Open
Abstract
Chronic kidney disease (CKD) shows a high prevalence and is characterized by progressive and irreversible loss of renal function. It is also associated with a high risk of cardiovascular disease. The CKD population often suffers from atrial fibrillation (AF), which is associated with cardiovascular and all-cause mortality. There is a pernicious bidirectional relationship between CKD and AF: renal dysfunction can help promote AF initiation and maintenance, while unmanageable AF often accelerates kidney function deterioration. Therefore, it is necessary to determine the interactive mechanisms between CKD and AF for optimal management of patients. However, due to renal function impairment and changes in the pharmacokinetics of anticoagulants, it is still elusive to formulate a normative therapeutic schedule for the AF population concomitant with CKD especially those with end-stage kidney failure. This review describes the possible molecular mechanisms linking CKD to AF and existing therapeutic options.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Yi Yang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Fan He
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| |
Collapse
|
7
|
Coats AJS, Heymans S, Farmakis D, Anker SD, Backs J, Bauersachs J, de Boer RA, Čelutkienė J, Cleland JGF, Dobrev D, van Gelder IC, von Haehling S, Hindricks G, Jankowska E, Kotecha D, van Laake LW, Lainscak M, Lund LH, Lunde IG, Lyon AR, Manouras A, Miličić D, Mueller C, Polovina M, Ponikowski P, Rosano G, Seferović PM, Tschöpe C, Wachter R, Ruschitzka F. Atrial disease and heart failure: the common soil hypothesis proposed by the Heart Failure Association of the European Society of Cardiology. Eur Heart J 2021; 43:ehab834. [PMID: 34875053 DOI: 10.1093/eurheartj/ehab834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/29/2021] [Accepted: 11/26/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Stephane Heymans
- Department of Cardiology, Maastricht University, CARIM School for Cardiovascular Diseases, Maastricht, Netherlands
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Dimitrios Farmakis
- University of Cyprus Medical School, Shakolas Educational Center for Clinical Medicine, Palaios dromos Lefkosias Lemesou No. 215/6, Aglantzia, Nicosia 2029, Cyprus
| | - Stefan D Anker
- Department of Cardiology (CVK), Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany
- Charité Universitätsmedizin Berlin, Germany
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jelena Čelutkienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- State Research Institute Centre For Innovative Medicine, Vilnius, Lithuania
| | - John G F Cleland
- Robertson Centre for Biostatistics & Clinical Trials, University of Glasgow & National Heart & Lung Institute, Imperial College, London, UK
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University of Duisburg-Essen, Germany
- Montréal Heart Institute and University de Montréal, Medicine and Research Center, Montréal, QC, Canada
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Isabelle C van Gelder
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Ewa Jankowska
- Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Centre for Heart Diseases, University Hospital, Wroclaw, Poland
| | - Dipak Kotecha
- University of Birmingham Institute of Cardiovascular Sciences and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Linda W van Laake
- Department of Cardiology and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mitja Lainscak
- Division of Cardiology, General Hospital Murska Sobota, Murska Sobota, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Lars H Lund
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ida Gjervold Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Alexander R Lyon
- Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Davor Miličić
- Department of Cardiovascular Diseases, University of Zagreb School of Medicine and University Hospital Center Zagreb, Zagreb, Croatia
| | - Christian Mueller
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Switzerland
| | - Marija Polovina
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Department of Cardiology, Clinical Centre of Serbia, Belgrade, Serbia
| | - Piotr Ponikowski
- Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Centre for Heart Diseases, University Hospital, Wroclaw, Poland
| | - Giuseppe Rosano
- St. George's Hospital University of London, London,UK
- IRCCS San Raffaele Pisana, Rome, Italy
| | - Petar M Seferović
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Carsten Tschöpe
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany
- Department of Internal Medicine and Cardiology, Charité-University Medicine, Campus Virchow Clinic, Berlin, Germany
| | - Rolf Wachter
- DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany
- Clinic and Policlinic for Cardiology, University Hospital Leipzig, Leipzig, Germany
- Clinic for Cardiology and Pneumology, University Medicine Göttingen, Göttingen, Germany
| | - Frank Ruschitzka
- Department of Cardiology, University Heart Center, University Hospital Zürich, Rämistrasse 100, CH 8091, Zürich, Switzerland
| |
Collapse
|
8
|
Li Q, Lai Y, Gao X, Li X, Deng CY, Guo H, Zhao J, Yang H, Xu Y, Wu S, Xue Y, Rao F. Involvement of plasminogen activator inhibitor-1 and its related molecules in atrial fibrosis in patients with atrial fibrillation. PeerJ 2021; 9:e11488. [PMID: 34141473 PMCID: PMC8179226 DOI: 10.7717/peerj.11488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/27/2021] [Indexed: 12/01/2022] Open
Abstract
Atrial fibrillation is the most common form of cardiac arrhythmia. Atrial fibrosis is a significant feature of atrial fibrillation though its mechanism is not well understood. We searched the Gene Expression Omnibus database to compare mRNA expression patterns between atrial fibrillation and sinus rhythm samples; one hundred and forty eight differentially expressed genes were identified. Most of these genes were significantly enriched in the extracellular matrix organization process and collagen-activated tyrosine kinase receptor signaling pathway. To screen hub genes involved in atrial fibrosis, we constructed a protein-protein interaction network and found that three hub genes (SERPINE1/plasminogen activator inhibitor-1/PAI-1, TIMP Metallopeptidase Inhibitor 3/TIMP3 and decorin/DCN) play vital roles in atrial fibrosis, especially plasminogen activator inhibitor-1. Elevated plasminogen activator inhibitor-1 expression was positively correlated with the p53 signaling pathway. Plasminogen activator inhibitor-1 and p53 protein expression levels were verified in patients with sinus rhythm and atrial fibrillation by Western blot analysis. Compared with the sinus rhythm controls, p53 and plasminogen activator inhibitor-1 protein expressions were upregulated in the atrial tissues of patients with atrial fibrillation. p53 was also found to regulate plasminogen activator inhibitor-1 based on the results of cellular and molecular experiments. Thus, the p53/plasminogen activator inhibitor-1 signaling axis may participate in the pathophysiological processes of atrial fibrillation, and plasminogen activator inhibitor-1 may serve as a new therapeutic biomarker in atrial fibrillation.
Collapse
Affiliation(s)
- Qiaoqiao Li
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yingyu Lai
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xiaoyan Gao
- School of Medicine, South China University of Technology, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xin Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Chun-Yu Deng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Huiming Guo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Junfei Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hui Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Yuwen Xu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Shulin Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Yumei Xue
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Fang Rao
- School of Medicine, South China University of Technology, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| |
Collapse
|
9
|
Van Wagoner DR. Atrial fibrillation risk: Can we see it now? Trends Cardiovasc Med 2021; 32:32-33. [PMID: 33516821 DOI: 10.1016/j.tcm.2021.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 11/26/2022]
|
10
|
Barletta V, Mazzocchetti L, Parollo M, Spatafora D, Bongiorni M, Zucchelli G. Multimodality imaging for atrial fibrosis detection in the era of precision medicine. J Cardiovasc Echogr 2021; 31:189-197. [PMID: 35284213 PMCID: PMC8893107 DOI: 10.4103/jcecho.jcecho_61_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/04/2022] Open
Abstract
In recent years, atrial fibrillation (AF) has increasingly become a focus of attention because it represents the most encountered arrhythmia in clinical practice and a major cause of morbidity and mortality. Issues underlying AF have long been debated; nevertheless, electrical, contractile, and structural remodeling is demonstrated to be the pivotal contributor to arrhythmic substrate. Fibrosis is a hallmark of arrhythmogenic structural remodeling, resulting from an accumulation of fibrillar collagen deposits, as a reparative process to replace degenerating myocardium with concomitant reactive fibrosis, which causes interstitial expansion. Although the precise role of fibrosis in AF initiation and maintenance remains to be fully elucidated, a better definition of its extent and distribution may assist in designing individually tailored ablation approaches and improving procedure outcomes by targeting the fibrotic substrates with an organized strategy employing imaging resources. A deep comprehension of the mechanisms underlying atrial fibrosis could be crucial to setting up improved strategies for preventing AF-promoting structural remodeling. Imaging modalities such as echocardiography, cardiac computed tomography, and cardiac magnetic resonance, combined sometimes with invasive electroanatomical mapping, could provide valuable information for the optimal patients’ management if their use is not limited to cardiac anatomy study but extended to characterize abnormal left atrial substrate. Although pulmonary vein isolation is usually efficacious in treating paroxysmal AF, it is not sufficient for many patients with nonparoxysmal arrhythmias, particularly those with longstanding persistent AF. Noninvasive imaging techniques play a pivotal role in the planning of arrhythmic substrates ablation and show a strong correlation with electro-anatomic mapping, whose novel multipolar mapping catheters allow nowadays a more precise comprehension of atrial substrate. This review aims to explore the impact of the various imaging modalities for the detection of atrial fibrosis and their role in the management of AF.
Collapse
|