1
|
Awassa J, Soulé S, Cornu D, Ruby C, El-Kirat-Chatel S. Understanding the nanoscale adhesion forces between the fungal pathogen Candida albicans and antimicrobial zinc-based layered double hydroxides using single-cell and single-particle force spectroscopy. NANOSCALE 2024; 16:5383-5394. [PMID: 38375749 DOI: 10.1039/d3nr06027f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Antifungal resistance has become a very serious concern, and Candida albicans is considered one of the most opportunistic fungal pathogens responsible for several human infections. In this context, the use of new antifungal agents such as zinc-based layered double hydroxides to fight such fungal pathogens is considered one possible means to help limit the problem of antifungal resistance. In this study, we show that ZnAl LDH nanoparticles exhibit remarkable antifungal properties against C. albicans and cause serious cell wall damage, as revealed by growth tests and atomic force microscopy (AFM) imaging. To further link the antifungal activity of ZnAl LDHs to their adhesive behaviors toward C. albicans cells, AFM-based single-cell spectroscopy and single-particle force spectroscopy were used to probe the nanoscale adhesive interactions. The force spectroscopy analysis revealed that antimicrobial ZnAl LDHs exhibit specific surface interactions with C. albicans cells, demonstrating remarkable force magnitudes and adhesion frequencies in comparison with non-antifungal negative controls, e.g., Al-coated substrates and MgAl LDHs, which showed limited interactions with C. albicans cells. Force signatures suggest that such adhesive interactions may be attributed to the presence of agglutinin-like sequence (Als) adhesive proteins at the cell wall surface of C. albicans cells. Our findings propose the presence of a strong correlation between the antifungal effect provided by ZnAl LDHs and their nanoscale adhesive interactions with C. albicans cells at both the single-cell and single-particle levels. Therefore, ZnAl LDHs could interact with C. albicans fungal pathogens by specific adhesive interactions through which they adhere to fungal cells, leading to their damage and subsequent growth inhibition.
Collapse
Affiliation(s)
- Jazia Awassa
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | - Samantha Soulé
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | - Damien Cornu
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | - Christian Ruby
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | - Sofiane El-Kirat-Chatel
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| |
Collapse
|
2
|
Ndlovu E, Malpartida L, Sultana T, Dahms TES, Dague E. Host Cell Geometry and Cytoskeletal Organization Governs Candida-Host Cell Interactions at the Nanoscale. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37888912 DOI: 10.1021/acsami.3c09870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Candida is one of the most common opportunistic fungal pathogens in humans. Its adhesion to the host cell is required in parasitic states and is important for pathogenesis. Many studies have shown that there is an increased risk of developing candidiasis when normal tissue barriers are weakened or when immune defenses are compromised, for example, during cancer treatment that induces immunosuppression. The mechanical properties of malignant cells, such as adhesiveness and viscoelasticity, which contribute to cellular invasion and migration are different from those of noncancerous cells. To understand host invasion and its relationship with host cell health, we probed the interaction of Candida spp. with cancerous and noncancerous human cell lines using atomic force microscopy in the single-cell force spectroscopy mode. There was significant adhesion between Candida and human cells, with more adhesion to cancerous versus noncancerous cell lines. This increase in adhesion is related to the mechanobiological properties of cancer cells, which have a disorganized cytoskeleton and lower rigidity. Altered geometry and cytoskeletal disruption of the human cells impacted adhesion parameters, underscoring the role of cytoskeletal organization in Candida-human cell adhesion and implicating the manipulation of cell properties as a potential future therapeutic strategy.
Collapse
Affiliation(s)
- Easter Ndlovu
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina S4S 0A2, Saskatchewan, Canada
| | - Lucas Malpartida
- National Centre for Scientific Research, Laboratory for Analysis and Architecture of Systems (LAAS), 7 Avenue du Colonel Roche, BP 54200, Toulouse cedex 4 31031, France
| | - Taranum Sultana
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina S4S 0A2, Saskatchewan, Canada
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina S4S 0A2, Saskatchewan, Canada
| | - Etienne Dague
- National Centre for Scientific Research, Laboratory for Analysis and Architecture of Systems (LAAS), 7 Avenue du Colonel Roche, BP 54200, Toulouse cedex 4 31031, France
| |
Collapse
|
3
|
Byvalov AA, Belozerov VS, Ananchenko BA, Konyshev IV. Specific and Nonspecific Interactions of Yersinia pseudotuberculosis Lipopolysaccharide with Monoclonal Antibodies Assessed by Atomic Force Microscopy. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922060033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
4
|
Awassa J, Soulé S, Cornu D, Ruby C, El-Kirat-Chatel S. Understanding the role of surface interactions in the antibacterial activity of layered double hydroxide nanoparticles by atomic force microscopy. NANOSCALE 2022; 14:10335-10348. [PMID: 35833371 DOI: 10.1039/d2nr02395d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the mechanisms of the interactions between zinc-based layered double hydroxides (LDHs) and bacterial surfaces is of great importance to improve the efficiency of these antibiotic-free antibacterial agents. In fact, the role of surface interactions in the antibacterial activity of zinc-based LDH nanoparticles compared to that of dissolution and generation of reactive oxygen species (ROS) is still not well documented. In this study, we show that ZnAl LDH nanoparticles exhibit a strong antibacterial effect against Staphylococcus aureus by inducing serious cell wall damages as revealed by the antibacterial activity tests and atomic force microscopy (AFM) imaging, respectively. The comparison of the antibacterial properties of ZnAl LDH nanoparticles and micron-sized ZnAl LDHs also demonstrated that the antibacterial activity of Zn-based LDHs goes beyond the simple dissolution into Zn2+ antibacterial ions. Furthermore, we developed an original approach to functionalize AFM tips with LDH films in order to probe their interactions with living S. aureus cells by means of AFM-based force spectroscopy (FS). The force spectroscopy analysis revealed that antibacterial ZnAl LDH nanoparticles show specific recognition of S. aureus cells with high adhesion frequency and remarkable force magnitudes. This finding provides a first insight into the antibacterial mechanism of Zn-based LDHs through direct surface interactions by which they are able to recognize and adhere to bacterial surfaces, thus damaging them and leading to subsequent growth inhibition.
Collapse
Affiliation(s)
- Jazia Awassa
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | - Samantha Soulé
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | - Damien Cornu
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | - Christian Ruby
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | | |
Collapse
|
5
|
Awassa J, Cornu D, Ruby C, El-Kirat-Chatel S. Direct contact, dissolution and generation of reactive oxygen species: How to optimize the antibacterial effects of layered double hydroxides. Colloids Surf B Biointerfaces 2022; 217:112623. [PMID: 35714507 DOI: 10.1016/j.colsurfb.2022.112623] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 10/18/2022]
Abstract
Infections by pathogenic bacteria have been threatening several fields as food industries, agriculture, textile industries and healthcare products. Layered double hydroxides materials (LDHs), also called anionic clays, could be utilized as efficient antibacterial materials due to their several interesting properties such as ease of synthesis, tunable chemical composition, biocompatibility and anion exchange capacity. Pristine LDHs as well as LDH-composites including antibacterial molecules and nanoparticles loaded-LDHs were proven to serve as efficient antibacterial agents against various Gram-positive and Gram-negative bacterial strains. The achieved antibacterial effect was explained by the following mechanisms: (1) Direct contact between the materials and bacterial cells driven by electrostatic interactions between positively charged layers and negatively charged cell membranes, (2) Dissolution and gradual release over time of metallic ions or antibacterial molecules, (3) Generation of reactive oxygen species.
Collapse
Affiliation(s)
- Jazia Awassa
- Université de Lorraine, CNRS, LCPME, Nancy F-54000, France
| | - Damien Cornu
- Université de Lorraine, CNRS, LCPME, Nancy F-54000, France.
| | - Christian Ruby
- Université de Lorraine, CNRS, LCPME, Nancy F-54000, France
| | | |
Collapse
|
6
|
Levana O, Hong S, Kim SH, Jeong JH, Hur SS, Lee JW, Kwon KS, Hwang Y. A Novel Strategy for Creating an Antibacterial Surface Using a Highly Efficient Electrospray-Based Method for Silica Deposition. Int J Mol Sci 2022; 23:513. [PMID: 35008939 PMCID: PMC8745460 DOI: 10.3390/ijms23010513] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022] Open
Abstract
Adhesion of bacteria on biomedical implant surfaces is a prerequisite for biofilm formation, which may increase the chances of infection and chronic inflammation. In this study, we employed a novel electrospray-based technique to develop an antibacterial surface by efficiently depositing silica homogeneously onto polyethylene terephthalate (PET) film to achieve hydrophobic and anti-adhesive properties. We evaluated its potential application in inhibiting bacterial adhesion using both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria. These silica-deposited PET surfaces could provide hydrophobic surfaces with a water contact angle greater than 120° as well as increased surface roughness (root mean square roughness value of 82.50 ± 16.22 nm and average roughness value of 65.15 ± 15.26 nm) that could significantly reduce bacterial adhesion by approximately 66.30% and 64.09% for E. coli and S. aureus, respectively, compared with those on plain PET surfaces. Furthermore, we observed that silica-deposited PET surfaces showed no detrimental effects on cell viability in human dermal fibroblasts, as confirmed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide and live/dead assays. Taken together, such approaches that are easy to synthesize, cost effective, and efficient, and could provide innovative strategies for preventing bacterial adhesion on biomedical implant surfaces in the clinical setting.
Collapse
Affiliation(s)
- Odelia Levana
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Chungnam-do, Korea; (O.L.); (J.H.J.); (S.S.H.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Chungnam-do, Korea
| | - Soonkook Hong
- Department of Mechanical and Naval Architectural Engineering, Republic of Korea Naval Academy, Changwon-si 51704, Kyungsangnam-do, Korea;
| | - Se Hyun Kim
- Department of Electronic Materials, Devices and Equipment Engineering, Soonchunhyang University, Asan-si 31538, Chungnam-do, Korea;
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Chungnam-do, Korea; (O.L.); (J.H.J.); (S.S.H.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Chungnam-do, Korea
| | - Sung Sik Hur
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Chungnam-do, Korea; (O.L.); (J.H.J.); (S.S.H.)
| | - Jin Woo Lee
- Department of Molecular Medicine, Gachon University College of Medicine, Incheon 21936, Korea;
| | - Kye-Si Kwon
- Department of Electronic Materials, Devices and Equipment Engineering, Soonchunhyang University, Asan-si 31538, Chungnam-do, Korea;
- Department of Mechanical Engineering, Soonchunhyang University, Asan-si 31538, Chungnam-do, Korea
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Chungnam-do, Korea; (O.L.); (J.H.J.); (S.S.H.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Chungnam-do, Korea
| |
Collapse
|
7
|
Nanoemulsion of cashew gum and clove essential oil (Ocimum gratissimum Linn) potentiating antioxidant and antimicrobial activity. Int J Biol Macromol 2021; 193:100-108. [PMID: 34627848 DOI: 10.1016/j.ijbiomac.2021.09.195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/09/2023]
Abstract
In this study, nanoemulsions of essential oil from Ocimumgratissimum (Linn) (EO) were produced using low and high energy techniques using cashew gum (CG) as a co-surfactant. The main constituents of the EO were determined by Gas Chromatography coupled with Mass Spectrometry (GC-MS), and their presence in the EO and in the formulations verified by Fourier Transform Infrared Spectroscopy (FTIR) and UV-visible spectrophotometry was observed the encapsulation efficiency (EE%), with colloidal stability. Nuclear magnetic resonance (NMR) was used to study cashew gum. Dynamic light scattering analysis (DLS) determined the nanoemulsion Z means, polydispersity index and the Zeta potential value, nanoparticle tracking analysis (NTA) were determined. The nanostructured EO showed better antibacterial action against the pathogenic gastroenteritis species Staphylococcus aureus, Escherichia coli and Salmonella enterica when compared to free EO. Atomic Force Microscopy (AFM) was used for morphological analysis of the nanoparticle and study of the action of the nanoemulsion through images of the cellular morphology of S. enterica. The antioxidant activity was evaluated against the ABTS radical (2,2'-azino-bis diazonium salt (3-ethylbenzothiazoline-6-sulfonic acid)). The encapsulation of EO in a nanostructured system improved its antibacterial and antioxidant activity, the low energy synthesis showed greater storage stability, remaining stable for 37 days.
Collapse
|
8
|
Bhat SV, Price JDW, Dahms TES. AFM-Based Correlative Microscopy Illuminates Human Pathogens. Front Cell Infect Microbiol 2021; 11:655501. [PMID: 34026660 PMCID: PMC8138568 DOI: 10.3389/fcimb.2021.655501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/08/2021] [Indexed: 12/25/2022] Open
Abstract
Microbes have an arsenal of virulence factors that contribute to their pathogenicity. A number of challenges remain to fully understand disease transmission, fitness landscape, antimicrobial resistance and host heterogeneity. A variety of tools have been used to address diverse aspects of pathogenicity, from molecular host-pathogen interactions to the mechanisms of disease acquisition and transmission. Current gaps in our knowledge include a more direct understanding of host-pathogen interactions, including signaling at interfaces, and direct phenotypic confirmation of pathogenicity. Correlative microscopy has been gaining traction to address the many challenges currently faced in biomedicine, in particular the combination of optical and atomic force microscopy (AFM). AFM, generates high-resolution surface topographical images, and quantifies mechanical properties at the pN scale under physiologically relevant conditions. When combined with optical microscopy, AFM probes pathogen surfaces and their physical and molecular interaction with host cells, while the various modes of optical microscopy view internal cellular responses of the pathogen and host. Here we review the most recent advances in our understanding of pathogens, recent applications of AFM to the field, how correlative AFM-optical microspectroscopy and microscopy have been used to illuminate pathogenicity and how these methods can reach their full potential for studying host-pathogen interactions.
Collapse
Affiliation(s)
- Supriya V Bhat
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Jared D W Price
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| |
Collapse
|
9
|
Cieśluk M, Deptuła P, Piktel E, Fiedoruk K, Suprewicz Ł, Paprocka P, Kot P, Pogoda K, Bucki R. Physics Comes to the Aid of Medicine-Clinically-Relevant Microorganisms through the Eyes of Atomic Force Microscope. Pathogens 2020; 9:pathogens9110969. [PMID: 33233696 PMCID: PMC7699805 DOI: 10.3390/pathogens9110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/01/2022] Open
Abstract
Despite the hope that was raised with the implementation of antibiotics to the treatment of infections in medical practice, the initial enthusiasm has substantially faded due to increasing drug resistance in pathogenic microorganisms. Therefore, there is a need for novel analytical and diagnostic methods in order to extend our knowledge regarding the mode of action of the conventional and novel antimicrobial agents from a perspective of single microbial cells as well as their communities growing in infected sites, i.e., biofilms. In recent years, atomic force microscopy (AFM) has been mostly used to study different aspects of the pathophysiology of noninfectious conditions with attempts to characterize morphological and rheological properties of tissues, individual mammalian cells as well as their organelles and extracellular matrix, and cells’ mechanical changes upon exposure to different stimuli. At the same time, an ever-growing number of studies have demonstrated AFM as a valuable approach in studying microorganisms in regard to changes in their morphology and nanomechanical properties, e.g., stiffness in response to antimicrobial treatment or interaction with a substrate as well as the mechanisms behind their virulence. This review summarizes recent developments and the authors’ point of view on AFM-based evaluation of microorganisms’ response to applied antimicrobial treatment within a group of selected bacteria, fungi, and viruses. The AFM potential in development of modern diagnostic and therapeutic methods for combating of infections caused by drug-resistant bacterial strains is also discussed.
Collapse
Affiliation(s)
- Mateusz Cieśluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Paulina Paprocka
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland; (P.P.); (P.K.)
| | - Patrycja Kot
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland; (P.P.); (P.K.)
| | - Katarzyna Pogoda
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland;
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
- Correspondence:
| |
Collapse
|
10
|
Hou F, He L, Ma X, Wang D, Ding T, Ye X, Liu D. Ultrasound enhanced the binding ability of chitinase onto chitin: From an AFM insight. ULTRASONICS SONOCHEMISTRY 2020; 67:105117. [PMID: 32283493 DOI: 10.1016/j.ultsonch.2020.105117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
In order to evaluate the effect of ultrasound to chitinase from a molecular level, atomic force microscopy (AFM) was employed to investigate the interaction force of chitinase binding onto chitin surface. In the measurement of force-distance curve, a series of pull-off events were discovered using the immobilized AFM tips with chitinase either treated by ultrasound or not, whereas no interaction peak was observed by the AFM tips without chitinase, indicating that the obtained adhesion forces were coming from the binding functions between chitinase and chitin. Through the analysis of these force curves, at the loading velocity of 0.3 μm/s, the maximum binding force of the chitinase treated by ultrasound for 20 min onto chitin was measured to be 105.33 ± 23.51 pN, while the untreated onto chitin was 71.05 ± 12.73 pN, suggesting the stronger binding force between ultrasonic treated chitinase and chitin substrate. Therefore, AFM has provided a useful method to directly and quantitatively characterize the interactions between chitinase and chitin, and successfully proved that ultrasound could activate chitinase by enhancing the binding ability of chitinase onto chitin.
Collapse
Affiliation(s)
- Furong Hou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Liang He
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Xiaobin Ma
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Danli Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Tian Ding
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Hangzhou 310058, China.
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Hangzhou 310058, China.
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Hangzhou 310058, China.
| |
Collapse
|
11
|
Alunda BO, Lee YJ. Review: Cantilever-Based Sensors for High Speed Atomic Force Microscopy. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4784. [PMID: 32854193 PMCID: PMC7506678 DOI: 10.3390/s20174784] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
This review critically summarizes the recent advances of the microcantilever-based force sensors for atomic force microscope (AFM) applications. They are one the most common mechanical spring-mass systems and are extremely sensitive to changes in the resonant frequency, thus finding numerous applications especially for molecular sensing. Specifically, we comment on the latest progress in research on the deflection detection systems, fabrication, coating and functionalization of the microcantilevers and their application as bio- and chemical sensors. A trend on the recent breakthroughs on the study of biological samples using high-speed atomic force microscope is also reported in this review.
Collapse
Affiliation(s)
- Bernard Ouma Alunda
- School of Mines and Engineering, Taita Taveta University, P.O. Box 635-80300 Voi, Kenya;
| | - Yong Joong Lee
- School of Mechanical Engineering, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
12
|
Evaluation of the Antioxidant and Antimicrobial Activities of Porcine Liver Protein Hydrolysates Obtained Using Alcalase, Bromelain, and Papain. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072290] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In order to make the by-products generated from the porcine industry more valuable, pig livers were used in this trial to obtain protein hydrolysates. Three proteases (alcalase, bromelain, and papain) were utilized for enzymatic hydrolysis with two different durations, 4 and 8 hours. Ultrafiltration process was used for the recovery of the extracts, employing three different membrane pore sizes (30, 10, and 5 kDa). The porcine livers contained considerable amounts of protein (19.0%), considering they are almost composed of water (74.1%). The antioxidant activity of the obtained hydrolysates was investigated using four antioxidant methods (2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, 2-2′-Azino-di-[3-ethylbenzthiazoline sulfonate] (ABTS) radical scavenging activity, ferric reducing antioxidant power assay (FRAP), and oxygen radical absorbance capacity assay (ORAC)). Antibacterial properties were also measured against Gram-negative and Gram-positive bacteria. Results indicated that the three studied factors (type of enzyme, membrane pore size, and time) significantly affected the parameters evaluated. Hydrolysates obtained at 8 hours with alcalase had the best antioxidant properties. The 30 kDa alcalase extracts exhibited the highest DPPH (562 µg Trolox/g), FRAP (82.9 µmol Fe2+/100 g), and ORAC (53.2 mg Trolox/g) activities, while for ABTS the 10 kDa alcalase showed the higher values (1068 mg ascorbic acid/100 g). Concerning the antibacterial activity, 30 kDa hydrolysates obtained with bromelain for 4 hours exhibited the highest antimicrobial capacity, providing an inhibition of 91.7%.
Collapse
|