1
|
Balakumar A, Das D, Datta A, Mishra A, Bryak G, Ganesh SM, Netea MG, Kumar V, Lionakis MS, Arora D, Thimmapuram J, Thangamani S. Single-cell transcriptomics unveils skin cell specific antifungal immune responses and IL-1Ra- IL-1R immune evasion strategies of emerging fungal pathogen Candida auris. PLoS Pathog 2024; 20:e1012699. [PMID: 39536069 PMCID: PMC11588283 DOI: 10.1371/journal.ppat.1012699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Candida auris is an emerging multidrug-resistant fungal pathogen that preferentially colonizes and persists in skin tissue, yet the host immune factors that regulate the skin colonization of C. auris in vivo are unknown. In this study, we employed unbiased single-cell transcriptomics of murine skin infected with C. auris to understand the cell type-specific immune response to C. auris. C. auris skin infection results in the accumulation of immune cells such as neutrophils, inflammatory monocytes, macrophages, dendritic cells, T cells, and NK cells at the site of infection. We identified fibroblasts as a major non-immune cell accumulated in the C. auris infected skin tissue. The comprehensive single-cell profiling revealed the transcriptomic signatures in cytokines, chemokines, host receptors (TLRs, C-type lectin receptors, NOD receptors), antimicrobial peptides, and immune signaling pathways in individual immune and non-immune cells during C. auris skin infection. Our analysis revealed that C. auris infection upregulates the expression of the IL-1RN gene (encoding IL-1R antagonist protein) in different cell types. We found IL-1Ra produced by macrophages during C. auris skin infection decreases the killing activity of neutrophils. Furthermore, C. auris uses a unique cell wall mannan outer layer to evade IL-1R-signaling mediated host defense. Collectively, our single-cell RNA seq profiling identified the transcriptomic signatures in immune and non-immune cells during C. auris skin infection. Our results demonstrate the IL-1Ra and IL-1R-mediated immune evasion mechanisms employed by C. auris to persist in the skin. These results enhance our understanding of host defense and immune evasion mechanisms during C. auris skin infection and identify potential targets for novel antifungal therapeutics.
Collapse
Affiliation(s)
- Abishek Balakumar
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Diprasom Das
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Abhishek Datta
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Abtar Mishra
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Garrett Bryak
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Shrihari M. Ganesh
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Devender Arora
- Bioinformatics Core, Purdue University, West Lafayette, Indiana, United States of America
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, West Lafayette, Indiana, United States of America
| | - Shankar Thangamani
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, Indiana, United States of America
| |
Collapse
|
2
|
Balakumar A, Das D, Datta A, Mishra A, Bryak G, Ganesh SM, Netea MG, Kumar V, Lionakis MS, Arora D, Thimmapuram J, Thangamani S. Single-Cell Transcriptomics Unveils Skin Cell Specific Antifungal Immune Responses and IL-1Ra- IL-1R Immune Evasion Strategies of Emerging Fungal Pathogen Candida auris. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619653. [PMID: 39463935 PMCID: PMC11507746 DOI: 10.1101/2024.10.22.619653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Candida auris is an emerging multidrug-resistant fungal pathogen that preferentially colonizes and persists in skin tissue, yet the host immune factors that regulate the skin colonization of C. auris in vivo are unknown. In this study, we employed unbiased single-cell transcriptomics of murine skin infected with C. auris to understand the cell type-specific immune response to C. auris. C. auris skin infection results in the accumulation of immune cells such as neutrophils, inflammatory monocytes, macrophages, dendritic cells, T cells, and NK cells at the site of infection. We identified fibroblasts as a major non-immune cell accumulated in the C. auris infected skin tissue. The comprehensive single-cell profiling revealed the transcriptomic signatures in cytokines, chemokines, host receptors (TLRs, C-type lectin receptors, NOD receptors), antimicrobial peptides, and immune signaling pathways in individual immune and non-immune cells during C. auris skin infection. Our analysis revealed that C. auris infection upregulates the expression of the IL-1RN gene (encoding IL-1R antagonist protein) in different cell types. We found IL-1Ra produced by macrophages during C. auris skin infection decreases the killing activity of neutrophils. Furthermore, C. auris uses a unique cell wall mannan outer layer to evade IL-1R-signaling mediated host defense. Collectively, our single-cell RNA seq profiling identified the transcriptomic signatures in immune and non-immune cells during C. auris skin infection. Our results demonstrate the IL-1Ra and IL-1R-mediated immune evasion mechanisms employed by C. auris to persist in the skin. These results enhance our understanding of host defense and immune evasion mechanisms during C. auris skin infection and identify potential targets for novel antifungal therapeutics.
Collapse
Affiliation(s)
- Abishek Balakumar
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
| | - Diprasom Das
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
| | - Abhishek Datta
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
| | - Abtar Mishra
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
| | - Garrett Bryak
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
| | - Shrihari M Ganesh
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Devender Arora
- Bioinformatics Core, Purdue University, West Lafayette, IN 47906
| | | | - Shankar Thangamani
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
- Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, IN 47906
| |
Collapse
|
3
|
Dakalbab S, Hamdy R, Holigová P, Abuzaid EJ, Abu-Qiyas A, Lashine Y, Mohammad MG, Soliman SSM. Uniqueness of Candida auris cell wall in morphogenesis, virulence, resistance, and immune evasion. Microbiol Res 2024; 286:127797. [PMID: 38851008 DOI: 10.1016/j.micres.2024.127797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Candida auris has drawn global attention due to its alarming multidrug resistance and the emergence of pan resistant strains. C. auris poses a significant risk in nosocomial candidemia especially among immunocompromised patients. C. auris showed unique virulence characteristics associated with cell wall including cell polymorphism, adaptation, endurance on inanimate surfaces, tolerance to external conditions, and immune evasion. Notably, it possesses a distinctive cell wall composition, with an outer mannan layer shielding the inner 1,3-β glucan from immune recognition, thereby enabling immune evasion and drug resistance. This review aimed to comprehend the association between unique characteristics of C. auris's cell wall and virulence, resistance mechanisms, and immune evasion. This is particularly relevant since the fungal cell wall has no human homology, providing a potential therapeutic target. Understanding the complex interactions between the cell wall and the host immune system is essential for devising effective treatment strategies, such as the use of repurposed medications, novel therapeutic agents, and immunotherapy like monoclonal antibodies. This therapeutic targeting strategy of C. auris holds promise for effective eradication of this resilient pathogen.
Collapse
Affiliation(s)
- Salam Dakalbab
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Rania Hamdy
- Research Institute for Science and Engineering (RISE), University of Sharjah, Sharjah 27272, United Arab Emirates; Faculty of Pharmacy, Zagazig University, P.O. Box 44519, Egypt
| | | | - Eman J Abuzaid
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates
| | - Ameera Abu-Qiyas
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates
| | - Yasmina Lashine
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; Faculty of Pharmacy, Zagazig University, P.O. Box 44519, Egypt
| | - Mohammad G Mohammad
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Sameh S M Soliman
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
4
|
Albergoni EC, Oliveira HC, Honorato L, Valdez AF, Sena BG, Castelli RF, Rodrigues AJC, Marcon BH, Robert AW, Nimrichter L, Rodrigues ML. Morphological and pathogenic investigation of the emerging fungal threat Emergomyces africanus. Microbiol Spectr 2024; 12:e0086324. [PMID: 38916362 PMCID: PMC11302337 DOI: 10.1128/spectrum.00863-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Emergomyces africanus is a highly fatal fungal pathogen affecting individuals with advanced HIV disease. Molecular patterns and ultrastructural aspects of E. africanus are unknown, and pathogenic models have not been investigated in detail. Since the cell wall of fungi is a determinant for interaction with the host and antifungal development, we characterized the ultrastructural aspects of E. africanus and the general properties of cell wall components under different conditions of growth in vitro and in vivo. We also tested the pathogenic potential of E. africanus in a Galleria mellonella model of infection. Transmission electron microscopy revealed the common intracellular, ultrastructural features of fungi in association with a thick cell wall. Scanning electron microscopy revealed a smooth cell surface, with no apparent decorative structures. Yeast cultures of E. africanus showed the distribution of chitin, chitooligomers, and mannoproteins commonly observed in fungi. However, in mixed microenvironments containing yeast and filamenting forms of E. africanus, the detection of chitooligomers was increased in comparison with isolated yeast cells, while the detection of these components in filamenting forms was markedly reduced. These observations were suggestive of the ability of E. africanus to change its cell wall composition in response to different microenvironments. Although E. africanus was unable to kill G. mellonella, this infection model allowed us to isolate infected hemocytes for further analysis of mannoproteins, chitin, and chitooligomers. Once again, the detection of E. africanus chitooligomers was markedly increased. These results reveal previously unknown ultrastructural features of E. africanus and suggest a high plasticity in the cell wall of this lethal pathogen. IMPORTANCE The epidemiology of fungal infections is very dynamic, and novel health emergencies are hard to predict. New fungal pathogens have been continuously emerging for the last few decades, and Emergomyces africanus is one of these threats to human health. This complex scenario points to the need for generating knowledge about emerging pathogens so that new therapeutic strategies can be designed. In this study, we characterized the general cellular and pathogenic properties of the emerging fungal pathogen E. africanus. Our results reveal that E. africanus manifests some of the typical properties of fungal cells but also exhibits some unique characteristics that might be helpful for the future development of therapeutic strategies.
Collapse
Affiliation(s)
- Elaine C. Albergoni
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Leandro Honorato
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro F. Valdez
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca G. Sena
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael F. Castelli
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | | | - Bruna H. Marcon
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Anny W. Robert
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Leonardo Nimrichter
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcio L. Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Heydarian N, Ferrell M, Nair AS, Roedl C, Peng Z, Nguyen TD, Best W, Wozniak KL, Rice CV. Low-Molecular Weight Branched Polyethylenimine Reduces Cytokine Secretion from Human Immune System Monocytes Stimulated with Bacterial and Fungal PAMPs. ChemMedChem 2024; 19:e202400011. [PMID: 38740551 PMCID: PMC11463166 DOI: 10.1002/cmdc.202400011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
The innate immune system is an evolutionarily conserved pathogen recognition mechanism that serves as the first line of defense against tissue damage or pathogen invasion. Unlike the adaptive immunity that recruits T-cells and specific antibodies against antigens, innate immune cells express pathogen recognition receptors (PRRs) that can detect various pathogen-associated molecular patterns (PAMPs) released by invading pathogens. Microbial molecular patterns, such as lipopolysaccharide (LPS) from Gram-negative bacteria, trigger signaling cascades in the host that result in the production of pro-inflammatory cytokines. LPS stimulation produces a strong immune response and excessive LPS signaling leads to dysregulation of the immune response. However, dysregulated inflammatory response during wound healing often results in chronic non-healing wounds that are difficult to control. In this work, we present data demonstrating partial neutralization of anionic LPS molecules using cationic branched polyethylenimine (BPEI). The anionic sites on the LPS molecules from Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) are the lipid A moiety and BPEI binding create steric factors that hinder the binding of PRR signaling co-factors. This reduces the production of pro-inflammatory TNF-α cytokines. However, the anionic sites of Pseudomonas aeruginosa (P. aeruginosa) LPS are in the O-antigen region and subsequent BPEI binding slightly reduces TNF-α cytokine production. Fortunately, BPEI can reduce TNF-α cytokine expression in response to stimulation by intact P. aeruginosa bacterial cells and fungal zymosan PAMPs. Thus low-molecular weight (600 Da) BPEI may be able to counter dysregulated inflammation in chronic wounds and promote successful repair following tissue injury.
Collapse
Affiliation(s)
- Neda Heydarian
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Maya Ferrell
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Ayesha S. Nair
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, OK 74078
| | - Chase Roedl
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Zongkai Peng
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Tra D. Nguyen
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - William Best
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, OK 74078
| | - Charles V. Rice
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| |
Collapse
|
6
|
Nenciarini S, Renzi S, di Paola M, Meriggi N, Cavalieri D. The yeast-human coevolution: Fungal transition from passengers, colonizers, and invaders. WIREs Mech Dis 2024; 16:e1639. [PMID: 38146626 DOI: 10.1002/wsbm.1639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Fungi are the cause of more than a billion infections in humans every year, although their interactions with the host are still neglected compared to bacteria. Major systemic fungal infections are very unusual in the healthy population, due to the long history of coevolution with the human host. Humans are routinely exposed to environmental fungi and can host a commensal mycobiota, which is increasingly considered as a key player in health and disease. Here, we review the current knowledge on host-fungi coevolution and the factors that regulate their interaction. On one hand, fungi have learned to survive and inhabit the host organisms as a natural ecosystem, on the other hand, the host immune system finely tunes the response toward fungi. In turn, recognition of fungi as commensals or pathogens regulates the host immune balance in health and disease. In the human gut ecosystem, yeasts provide a fingerprint of the transient microbiota. Their status as passengers or colonizers is related to the integrity of the gut barrier and the risk of multiple disorders. Thus, the study of this less known component of the microbiota could unravel the rules of the transition from passengers to colonizers and invaders, as well as their dependence on the innate component of the host's immune response. This article is categorized under: Infectious Diseases > Environmental Factors Immune System Diseases > Environmental Factors Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
| | - Sonia Renzi
- Department of Biology, University of Florence, Florence, Italy
| | - Monica di Paola
- Department of Biology, University of Florence, Florence, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, Florence, Italy
| | | |
Collapse
|
7
|
Szóstak N, Handschuh L, Samelak-Czajka A, Tomela K, Pietrzak B, Schmidt M, Galus Ł, Mackiewicz J, Mackiewicz A, Kozlowski P, Philips A. Gut Mycobiota Dysbiosis Is Associated with Melanoma and Response to Anti-PD-1 Therapy. Cancer Immunol Res 2024; 12:427-439. [PMID: 38315788 PMCID: PMC10985481 DOI: 10.1158/2326-6066.cir-23-0592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/15/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Recent research indicates that gut microbiota may be vital in the advancement of melanoma. In this study, we found that melanoma patients exhibited a distinct gut mycobiota structure compared with healthy participants. Candida albicans, Candida dubliniensis, and Neurospora crassa were more abundant in samples from patients with melanoma, whereas Saccharomyces cerevisiae and Debaryomyces hansenii were less abundant. During anti-PD-1 treatment, the relative amount of Malassezia restricta and C. albicans increased. A higher level of Saccharomyces paradoxus was associated with a positive response to anti-PD-1 treatment, whereas a higher level of Tetrapisispora blattae was associated with a lack of clinical benefits. High levels of M. restricta and C. albicans, elevated serum lactate dehydrogenase, and being overweight were linked to increased risk of melanoma progression and poorer response to anti-PD-1 treatment. Thus, this study has revealed melanoma-associated mycobiome dysbiosis, characterized by altered fungal composition and fungi species associated with a higher risk of melanoma progression, identifying a role for the gut mycobiome in melanoma progression.
Collapse
Affiliation(s)
- Natalia Szóstak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Luiza Handschuh
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Samelak-Czajka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna Tomela
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Bernadeta Pietrzak
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Poznan, Poland
| | - Marcin Schmidt
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Poznan, Poland
| | - Łukasz Galus
- Department of Medical and Experimental Oncology, Institute of Oncology, Poznan University of Medical Sciences, Poland
| | - Jacek Mackiewicz
- Department of Medical and Experimental Oncology, Institute of Oncology, Poznan University of Medical Sciences, Poland
| | - Andrzej Mackiewicz
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Kozlowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Philips
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
8
|
Mok K, Poolsawat T, Somnuk S, Wanikorn B, Patumcharoenpol P, Nitisinprasert S, Vongsangnak W, Nakphaichit M. Preliminary characterization of gut mycobiome enterotypes reveals the correlation trends between host metabolic parameter and diet: a case study in the Thai Cohort. Sci Rep 2024; 14:5805. [PMID: 38461361 PMCID: PMC10924899 DOI: 10.1038/s41598-024-56585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/08/2024] [Indexed: 03/11/2024] Open
Abstract
The association between the gut mycobiome and its potential influence on host metabolism in the Thai Cohort was assessed. Two distinct predominant enterotypes, Saccharomyces (Sa) and Aspergillus/Penicillium (Ap/Pe) showed differences in gut mycobiota diversity and composition. Notably, the Sa enterotype exhibited lower evenness and richness, likely due to the prevalence of Saccharomyces, while both enterotypes displayed unique metabolic behaviors related to nutrient metabolism and body composition. Fiber consumption was positively correlated with adverse body composition and fasting glucose levels in individuals with the Sa enterotype, whereas in the Ap/Pe enterotype it was positively correlated with fat and protein intake. The metabolic functional analysis revealed the Sa enterotype associated with carbohydrate metabolism, while the Ap/Pe enterotype involved in lipid metabolism. Very interestingly, the genes involved in the pentose and glucuronate interconversion pathway, such as polygalacturonase and L-arabinose-isomerase, were enriched in the Sa enterotype signifying a metabolic capacity for complex carbohydrate degradation and utilization of less common sugars as energy sources. These findings highlight the interplay between gut mycobiome composition, dietary habits, and metabolic outcomes within the Thai cohort studies.
Collapse
Affiliation(s)
- Kevin Mok
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
- Specialized Research Unit: Probiotics and Prebiotics for Health, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| | - Thitirat Poolsawat
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
- Specialized Research Unit: Functional Food and Human Health Laboratory, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| | - Surasawadee Somnuk
- Department of Sports and Health Sciences, Faculty of Sport Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Bandhita Wanikorn
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
- Specialized Research Unit: Functional Food and Human Health Laboratory, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| | - Preecha Patumcharoenpol
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, 10900, Thailand
| | - Sunee Nitisinprasert
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
- Specialized Research Unit: Probiotics and Prebiotics for Health, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, 10900, Thailand
| | - Massalin Nakphaichit
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand.
- Specialized Research Unit: Probiotics and Prebiotics for Health, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
9
|
Qi Z, Zhu L, Wang K, Wang N. PANoptosis: Emerging mechanisms and disease implications. Life Sci 2023; 333:122158. [PMID: 37806654 DOI: 10.1016/j.lfs.2023.122158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
PANoptosis, a unique new form of programmed cell death (PCD), is characterized by pyroptosis, apoptosis, and necroptosis, but it cannot be explained by pyroptosis, apoptosis or necroptosis alone. Assembly of the PANoptosome complex is a key feature of PANoptosis. To date, four kinds of PANoptosomes with distinct sensors and regulators have been defined, namely Z-DNA binding protein 1 (ZBP1) PANoptosome, absent in melanoma 2 (AIM2) PANoptosome, receptor-interacting protein kinase 1 (RIPK1) PANoptosome, and nucleotide-binding leucine-rich repeat-containing receptor 12 (NLRP12). Each PANoptosome contains three components: sensors for pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs), adaptors as connected bridges, and catalytic effectors or executioners. Mechanistically, different PAMPs or DAMPs are recognized by the sensors in a context-dependent manner, which initiates PANoptosome assembly through adaptors, and ultimately engages synchronous activation of pyroptosis, apoptosis, and necroptosis via different catalytic effectors. Resultantly, PANoptosis is emerged as a prospective and promising therapeutic target for various diseases. This review covers the accumulating evidence about the roles and mechanisms of PANoptosis in innate immunity and discusses the attractive prospect of manipulating PANoptosis as a new treatment for diseases.
Collapse
Affiliation(s)
- Zehong Qi
- Department of Pathophysiology, Key Laboratory of Sepsis Translational Medicine of Hunan, School of Basic Medical Science, Central South University, 410008 Changsha, Hunan, China
| | - Lili Zhu
- Department of Pathophysiology, Key Laboratory of Sepsis Translational Medicine of Hunan, School of Basic Medical Science, Central South University, 410008 Changsha, Hunan, China
| | - Kangkai Wang
- Department of Pathophysiology, Key Laboratory of Sepsis Translational Medicine of Hunan, School of Basic Medical Science, Central South University, 410008 Changsha, Hunan, China.
| | - Nian Wang
- Department of Pathophysiology, Key Laboratory of Sepsis Translational Medicine of Hunan, School of Basic Medical Science, Central South University, 410008 Changsha, Hunan, China.
| |
Collapse
|
10
|
Choudhury QJ, Ambati S, Link CD, Lin X, Lewis ZA, Meagher RB. Dectin-3-targeted antifungal liposomes efficiently bind and kill diverse fungal pathogens. Mol Microbiol 2023; 120:723-739. [PMID: 37800599 PMCID: PMC10823756 DOI: 10.1111/mmi.15174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/22/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
DectiSomes are anti-infective drug-loaded liposomes targeted to pathogenic cells by pathogen receptors including the Dectins. We have previously used C-type lectin (CTL) pathogen receptors Dectin-1, Dectin-2, and DC-SIGN to target DectiSomes to the extracellular oligoglycans surrounding diverse pathogenic fungi and kill them. Dectin-3 (also known as MCL, CLEC4D) is a CTL pathogen receptor whose known cognate ligands are partly distinct from other CTLs. We expressed and purified a truncated Dectin-3 polypeptide (DEC3) comprised of its carbohydrate recognition domain and stalk region. We prepared amphotericin B (AmB)-loaded pegylated liposomes (AmB-LLs) and coated them with this isoform of Dectin-3 (DEC3-AmB-LLs), and we prepared control liposomes coated with bovine serum albumin (BSA-AmB-LLs). DEC3-AmB-LLs bound to the exopolysaccharide matrices of Candida albicans, Rhizopus delemar (formerly known as R. oryzae), and Cryptococcus neoformans from one to several orders of magnitude more strongly than untargeted AmB-LLs or BSA-AmB-LLs. The data from our quantitative fluorescent binding assays were standardized using a CellProfiler program, AreaPipe, that was developed for this purpose. Consistent with enhanced binding, DEC3-AmB-LLs inhibited and/or killed C. albicans and R. delemar more efficiently than control liposomes and significantly reduced the effective dose of AmB. In conclusion, Dectin-3 targeting has the potential to advance our goal of building pan-antifungal DectiSomes.
Collapse
Affiliation(s)
| | - Suresh Ambati
- Department of GeneticsUniversity of GeorgiaAthensGeorgiaUSA
| | - Collin D. Link
- Department of MicrobiologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Xiaorong Lin
- Department of MicrobiologyUniversity of GeorgiaAthensGeorgiaUSA
| | | | | |
Collapse
|
11
|
Sena BAG, Jozefowicz LJ, Rodrigues ML. More complicated than it seems: The diversity of cryptococcal glucuronoxylomannan. PLoS Pathog 2023; 19:e1011521. [PMID: 37535500 PMCID: PMC10399737 DOI: 10.1371/journal.ppat.1011521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Affiliation(s)
- Bianca A. G. Sena
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luisa J. Jozefowicz
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Marcio L. Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Wildeman AS, Patel NK, Cormack BP, Culotta VC. The role of manganese in morphogenesis and pathogenesis of the opportunistic fungal pathogen Candida albicans. PLoS Pathog 2023; 19:e1011478. [PMID: 37363924 PMCID: PMC10328360 DOI: 10.1371/journal.ppat.1011478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/07/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Metals such as Fe, Cu, Zn, and Mn are essential trace nutrients for all kingdoms of life, including microbial pathogens and their hosts. During infection, the mammalian host attempts to starve invading microbes of these micronutrients through responses collectively known as nutritional immunity. Nutritional immunity for Zn, Fe and Cu has been well documented for fungal infections; however Mn handling at the host-fungal pathogen interface remains largely unexplored. This work establishes the foundation of fungal resistance against Mn associated nutritional immunity through the characterization of NRAMP divalent metal transporters in the opportunistic fungal pathogen, Candida albicans. Here, we identify C. albicans Smf12 and Smf13 as two NRAMP transporters required for cellular Mn accumulation. Single or combined smf12Δ/Δ and smf13Δ/Δ mutations result in a 10-80 fold reduction in cellular Mn with an additive effect of double mutations and no losses in cellular Cu, Fe or Zn. As a result of low cellular Mn, the mutants exhibit impaired activity of mitochondrial Mn-superoxide dismutase 2 (Sod2) and cytosolic Mn-Sod3 but no defects in cytosolic Cu/Zn-Sod1 activity. Mn is also required for activity of Golgi mannosyltransferases, and smf12Δ/Δ and smf13Δ/Δ mutants show a dramatic loss in cell surface phosphomannan and in glycosylation of proteins, including an intracellular acid phosphatase and a cell wall Cu-only Sod5 that is key for oxidative stress resistance. Importantly, smf12Δ/Δ and smf13Δ/Δ mutants are defective in formation of hyphal filaments, a deficiency rescuable by supplemental Mn. In a disseminated mouse model for candidiasis where kidney is the primary target tissue, we find a marked loss in total kidney Mn during fungal invasion, implying host restriction of Mn. In this model, smf12Δ/Δ and smf13Δ/Δ C. albicans mutants displayed a significant loss in virulence. These studies establish a role for Mn in Candida pathogenesis.
Collapse
Affiliation(s)
- Asia S Wildeman
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Naisargi K Patel
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Brendan P Cormack
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Valeria C Culotta
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
13
|
Meagher RB, Lewis ZA, Ambati S, Lin X. DectiSomes: C-type lectin receptor-targeted liposomes as pan-antifungal drugs. Adv Drug Deliv Rev 2023; 196:114776. [PMID: 36934519 PMCID: PMC10133202 DOI: 10.1016/j.addr.2023.114776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023]
Abstract
Combatting the ever-increasing threat from invasive fungal pathogens faces numerous fundamental challenges, including constant human exposure to large reservoirs of species in the environment, the increasing population of immunocompromised or immunosuppressed individuals, the unsatisfactory efficacy of current antifungal drugs and their associated toxicity, and the scientific and economic barriers limiting a new antifungal pipeline. DectiSomes represent a new drug delivery platform that enhances antifungal efficacy for diverse fungal pathogens and reduces host toxicity for current and future antifungals. DectiSomes employ pathogen receptor proteins - C-type lectins - to target drug-loaded liposomes to conserved fungal cognate ligands and away from host cells. DectiSomes represent one leap forward for urgently needed effective pan-antifungal therapy. Herein, we discuss the problems of battling fungal diseases and the state of DectiSome development.
Collapse
Affiliation(s)
- Richard B Meagher
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Zachary A Lewis
- Department of Genetics, University of Georgia, Athens, GA 30602, USA; Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Suresh Ambati
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
14
|
Wang WH, Lai TX, Wu YC, Chen ZT, Tseng KY, Lan CY. Associations of Rap1 with Cell Wall Integrity, Biofilm Formation, and Virulence in Candida albicans. Microbiol Spectr 2022; 10:e0328522. [PMID: 36416583 PMCID: PMC9769648 DOI: 10.1128/spectrum.03285-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
Rap1 (repressor activator protein 1) is a multifunctional protein, playing important roles in telomeric and nontelomeric functions in many eukaryotes. Candida albicans Rap1 has been previously shown to be involved in telomeric regulation, but its other functions are still mostly unknown. In this study, we found that the deletion of the RAP1 gene altered cell wall properties, composition, and gene expression. In addition, deletion of RAP1 affected C. albicans biofilm formation and modulated phagocytosis and cytokine release by host immune cells. Finally, the RAP1 gene deletion mutant showed attenuation of C. albicans virulence in a Galleria mellonella infection model. Therefore, these findings provide new insights into Rap1 functions that are particularly relevant to pathogenesis and virulence of C. albicans. IMPORTANCE C. albicans is an important fungal pathogen of humans. The cell wall is the outermost layer of C. albicans and is important for commensalism and infection by this pathogen. Moreover, the cell wall is also an important target for antifungals. Studies of how C. albicans maintains its cell wall integrity are critical for a better understanding of fungal pathogenesis and virulence. This work focuses on exploring unknown functions of C. albicans Rap1 and reveals its contribution to cell wall integrity, biofilm formation, and virulence. Notably, these findings will also improve our general understanding of complex machinery to control pathogenesis and virulence of fungal pathogens.
Collapse
Affiliation(s)
- Wen-Han Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ting-Xiu Lai
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Chia Wu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Zzu-Ting Chen
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Kuo-Yun Tseng
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Taiwan Mycology Reference Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Township, Miaoli County, Taiwan
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
15
|
Alonso MF, Bain JM, Rudkin FM, Erwig LP, Brown AJ, Gow NA. The nature of the fungal cargo induces significantly different temporal programmes of macrophage phagocytosis. Cell Surf 2022; 8:100082. [PMID: 36299405 PMCID: PMC9589029 DOI: 10.1016/j.tcsw.2022.100082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Phagocytosis is an essential component of our immune defence against fungal pathogens. Differences in the dynamics of phagocyte migration, recognition, uptake and phagolysosome maturation are dependent on the characteristics of the fungal cargo, and in particular to differences in cell wall composition and cellular morphology. However, studies that have focused on phagocyte interactions with individual fungal species have not enabled comparisons in the kinetics of these interactions to be made between these different species. We therefore used live cell video microscopy to examine the temporal dynamics of phagocytosis for a range of fungal cargoes by thioglycollate-elicited peritoneal macrophages from C57BL/6 mice. Uniform populations of macrophages were challenged at the same time with yeast cells of Candida albicans, Candida glabrata, Saccharomyces cerevisiae and Cryptococcus neoformans (wild-type and an acapsular mutant, cap59Δ), and spores of Aspergillus fumigatus and Mucor circinelloides to enable standardized comparative interactions to be quantified from different stages of phagocytosis. Differences in the rate of uptake of fungal cells varied by up to 26-fold, whilst differences in time to induce phagosome acidification varied by as much as 29-fold. Heat-killing or opsonizing the fungal targets markedly affected the kinetics of the interaction in a species-specific manner. Fungal and macrophage killing assays further revealed cargo-specific differences in phagocytosis and diversity in fungal evasion mechanisms. Therefore, simultaneous assessment of the interaction of macrophages with different fungal pathogens highlighted major differences in the kinetics and growth responses during fungus-phagocyte interactions that are likely to impact on pathogenesis and virulence.
Collapse
Affiliation(s)
- María Fernanda Alonso
- The Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Judith M. Bain
- The Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Fiona M. Rudkin
- The Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lars P. Erwig
- The Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J.P. Brown
- The Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Neil A.R. Gow
- The Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
16
|
Jenull S, Shivarathri R, Tsymala I, Penninger P, Trinh PC, Nogueira F, Chauhan M, Singh A, Petryshyn A, Stoiber A, Chowdhary A, Chauhan N, Kuchler K. Transcriptomics and Phenotyping Define Genetic Signatures Associated with Echinocandin Resistance in Candida auris. mBio 2022; 13:e0079922. [PMID: 35968956 PMCID: PMC9426441 DOI: 10.1128/mbio.00799-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
Candida auris emerged as a human fungal pathogen only during the past decade. Remarkably, C. auris displays high degrees of genomic diversity and phenotypic plasticity, with four major clades causing hospital outbreaks with high mortality and morbidity rates. C. auris can show clinical resistance to all classes of antifungal drugs, including echinocandins that are usually recommended as first-line therapies for invasive candidiasis. Here, we exploit transcriptomics coupled with phenotypic profiling to characterize a set of clinical C. auris isolates displaying pronounced echinocandin resistance (ECN-R). A hot spot mutation in the echinocandin FKS1 target gene is present in all resistant isolates. Moreover, ECN-R strains share a core signature set of 362 genes differentially expressed in ECN-R isolates. Among others, mitochondrial gene expression and genes affecting cell wall function appear to be the most prominent, with the latter correlating well with enhanced adhesive traits, increased cell wall mannan content, and altered sensitivity to cell wall stress of ECN-R isolates. Moreover, ECN-R phenotypic signatures were also linked to pathogen recognition and interaction with immune cells. Hence, transcriptomics paired with phenotyping is a suitable tool to predict resistance and fitness traits as well as treatment outcomes in pathogen populations with complex phenotypic diversity. IMPORTANCE The surge in antimicrobial drug resistance in some bacterial and fungal pathogens constitutes a significant challenge to health care facilities. The emerging human fungal pathogen Candida auris has been particularly concerning, as isolates can display pan-antifungal resistance traits against all drugs, including echinocandins. However, the mechanisms underlying this phenotypic diversity remain poorly understood. We identify transcriptomic signatures in C. auris isolates resistant to otherwise fungicidal echinocandins. We identify a set of differentially expressed genes shared by resistant strains compared to unrelated susceptible isolates. Moreover, phenotyping demonstrates that resistant strains show distinct behaviors, with implications for host-pathogen interactions. Hence, this work provides a solid basis to identify the mechanistic links between antifungal multidrug resistance and fitness costs that affect the interaction of C. auris with host immune defenses.
Collapse
Affiliation(s)
- Sabrina Jenull
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Raju Shivarathri
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Irina Tsymala
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Philipp Penninger
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Phan-Canh Trinh
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Filomena Nogueira
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
- CCRI-St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Manju Chauhan
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Ashutosh Singh
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Andriy Petryshyn
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Anton Stoiber
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Anuradha Chowdhary
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Neeraj Chauhan
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Karl Kuchler
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| |
Collapse
|