1
|
McLaughlin JF, Brock KM, Gates I, Pethkar A, Piattoni M, Rossi A, Lipshutz SE. Multivariate Models of Animal Sex: Breaking Binaries Leads to a Better Understanding of Ecology and Evolution. Integr Comp Biol 2023; 63:891-906. [PMID: 37156506 PMCID: PMC10563656 DOI: 10.1093/icb/icad027] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
"Sex" is often used to describe a suite of phenotypic and genotypic traits of an organism related to reproduction. However, these traits-gamete type, chromosomal inheritance, physiology, morphology, behavior, etc.-are not necessarily coupled, and the rhetorical collapse of variation into a single term elides much of the complexity inherent in sexual phenotypes. We argue that consideration of "sex" as a constructed category operating at multiple biological levels opens up new avenues for inquiry in our study of biological variation. We apply this framework to three case studies that illustrate the diversity of sex variation, from decoupling sexual phenotypes to the evolutionary and ecological consequences of intrasexual polymorphisms. We argue that instead of assuming binary sex in these systems, some may be better categorized as multivariate and nonbinary. Finally, we conduct a meta-analysis of terms used to describe diversity in sexual phenotypes in the scientific literature to highlight how a multivariate model of sex can clarify, rather than cloud, studies of sexual diversity within and across species. We argue that such an expanded framework of "sex" better equips us to understand evolutionary processes, and that as biologists, it is incumbent upon us to push back against misunderstandings of the biology of sexual phenotypes that enact harm on marginalized communities.
Collapse
Affiliation(s)
- J F McLaughlin
- Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley, CA 94720, USA
| | - Kinsey M Brock
- Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Isabella Gates
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Anisha Pethkar
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Marcus Piattoni
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Alexis Rossi
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Sara E Lipshutz
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
2
|
Anderson AP, Falk JJ. Cross-sexual Transfer Revisited. Integr Comp Biol 2023; 63:936-945. [PMID: 37147027 DOI: 10.1093/icb/icad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023] Open
Abstract
In her influential book "Developmental Plasticity and Evolution," Mary Jane West-Eberhard introduced the concept of cross-sexual transfer, where traits expressed in one sex in an ancestral species become expressed in the other sex. Despite its potential ubiquity, we find that cross-sexual transfer has been under-studied and under-cited in the literature, with only a few experimental papers that have invoked the concept. Here, we aim to reintroduce cross-sexual transfer as a powerful framework for explaining sex variation and highlight its relevance in current studies on the evolution of sexual heteromorphism (different means or modes in trait values between the sexes). We discuss several exemplary studies of cross-sexual transfer that have been published in the past two decades, further building on West-Eberhard's extensive review. We emphasize two scenarios as potential avenues of study, within-sex polymorphic and sex-role reversed species, and discuss the evolutionary and adaptive implications. Lastly, we propose future questions to expand our understanding of cross-sexual transfer, from nonhormonal mechanisms to the identification of broad taxonomic patterns. As evolutionary biologists increasingly recognize the nonbinary and often continuous nature of sexual heteromorphism, the cross-sexual framework has important utility for generating novel insights and perspectives on the evolution of sexual phenotypes across diverse taxa.
Collapse
Affiliation(s)
| | - Jay Jinsing Falk
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
3
|
McLaughlin JF, Aguilar C, Bernstein JM, Navia-Gine WG, Cueto-Aparicio LE, Alarcon AC, Alarcon BD, Collier R, Takyar A, Vong SJ, López-Chong OG, Driver R, Loaiza JR, De León LF, Saltonstall K, Lipshutz SE, Arcila D, Brock KM, Miller MJ. Comparative phylogeography reveals widespread cryptic diversity driven by ecology in Panamanian birds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023. [PMID: 36993716 DOI: 10.1101/2023.01.26.525769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
UNLABELLED Widespread species often harbor unrecognized genetic diversity, and investigating the factors associated with such cryptic variation can help us better understand the forces driving diversification. Here, we identify potential cryptic species based on a comprehensive dataset of COI mitochondrial DNA barcodes from 2,333 individual Panamanian birds across 429 species, representing 391 (59%) of the 659 resident landbird species of the country, as well as opportunistically sampled waterbirds. We complement this dataset with additional publicly available mitochondrial loci, such as ND2 and cytochrome b, obtained from whole mitochondrial genomes from 20 taxa. Using barcode identification numbers (BINs), we find putative cryptic species in 19% of landbird species, highlighting hidden diversity in the relatively well-described avifauna of Panama. Whereas some of these mitochondrial divergence events corresponded with recognized geographic features that likely isolated populations, such as the Cordillera Central highlands, the majority (74%) of lowland splits were between eastern and western populations. The timing of these splits are not temporally coincident across taxa, suggesting that historical events, such as the formation of the Isthmus of Panama and Pleistocene climatic cycles, were not the primary drivers of cryptic diversification. Rather, we observed that forest species, understory species, insectivores, and strongly territorial species-all traits associated with lower dispersal ability-were all more likely to have multiple BINs in Panama, suggesting strong ecological associations with cryptic divergence. Additionally, hand-wing index, a proxy for dispersal capability, was significantly lower in species with multiple BINs, indicating that dispersal ability plays an important role in generating diversity in Neotropical birds. Together, these results underscore the need for evolutionary studies of tropical bird communities to consider ecological factors along with geographic explanations, and that even in areas with well-known avifauna, avian diversity may be substantially underestimated. LAY SUMMARY - What factors are common among bird species with cryptic diversity in Panama? What role do geography, ecology, phylogeographic history, and other factors play in generating bird diversity?- 19% of widely-sampled bird species form two or more distinct DNA barcode clades, suggesting widespread unrecognized diversity.- Traits associated with reduced dispersal ability, such as use of forest understory, high territoriality, low hand-wing index, and insectivory, were more common in taxa with cryptic diversity. Filogeografía comparada revela amplia diversidad críptica causada por la ecología en las aves de Panamá. RESUMEN Especies extendidas frecuentemente tiene diversidad genética no reconocida, y investigando los factores asociados con esta variación críptica puede ayudarnos a entender las fuerzas que impulsan la diversificación. Aquí, identificamos especies crípticas potenciales basadas en un conjunto de datos de códigos de barras de ADN mitocondrial de 2,333 individuos de aves de Panama en 429 especies, representando 391 (59%) de las 659 especies de aves terrestres residentes del país, además de algunas aves acuáticas muestreada de manera oportunista. Adicionalmente, complementamos estos datos con secuencias mitocondriales disponibles públicamente de otros loci, tal como ND2 o citocroma b, obtenidos de los genomas mitocondriales completos de 20 taxones. Utilizando los números de identificación de código de barras (en ingles: BINs), un sistema taxonómico numérico que proporcina una estimación imparcial de la diversidad potencial a nivel de especie, encontramos especies crípticas putativas en 19% de las especies de aves terrestres, lo que destaca la diversidad oculta en la avifauna bien descrita de Panamá. Aunque algunos de estos eventos de divergencia conciden con características geográficas que probablemente aislaron las poblaciones, la mayoría (74%) de la divergencia en las tierras bajas se encuentra entre las poblaciones orientales y occidentales. El tiempo de esta divergencia no coincidió entre los taxones, sugiriendo que eventos históricos tales como la formación del Istmo de Panamá y los ciclos climáticos del pleistoceno, no fueron los principales impulsores de la especiación. En cambio, observamos asociaciones fuertes entre las características ecológicas y la divergencia mitocondriale: las especies del bosque, sotobosque, con una dieta insectívora, y con territorialidad fuerte mostraton múltiple BINs probables. Adicionalmente, el índice mano-ala, que está asociado a la capacidad de dispersión, fue significativamente menor en las especies con BINs multiples, sugiriendo que la capacidad de dispersión tiene un rol importamente en la generación de la diversidad de las aves neotropicales. Estos resultos demonstran la necesidad de que estudios evolutivos de las comunidades de aves tropicales consideren los factores ecológicos en conjunto con las explicaciones geográficos. Palabras clave: biodiversidad tropical, biogeografía, códigos de barras, dispersión, especies crípticas.
Collapse
|
4
|
Cunha GR, Cao M, Derpinghaus A, Baskin LS. Androgenic induction of penile features in postnatal female mouse external genitalia from birth to adulthood: Is the female sexual phenotype ever irreversibly determined? Differentiation 2023; 131:1-26. [PMID: 36924743 DOI: 10.1016/j.diff.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Female mice were treated for 35 days from birth to 60 days postnatal (P0, [birth], P5, P10, P20 and adult [∼P60]) with dihydrotestosterone (DHT). Such treatment elicited profound masculinization the female external genitalia and development of penile features (penile spines, male urogenital mating protuberance (MUMP) cartilage, corpus cavernosum glandis, corporal body, MUMP-corpora cavernosa, a large preputial space, internal preputial space, os penis). Time course studies demonstrated that DHT elicited canalization of the U-shaped clitoral lamina to create a U-shaped preputial space, preputial lining epithelium and penile epithelium adorned with spines. The effect of DHT was likely due to signaling through androgen receptors normally present postnatally in the clitoral lamina and associated mesenchyme. This study highlights a remarkable male/female difference in specification and determination of urogenital organ identity. Urogenital organ identity in male mice is irreversibly specified and determined prenatally (prostate, penis, and seminal vesicle), whereas many aspects of the female urogenital organogenesis are not irreversibly determined at birth and in the case of external genitalia are not irreversibly determined even into adulthood, the exception being positioning of the female urethra, which is determined prenatally.
Collapse
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA.
| | - Mei Cao
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Amber Derpinghaus
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Laurence S Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
5
|
Curren LJ, Sawdy MA, Scribner KT, Lehmann KDS, Holekamp KE. Endurance rivalry among male spotted hyenas: what does it mean to “endure”? Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03212-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
McCormick SK, Holekamp KE, Smale L, Weldele ML, Glickman SE, Place NJ. Sex Differences in Spotted Hyenas. Cold Spring Harb Perspect Biol 2022; 14:a039180. [PMID: 34649923 PMCID: PMC9248831 DOI: 10.1101/cshperspect.a039180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The apparent virilization of the female spotted hyena raises questions about sex differences in behavior and morphology. We review these sex differences to find a mosaic of dimorphic traits, some of which conform to mammalian norms. These include space-use, dispersal behavior, sexual behavior, and parental behavior. By contrast, sex differences are reversed from mammalian norms in the hyena's aggressive behavior, social dominance, and territory defense. Androgen exposure early in development appears to enhance aggressiveness in female hyenas. Weapons, hunting behavior, and neonatal body mass do not differ between males and females, but females are slightly larger than males as adults. Sex differences in the hyena's nervous system are relatively subtle. Overall, it appears that the "masculinized" behavioral traits in female spotted hyenas are those, such as aggression, that are essential to ensuring consistent access to food; food critically limits female reproductive success in this species because female spotted hyenas have the highest energetic investment per litter of any mammalian carnivore. Evidently, natural selection has acted to modify traits related to food access, but has left intact those traits that are unrelated to acquiring food, such that they conform to patterns of sexual dimorphism in other mammals.
Collapse
Affiliation(s)
- S Kevin McCormick
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan 48824, USA
| | - Kay E Holekamp
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan 48824, USA
| | - Laura Smale
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Psychology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Mary L Weldele
- Departments of Psychology and Integrative Biology, University of California, Berkeley, California 94720, USA
| | - Stephen E Glickman
- Departments of Psychology and Integrative Biology, University of California, Berkeley, California 94720, USA
| | - Ned J Place
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
7
|
Milewski TM, Lee W, Champagne FA, Curley JP. Behavioural and physiological plasticity in social hierarchies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200443. [PMID: 35000436 PMCID: PMC8743892 DOI: 10.1098/rstb.2020.0443] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Individuals occupying dominant and subordinate positions in social hierarchies exhibit divergent behaviours, physiology and neural functioning. Dominant animals express higher levels of dominance behaviours such as aggression, territorial defence and mate-guarding. Dominants also signal their status via auditory, visual or chemical cues. Moreover, dominant animals typically increase reproductive behaviours and show enhanced spatial and social cognition as well as elevated arousal. These biobehavioural changes increase energetic demands that are met via shifting both energy intake and metabolism and are supported by coordinated changes in physiological systems including the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes as well as altered gene expression and sensitivity of neural circuits that regulate these behaviours. Conversely, subordinate animals inhibit dominance and often reproductive behaviours and exhibit physiological changes adapted to socially stressful contexts. Phenotypic changes in both dominant and subordinate individuals may be beneficial in the short-term but lead to long-term challenges to health. Further, rapid changes in social ranks occur as dominant animals socially ascend or descend and are associated with dynamic modulations in the brain and periphery. In this paper, we provide a broad overview of how behavioural and phenotypic changes associated with social dominance and subordination are expressed in neural and physiological plasticity. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- T. M. Milewski
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| | - W. Lee
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| | - F. A. Champagne
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| | - J. P. Curley
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
8
|
Montgomery TM, Greenberg JR, Gunson JL, John K, Laubach ZM, Nonnamaker E, Person ES, Rogers H, Ronis EM, Smale L, Steinfield KR, Strong R, Holekamp KE, Beehner JC. Measuring salivary cortisol in wild carnivores. Horm Behav 2022; 137:105082. [PMID: 34798449 DOI: 10.1016/j.yhbeh.2021.105082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 09/19/2021] [Accepted: 10/19/2021] [Indexed: 11/04/2022]
Abstract
Salivary hormone analyses provide a useful alternative to fecal and urinary hormone analyses in non-invasive studies of behavioral endocrinology. Here, we use saliva to assess cortisol levels in a wild population of spotted hyenas (Crocuta crocuta), a gregarious carnivore living in complex social groups. We first describe a novel, non-invasive method of collecting saliva from juvenile hyenas and validate a salivary cortisol assay for use in this species. We then analyze over 260 saliva samples collected from nearly 70 juveniles to investigate the relationships between cortisol and temporal and social variables in these animals. We obtain some evidence of a bimodal daily rhythm with salivary cortisol concentrations dropping around dawn and dusk, times at which cub activity levels are changing substantially. We also find that dominant littermates have lower cortisol than singleton juveniles, but that cortisol does not vary with age, sex, or maternal social rank. Finally, we examine how social behaviors such as aggression or play affect salivary cortisol concentrations. We find that inflicting aggression on others was associated with lower cortisol concentrations. We hope that the detailed description of our methods provides wildlife researchers with the tools to measure salivary cortisol in other wild carnivores.
Collapse
Affiliation(s)
- Tracy M Montgomery
- Michigan State University, Department of Integrative Biology and Program in Ecology, Evolution, and Behavior, 288 Farm Lane, East Lansing, MI 48824, USA; Mara Hyena Project, Kenya; Max Planck Institute for Animal Behavior, Department for the Ecology of Animal Societies, Bücklestraße 5a, 78467 Konstanz, Germany.
| | - Julia R Greenberg
- Michigan State University, Department of Integrative Biology and Program in Ecology, Evolution, and Behavior, 288 Farm Lane, East Lansing, MI 48824, USA; Mara Hyena Project, Kenya; University of Wisconsin-Madison, Department of Psychology, 1202 West Johnson Street, Madison, WI 53706, USA
| | - Jessica L Gunson
- Mara Hyena Project, Kenya; New York University, Department of Anthropology, 25 Waverly Place, New York, NY 10003, USA
| | | | - Zachary M Laubach
- Michigan State University, Department of Integrative Biology and Program in Ecology, Evolution, and Behavior, 288 Farm Lane, East Lansing, MI 48824, USA; Mara Hyena Project, Kenya; University of Colorado Boulder, Department of Ecology and Evolutionary Biology, 1900 Pleasant Street, Boulder, CO 80309, USA
| | - Emily Nonnamaker
- Mara Hyena Project, Kenya; University of Notre Dame, Department of Biological Sciences, 175 Galvin Life Sciences Center, Notre Dame, IN 46556, USA
| | - Erin S Person
- Mara Hyena Project, Kenya; University of California Berkeley, Department of Integrative Biology, 3040 Valley Life Sciences Building, Berkeley, CA 94720, USA
| | - Heidi Rogers
- Mara Hyena Project, Kenya; University of California Santa Cruz, Department of Statistical Science, 1156 High Street, Santa Cruz, CA 95064, USA
| | | | - Laura Smale
- Michigan State University, Department of Psychology and Program in Neuroscience, 316 Physics Road, East Lansing, MI 48824, USA
| | - Katherine R Steinfield
- Mara Hyena Project, Kenya; University College London, Division of Biosciences, Gower Street, London WC1E 6BT, UK
| | | | - Kay E Holekamp
- Michigan State University, Department of Integrative Biology and Program in Ecology, Evolution, and Behavior, 288 Farm Lane, East Lansing, MI 48824, USA; Mara Hyena Project, Kenya
| | - Jacinta C Beehner
- University of Michigan, Department of Psychology, 530 Church Street, Ann Arbor, MI 48109, USA; University of Michigan, Department of Anthropology, 1085 South University Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Holekamp KE, Strauss ED. Reproduction Within a Hierarchical Society from a Female's Perspective. Integr Comp Biol 2021; 60:753-764. [PMID: 32667986 DOI: 10.1093/icb/icaa068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The reproductive biology of many female mammals is affected by their social environment and their interactions with conspecifics. In mammalian societies structured by linear dominance hierarchies, such as that of the spotted hyena (Crocuta crocuta), a female's social rank can have profound effects on both her reproductive success and her longevity. In this species, social rank determines priority of access to food, which is the resource limiting reproduction. Due largely to rank-related variation in access to food, reproduction from the perspective of a female spotted hyena can only be understood in the context of her position in the social hierarchy. In this review, we examine the effects of rank on the various phases of reproduction, from mating to weaning. Summed over many individual reproductive lifespans, the effect of rank at these different reproductive phases leads to dramatic rank-related variation in fitness among females and their lineages. Finally, we ask why females reproduce socially despite these apparent costs of group living to low-ranking females. Gregariousness enhances the fitness of females regardless of their positions in the social hierarchy, and females attempting to survive and reproduce without clanmates lose all their offspring. The positive effects of gregariousness appear to result from having female allies, both kin and non-kin, who cooperate to advertise and defend a shared territory, acquire, and defend food resources, maintain the status quo, and occasionally also to rise in social rank.
Collapse
Affiliation(s)
- Kay E Holekamp
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA.,Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | - Eli D Strauss
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA.,Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI 48824, USA.,School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
10
|
|
11
|
Kuroda KO, Shiraishi Y, Shinozuka K. Evolutionary-adaptive and nonadaptive causes of infant attack/desertion in mammals: Toward a systematic classification of child maltreatment. Psychiatry Clin Neurosci 2020; 74:516-526. [PMID: 32592505 DOI: 10.1111/pcn.13096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
Behaviors comparable to human child maltreatment are observed widely among mammals, in which parental care is mandatory for offspring survival. This article first reviews the recent findings on the neurobiological mechanisms for nurturing (infant caregiving) behaviors in mammals. Then the major causes of attack/desertion toward infants (conspecific young) in nonhuman mammals are classified into five categories. Three of the categories are 'adaptive' in terms of reproductive fitness: (i) attack/desertion toward non-offspring; (ii) attack/desertion toward biological offspring with low reproductive value; and (iii) attack/desertion toward biological offspring under unfavorable environments. The other two are nonadaptive failures of nurturing motivation, induced by: (iv) caregivers' inexperience; or (v) dysfunction in caregivers' brain mechanisms required for nurturing behavior. The proposed framework covering both adaptive and nonadaptive factors comprehensively classifies the varieties of mammalian infant maltreatment cases and will support the future development of tailored preventive measures for each human case. Also included are remarks that are relevant to interpretation of available animal data to humans: (1) any kind of child abuse/neglect is not justified in modern human societies, even if it is widely observed and regarded as adaptive in nonhuman animals from the viewpoint of evolutionary biology; (2) group-level characteristics cannot be generalized to individuals; and (3) risk factors are neither deterministic nor irreversible.
Collapse
Affiliation(s)
- Kumi O Kuroda
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
| | - Yuko Shiraishi
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
| | - Kazutaka Shinozuka
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
12
|
Grebe NM, Fitzpatrick C, Sharrock K, Starling A, Drea CM. Organizational and activational androgens, lemur social play, and the ontogeny of female dominance. Horm Behav 2019; 115:104554. [PMID: 31276664 DOI: 10.1016/j.yhbeh.2019.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/06/2019] [Accepted: 07/01/2019] [Indexed: 11/18/2022]
Abstract
The role of androgens in shaping "masculine" traits in males is a core focus in behavioral endocrinology, but relatively little is known about an androgenic role in female aggression and social dominance. In mammalian models of female dominance, including the ring-tailed lemur (Lemur catta), links to androgens in adulthood are variable. We studied the development of ring-tailed lemurs to address the behavioral basis and ontogenetic mechanisms of female dominance. We measured behavior and serum androgen concentrations in 24 lemurs (8 males, 16 females) from infancy to early adulthood, and assessed their 'prenatal' androgen milieu using serum samples obtained from their mothers during gestation. Because logistical constraints limited the frequency of infant blood sampling, we accounted for asynchrony between behavioral and postnatal hormone measurements via imputation procedures. Imputation was unnecessary for prenatal hormone measurements. The typical sex difference in androgen concentrations in young lemurs was consistent with adult conspecifics and most other mammals; however, we found no significant sex differences in rough-and-tumble play. Female (but not male) aggression increased beginning at approximately 15 months, coincident with female puberty. In our analyses relating sexually differentiated behavior to androgens, we found no relationship with activational hormones, but several significant relationships with organizational hormones. Notably, associations of prenatal androstenedione and testosterone with behavior were differentiated, both by offspring sex and by type of behavior within offspring sexes. We discuss the importance of considering (1) missing data in behavioral endocrinology research, and (2) organizational androgens other than testosterone in studies of female dominance.
Collapse
Affiliation(s)
- Nicholas M Grebe
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.
| | | | - Katherine Sharrock
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Anne Starling
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Christine M Drea
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA; Department of Biology, Duke University, Durham, NC, USA; University Program in Ecology, Duke University, Durham, NC, USA
| |
Collapse
|
13
|
Vozdova M, Kubickova S, Rubes J. Sex determining region Y ( SRY) sequencing and non-invasive molecular sexing in three wild species: brown ( Parahyaena brunnea) and spotted ( Crocuta crocuta) hyenas and aardvark ( Orycteropus afer). Reprod Fertil Dev 2019; 31:1419-1423. [PMID: 30971330 DOI: 10.1071/rd18468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/24/2019] [Indexed: 11/23/2022] Open
Abstract
Non-invasive molecular sexing methods are useful in captive breeding programs and field studies; these methods enable sex identification without immobilisation or stressful handling of animals. We developed a method enabling fast and reliable sex identification in three species with limited external sexual dimorphism: the brown and spotted hyenas and the aardvark. We used the sex determining region Y (SRY ) gene as the male-specific sequence and the c-myc gene, highly conserved among mammals, as the control sequence present in both sexes. Primers designed on the basis of the feline and human SRY gene enabled us to amplify and sequence the SRY gene fragment in hyenas and the aardvark. Subsequently, we used specific primers designed on the basis of the newly obtained sequences for sex determination in two brown hyenas, three spotted hyenas and six aardvarks. The sequences of the SRY gene fragments were further studied. Interspecies comparisons revealed high similarity in SRY sequences between both hyena species, as well as their relationships with the Felidae lineage. The aardvark, as the only species of the order Tubulidentata (Afrotheria), showed SRY gene similarities with Sirenia and Primates. Knowledge of phylogenetic relationships can be beneficial in genetic studies focused on species with limited sequence data.
Collapse
Affiliation(s)
- Miluse Vozdova
- Central European Institute of Technology - Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; and Corresponding author
| | - Svatava Kubickova
- Central European Institute of Technology - Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Jiri Rubes
- Central European Institute of Technology - Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| |
Collapse
|
14
|
de Oliveira GB, de Araújo Júnior HN, Dos Santos Sousa R, Bezerra FVF, Dos Santos AC, de Moura CEB, Silva AR, de Oliveira Rocha HA, de Oliveira MF. Morphology of the genital organs of the female red-rumped agouti (Dasyprocta leporina, Linnaeus, 1758) during estrous cycle phases and in advanced pregnancy. J Morphol 2019; 280:1232-1245. [PMID: 31233245 DOI: 10.1002/jmor.21027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/27/2019] [Accepted: 06/06/2019] [Indexed: 11/11/2022]
Abstract
The study investigated the gross and microscopic anatomy of the genital organs of 20 agoutis at different stages of the estrous cycle and four in the final trimester of pregnancy. Specimens were euthanized and their reproductive organs were fixed in a 4% paraformaldehyde or 2.5% glutaraldehyde solution and submitted to routine histological techniques for light and scanning electron microscopy. In the ovary, during the proestrus phase, we observed developing follicles and corpus luteum (CL) in regression; during estrus, there were Graafian follicles; during metestrus, there was a hemorrhagic corpus, whereas in diestrus, there was a mature CL. The uterus was partially double because the cervix was cranially septate but caudally, the septum disappeared, forming a single ostium that opened into the vagina. Changes occurred along the estrous cycle in the uterine and vaginal epithelia, that is, an increase in the uterine epithelium height accompanied by an increase of thickness of the vaginal epithelium during the follicular phase and a decrease of thickness of both epithelia during the luteal phase. The endometrial lining was composed of a simple cuboidal epithelium to simple columnar epithelium with basal nuclei. The vaginal mucosa consisted of epithelium that varied from nonkeratinized stratified squamous (luteal phase) to keratinized stratified squamous (follicular phase). The clitoris was external to the vagina. It presented two protruding lateral keratinized spicules and a centralized urethra, with no common parts between the urinary and genital tracts. Anatomical and histological changes were observed mainly in the cervix, vagina and spicules of the clitoris during the EC.
Collapse
Affiliation(s)
| | | | - Rejane Dos Santos Sousa
- Department of Anatomy of Domestic and Wild Animals, School of Veterinary Medicine and Animal Sciences, Sao Paulo, Sao Paulo, Brazil
| | | | - Amilton Cesar Dos Santos
- Department of Anatomy of Domestic and Wild Animals, School of Veterinary Medicine and Animal Sciences, Sao Paulo, Sao Paulo, Brazil
| | | | - Alexandre Rodrigues Silva
- Department of Animal Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, State of Rio Grande do Norte, Brazil
| | - Hugo Alexandre de Oliveira Rocha
- Bioscience Center, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, State of Rio Grande do Norte, Brazil
| | - Moacir Franco de Oliveira
- Department of Animal Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, State of Rio Grande do Norte, Brazil
| |
Collapse
|
15
|
Dos Santos AC, Conley AJ, de Oliveira MF, de Assis Neto AC. Development of urogenital system in the Spix cavy: A model for studies on sexual differentiation. Differentiation 2018; 101:25-38. [PMID: 29684807 DOI: 10.1016/j.diff.2018.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022]
Abstract
This study documented, for the first time, the morphological patterns of differentiation of male and female genital organs of Spix cavy (Galea spixii) using histological and ultrastructural analyses, with immuno-localization of steroidogenic enzymes, cytochromes P450 aromatase (P450arom) and 17α-hydroxylase/17, 20-lyase (P450c17), involved in the synthesis of estrogens and androgens respectively throughout fetal sexual development. Undifferentiated gonads of Spix cavy develop into ovaries in females after 25 days of gestation (DG), exhibiting P450arom immunoreactivity. After 25 DG, paramesonephric ducts develop and form oviducts, uterine horns and cranial portion of the vagina. The caudal portion of the vagina originates from the urogenital sinus, and a vaginal closure membrane is present at the end of gestation. Partial channeling of the urethra into the clitoris occurs after 40 DG, but complete channeling never occurs. A preputial meatus emerges near the tip of organ. In males, undifferentiated gonads develop into testes at 25 DG and develop immunoreactivity for P450c17, which is required for androgens synthesis and likely maintenance of mesonephric ducts. Mesonephric ducts develop subsequently, forming the epididymis and ductus deferens. The pelvic urethra develops after 25 DG with channeling into the penis occurring around 30 DG. This is the first morphological study describing the process of sexual differentiation during gestation in a hystricomorph rodent and one of the most comprehensive analyses conducted in any mammal. Male genital organ development follows the general pattern described in other domestic mammals, but does not include formation of the baculum as occurs in mice and rats. In females, clitoral development includes partial canalization by the urethra and development of a preputial meatus. Further studies are required to clarify the mechanisms involved in the differentiative processes described.
Collapse
Affiliation(s)
- Amilton Cesar Dos Santos
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87 ZC, 05508-270 São Paulo-SP, Brazil
| | - Alan James Conley
- Population Health&Reproduction, School of Veterinary Medicine, University of California, Davis, USA
| | | | - Antônio Chaves de Assis Neto
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87 ZC, 05508-270 São Paulo-SP, Brazil.
| |
Collapse
|
16
|
Davies CS, Smyth KN, Greene LK, Walsh DA, Mitchell J, Clutton-Brock T, Drea CM. Exceptional endocrine profiles characterise the meerkat: sex, status, and reproductive patterns. Sci Rep 2016; 6:35492. [PMID: 27752129 PMCID: PMC5067592 DOI: 10.1038/srep35492] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/30/2016] [Indexed: 11/17/2022] Open
Abstract
In vertebrates, reproductive endocrine concentrations are strongly differentiated by sex, with androgen biases typifying males and estrogen biases typifying females. These sex differences can be reduced in female-dominant species; however, even the most masculinised of females have less testosterone (T) than do conspecific males. To test if aggressively dominant, female meerkats (Suricata suricatta) may be hormonally masculinised, we measured serum androstenedione (A4), T and estradiol (E2) in both sexes and social classes, during both ‘baseline’ and reproductive events. Relative to resident males, dominant females had greater A4, equivalent T and greater E2 concentrations. Males, whose endocrine values did not vary by social status, experienced increased T during reproductive forays, linking T to sexual behaviour, but not social status. Moreover, substantial E2 concentrations in male meerkats may facilitate their role as helpers. In females, dominance status and pregnancy magnified the unusual concentrations of measured sex steroids. Lastly, faecal androgen metabolites replicated the findings derived from serum, highlighting the female bias in total androgens. Female meerkats are thus strongly hormonally masculinised, possibly via A4’s bioavailability for conversion to T. These raised androgen concentrations may explain female aggressiveness in this species and give dominant breeders a heritable mechanism for their daughters’ competitive edge.
Collapse
Affiliation(s)
- Charli S Davies
- Kalahari Research Trust, Kuruman River Reserve, Northern Cape, South Africa.,Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Kendra N Smyth
- Kalahari Research Trust, Kuruman River Reserve, Northern Cape, South Africa.,Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA.,University Program in Ecology, Duke University, Durham, NC 27708, USA
| | - Lydia K Greene
- Kalahari Research Trust, Kuruman River Reserve, Northern Cape, South Africa.,Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA.,University Program in Ecology, Duke University, Durham, NC 27708, USA
| | - Debbie A Walsh
- Kalahari Research Trust, Kuruman River Reserve, Northern Cape, South Africa.,Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Jessica Mitchell
- Kalahari Research Trust, Kuruman River Reserve, Northern Cape, South Africa.,Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Tim Clutton-Brock
- Kalahari Research Trust, Kuruman River Reserve, Northern Cape, South Africa.,Mammal Research Institute, University of Pretoria, Pretoria, South Africa.,Department of Zoology, University of Cambridge, Cambridge, UK
| | - Christine M Drea
- Kalahari Research Trust, Kuruman River Reserve, Northern Cape, South Africa.,Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA.,University Program in Ecology, Duke University, Durham, NC 27708, USA.,Department of Biology, Duke University, Durham, USA
| |
Collapse
|
17
|
Sinclair AW, Glickman SE, Baskin L, Cunha GR. Anatomy of mole external genitalia: Setting the record straight. Anat Rec (Hoboken) 2016; 299:385-99. [PMID: 26694958 DOI: 10.1002/ar.23309] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/02/2015] [Accepted: 11/08/2015] [Indexed: 12/19/2022]
Abstract
Anatomy of male and female external genitalia of adult mice (Mus musculus) and broad-footed moles (Scapanus latimanus) was re-examined to provide more meaningful anatomical terminology. In the past the perineal appendage of male broad-footed moles has been called the penis, while the female perineal appendage has been given several terms (e.g. clitoris, penile clitoris, peniform clitoris and others). Histological examination demonstrates that perineal appendages of male and female broad-footed moles are the prepuce, which in both sexes are covered externally with a hair-bearing epidermis and lacks erectile bodies. The inner preputial epithelium is non-hair-bearing and defines the preputial space in both sexes. The penis of broad-footed moles lies deep within the preputial space, is an "internal organ" in the resting state and contains the penile urethra, os penis, and erectile bodies. The clitoris of broad-footed moles is defined by a U-shaped clitoral epithelial lamina. Residing within clitoral stroma encompassed by the clitoral epithelial lamina is the corpus cavernosum, blood-filled spaces and the urethra. External genitalia of male and female mice are anatomically similar to that of broad-footed moles with the exception that in female mice the clitoris contains a small os clitoridis and lacks defined erectile bodies, while male mice have an os penis and a prominent distal cartilaginous structure within the male urogenital mating protuberance (MUMP). Clitori of female broad-footed moles lack an os clitoridis but contain defined erectile bodies, while male moles have an os penis similar to the mouse but lack the distal cartilaginous structure.
Collapse
Affiliation(s)
- Adriane Watkins Sinclair
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, California, 94143
| | - Stephen E Glickman
- Departments of Psychology and Integrative Biology, University of California, Berkeley, California, 94720
| | - Laurence Baskin
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, California, 94143
| | - Gerald R Cunha
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, California, 94143
| |
Collapse
|
18
|
Petty JMA, Drea CM. Female rule in lemurs is ancestral and hormonally mediated. Sci Rep 2015; 5:9631. [PMID: 25950904 PMCID: PMC4423346 DOI: 10.1038/srep09631] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/20/2015] [Indexed: 11/26/2022] Open
Abstract
Female social dominance (FSD) over males is unusual in mammals, yet characterizes most Malagasy lemurs, which represent almost 30% of all primates. Despite its prevalence in this suborder, both the evolutionary trajectory and proximate mechanism of FSD remain unclear. Potentially associated with FSD is a suite of behavioural, physiological and morphological traits in females that implicates (as a putative mechanism) 'masculinization' via androgen exposure; however, relative to conspecific males, female lemurs curiously show little evidence of raised androgen concentrations. By observing mixed-sex pairs of related Eulemur species, we identified two key study groups--one comprised of species expressing FSD and increased female scent marking, the other comprised of species (from a recently evolved clade) showing equal status between the sexes and the more traditional pattern of sexually dimorphic behaviour. Comparing females from these two groups, we show that FSD is associated with more masculine androgen profiles. Based on the widespread prevalence of male-like features in female lemurs and a current phylogeny, we suggest that relaxation of hormonally mediated FSD emerged only recently and that female masculinization may be the ancestral lemur condition, an idea that could revolutionize our understanding of the ancient socioecology and evolution of primate social systems.
Collapse
Affiliation(s)
- Joseph M. A. Petty
- University Program in Ecology, Duke University, Durham, NC 27708 USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708 USA
| | - Christine M. Drea
- University Program in Ecology, Duke University, Durham, NC 27708 USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708 USA
- Department of Biology, Duke University, Durham, NC 27708 USA
| |
Collapse
|
19
|
|
20
|
Development of the external genitalia: perspectives from the spotted hyena (Crocuta crocuta). Differentiation 2014; 87:4-22. [PMID: 24582573 DOI: 10.1016/j.diff.2013.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 11/14/2013] [Accepted: 12/06/2013] [Indexed: 11/23/2022]
Abstract
This review/research paper summarizes data on development of the external genitalia of the spotted hyena, a fascinating mammal noted for extreme masculinization of the female external genitalia. The female spotted hyena is the only extant mammal that mates and gives birth through a pendulous penis-like clitoris. Our studies indicate that early formation of the phallus in both males and females is independent of androgens; indeed the phallus forms before the fetal testes or ovaries are capable of synthesizing androgens. Likewise, pre- and postnatal growth in length of the penis and clitoris is minimally affected by "androgen status". Nonetheless, several internal morphologies, as well as external surface features of the phallus, are androgen-dependent and thus account for dimorphism between the penis and clitoris. Finally, estrogens play a critical role in penile and clitoral development, specifying the position of the urethral orifice, determining elasticity of the urethral meatus, and facilitating epithelial-epithelial fusion events required for proper formation of the distal urethra/urogenital sinus and prepuce. Accordingly, prenatal inhibition of estrogen synthesis via administration of letrozole (an aromatase inhibitor) leads to malformations of the glans as well as the prepuce (hypospadias). The effects of prenatal androgens, anti-androgens and impaired estrogen synthesis correlated with the tissue expression of androgen and estrogen receptors.
Collapse
|
21
|
French JA, Mustoe AC, Cavanaugh J, Birnie AK. The influence of androgenic steroid hormones on female aggression in 'atypical' mammals. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130084. [PMID: 24167314 PMCID: PMC3826213 DOI: 10.1098/rstb.2013.0084] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dimorphism on dominance and agonistic behaviour in mammals tends to be strongly biased toward males. In this review, we focus on a select few species of mammals in which females are as or more aggressive than males, and/or are dominant to males, and explore the role of androgenic hormones in mediating this important difference. While the data are not as clear-cut as those published on traditional laboratory mammals, our review highlights important endocrine substrates for both organizational and activational influences of steroids on female aggressive behaviour. We highlight areas in which further observations and experiments are crucial, especially the potential facilitative effects of androgens on female aggression. Finally, new and innovative techniques, including molecular genetics and receptor pharmacology, portend important insights into the ways in which androgenic hormones regulate aggressive behaviour in 'atypical' female mammals.
Collapse
Affiliation(s)
- Jeffrey A. French
- Department of Psychology, Callitrichid Research Center, University of Nebraska at Omaha, Omaha, NE 68182, USA
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Aaryn C. Mustoe
- Department of Psychology, Callitrichid Research Center, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Jon Cavanaugh
- Department of Psychology, Callitrichid Research Center, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Andrew K. Birnie
- Department of Psychology, Callitrichid Research Center, University of Nebraska at Omaha, Omaha, NE 68182, USA
| |
Collapse
|
22
|
Weiss DA, Rodriguez E, Cunha T, Menshenina J, Barcellos D, Chan LY, Risbridger G, Baskin L, Cunha G. Morphology of the external genitalia of the adult male and female mice as an endpoint of sex differentiation. Mol Cell Endocrinol 2012; 354:94-102. [PMID: 21893161 PMCID: PMC3717118 DOI: 10.1016/j.mce.2011.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/09/2011] [Indexed: 11/28/2022]
Abstract
Adult external genitalia (ExG) are the endpoints of normal sex differentiation. Detailed morphometric analysis and comparison of adult mouse ExG has revealed 10 homologous features distinguishing the penis and clitoris that define masculine vs. feminine sex differentiation. These features have enabled the construction of a simple metric to evaluate various intersex conditions in mutant or hormonally manipulated mice. This review focuses on the morphology of the adult mouse penis and clitoris through detailed analysis of histologic sections, scanning electron microscopy, and three-dimensional reconstruction. We also present previous results from evaluation of "non-traditional" mammals, such as the spotted hyena and wallaby to demonstrate the complex process of sex differentiation that involves not only androgen-dependent processes, but also estrogen-dependent and hormone-independent mechanisms.
Collapse
Affiliation(s)
- Dana A. Weiss
- Division of Pediatric Urology, University of California, San Francisco Children’s Hospital, San Francisco, CA 94143, USA
| | - Esequiel Rodriguez
- Division of Pediatric Urology, University of California, San Francisco Children’s Hospital, San Francisco, CA 94143, USA
| | - Tristan Cunha
- Division of Pediatric Urology, University of California, San Francisco Children’s Hospital, San Francisco, CA 94143, USA
| | - Julia Menshenina
- Division of Pediatric Urology, University of California, San Francisco Children’s Hospital, San Francisco, CA 94143, USA
| | - Dale Barcellos
- Monte Vista High School, 21840 McClellan Rd, Cupertino, CA 95014, USA
| | - Lok Yun Chan
- Monte Vista High School, 21840 McClellan Rd, Cupertino, CA 95014, USA
| | - Gail Risbridger
- Dept Anatomy and Developmental Biology, Monash University Clayton Campus, Building 76 Level 3, Wellington Road, Clayton, Victoria 3800, Australia
| | - Laurence Baskin
- Division of Pediatric Urology, University of California, San Francisco Children’s Hospital, San Francisco, CA 94143, USA
| | - Gerald Cunha
- Division of Pediatric Urology, University of California, San Francisco Children’s Hospital, San Francisco, CA 94143, USA
| |
Collapse
|
23
|
Drea CM. Endocrine correlates of pregnancy in the ring-tailed lemur (Lemur catta): implications for the masculinization of daughters. Horm Behav 2011; 59:417-27. [PMID: 20932838 DOI: 10.1016/j.yhbeh.2010.09.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/27/2010] [Accepted: 09/30/2010] [Indexed: 10/19/2022]
Abstract
Female ring-tailed lemurs (Lemur catta) are Malagasy primates that are size monomorphic with males, socially dominate males, and exhibit a long, pendulous clitoris, channeled by the urethra. These masculine traits evoke certain attributes of female spotted hyenas (Crocuta crocuta) and draw attention to the potential role of androgens in lemur sexual differentiation. Here, hormonal correlates of prenatal development were assessed to explore the possibility that maternal androgens may shape the masculine morphological and behavioral features of developing female lemurs. Maternal serum 17α-hydroxyprogesterone, dehydroepiandrosterone sulphate (DHEA-S), ∆⁴ androstenedione (androst-4-ene-3,17,dione), testosterone, and 17β-estradiol were charted throughout the 19 pregnancies of 11 ring-tailed lemurs. As in spotted hyenas, lemur pregnancies were associated with an immediate increase in androgen concentrations (implicating early maternal derivation), followed by continued increases across stages of gestation. Pregnancies that produced singleton males, twin males, or mixed-sex twins were marked by greater androgen and estrogen concentrations than were pregnancies that produced singleton or twin females, especially in the third trimester, implicating the fetal testes in late-term steroid profiles. Concentrations of DHEA-S were mostly below detectable limits, suggesting a minor role for the adrenals in androgen biosynthesis. Androgen concentrations of pregnant lemurs bearing female fetuses, although less than those of pregnant hyenas, exceeded preconception and postpartum values and peaked in the third trimester. Although a maternal (and, on occasion, fraternal) source of androgen may exist for fetal lemurs, further research is required to confirm that these steroids would reach the developing female and contribute to her masculinization.
Collapse
Affiliation(s)
- Christine M Drea
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708-0383, USA.
| |
Collapse
|
24
|
Place NJ, Coscia EM, Dahl NJ, Drea CM, Holekamp KE, Roser JF, Sisk CL, Weldele ML, Glickman SE. The anti-androgen combination, flutamide plus finasteride, paradoxically suppressed LH and androgen concentrations in pregnant spotted hyenas, but not in males. Gen Comp Endocrinol 2011; 170:455-9. [PMID: 21036174 PMCID: PMC3027151 DOI: 10.1016/j.ygcen.2010.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 10/01/2010] [Accepted: 10/23/2010] [Indexed: 11/28/2022]
Abstract
The androgen receptor blocker flutamide and the 5α-reductase inhibitor finasteride have been used in a variety of species to investigate the ontogeny of sexual dimorphisms by treating pregnant females or neonates at critical periods of sexual differentiation. Likewise, we have used these drugs to study the profound masculinization of the external genitalia in female spotted hyenas. However, a potential pitfall of administering flutamide, either alone or in combination with finasteride, is that it maintains or even raises plasma concentrations of luteinizing hormone (LH) and testosterone (T), because negative feedback of the hypothalamic-pituitary-gonadal axis is disrupted. Contrary to expectations, when pregnant spotted hyenas were treated with flutamide and finasteride (F&F), the concentrations of T during late gestation were suppressed relative to values in untreated dams. Herein, we further investigate the paradoxical effects of F&F treatment on a battery of sex hormones in spotted hyenas. Beyond the effects on T, we found plasma concentrations of LH, estradiol, progesterone and androstenedione (A4) were also significantly lower in F&F-treated pregnant hyenas than in controls. Flutamide and finasteride did not have similar effects on LH, T, and A4 concentrations in male hyenas. The paradoxical effect of F&F treatment on LH and T concentrations in the maternal circulation suggests that negative feedback control of gonadotropin and androgen secretion may be modified in spotted hyenas during pregnancy.
Collapse
Affiliation(s)
- Ned J Place
- Department of Population Medicine & Diagnostic Sciences, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Paitz RT, Bowden RM, Casto JM. Embryonic modulation of maternal steroids in European starlings (Sturnus vulgaris). Proc Biol Sci 2010; 278:99-106. [PMID: 20667883 DOI: 10.1098/rspb.2010.0813] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In birds, maternally derived yolk steroids are a proposed mechanism by which females can adjust individual offspring phenotype to prevailing conditions. However, when interests of mother and offspring differ, parent-offspring conflict will arise and embryonic interests, not those of the mother, should drive offspring response to maternal steroids in eggs. Because of this potential conflict, we investigated the ability of developing bird embryos to process maternally derived yolk steroids. We examined how progesterone, testosterone and oestradiol levels changed in both the yolk/albumen (YA) and the embryo of European starling eggs during the first 10 days of development. Next, we injected tritiated testosterone into eggs at oviposition to characterize potential metabolic pathways during development. Ether extractions separated organic and aqueous metabolites in both the embryo and YA homogenate, after which major steroid metabolites were identified. Results indicate that the concentrations of all three steroids declined during development in the YA homogenate. Exogenous testosterone was primarily metabolized to an aqueous form of etiocholanolone that remained in the YA. These results clearly demonstrate that embryos can modulate their local steroid environment, setting up the potential for parent-offspring conflict. Embryonic regulation must be considered when addressing the evolutionary consequences of maternal steroids in eggs.
Collapse
Affiliation(s)
- Ryan T Paitz
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
| | | | | |
Collapse
|
26
|
Paitz RT, Bowden RM. Progesterone metabolites, "xenobiotic-sensing" nuclear receptors, and the metabolism of maternal steroids. Gen Comp Endocrinol 2010; 166:217-21. [PMID: 19932108 DOI: 10.1016/j.ygcen.2009.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 11/04/2009] [Accepted: 11/12/2009] [Indexed: 12/22/2022]
Abstract
During development, embryos utilize steroid signals to direct sexual differentiation of tissues necessary for reproduction. Disruption of these signals by exogenous substances (both natural and synthetic) frequently produce phenotypic effects that can persist into adulthood and influence reproduction. This paper reviews the evidence that during embryonic development, progesterone metabolites and xenobiotic-sensing nuclear receptors may interact to increase the expression of numerous enzymes responsible for steroid metabolism in oviparous and placental amniotes. In these groups, embryonic development is characterized by (1) elevated progesterone concentrations, (2) 5 beta reduction being the primary metabolic pathway of progesterone, (3) the presence of xenobiotic-sensing nuclear receptors that can bind 5 beta metabolites of progesterone, and (4) increased expression of a suite of enzymes responsible for the metabolism of multiple steroids. We propose that xenobiotic-sensing nuclear receptors initially evolved to buffer the developing embryo from the potentially adverse effects of various maternal steroids on sexual differentiation.
Collapse
Affiliation(s)
- Ryan T Paitz
- School of Biological Sciences, Campus Box 4120, Illinois State University, Normal, IL 61790-4120, USA.
| | | |
Collapse
|
27
|
Mathevon N, Koralek A, Weldele M, Glickman SE, Theunissen FE. What the hyena's laugh tells: sex, age, dominance and individual signature in the giggling call of Crocuta crocuta. BMC Ecol 2010; 10:9. [PMID: 20353550 PMCID: PMC2859383 DOI: 10.1186/1472-6785-10-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 03/30/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Among mammals living in social groups, individuals form communication networks where they signal their identity and social status, facilitating social interaction. In spite of its importance for understanding of mammalian societies, the coding of individual-related information in the vocal signals of non-primate mammals has been relatively neglected. The present study focuses on the spotted hyena Crocuta crocuta, a social carnivore known for its complex female-dominated society. We investigate if and how the well-known hyena's laugh, also known as the giggle call, encodes information about the emitter. RESULTS By analyzing acoustic structure in both temporal and frequency domains, we show that the hyena's laugh can encode information about age, individual identity and dominant/subordinate status, providing cues to receivers that could enable assessment of the social position of an emitting individual. CONCLUSIONS The range of messages encoded in the hyena's laugh is likely to play a role during social interactions. This call, together with other vocalizations and other sensory channels, should ensure an array of communication signals that support the complex social system of the spotted hyena. Experimental studies are now needed to decipher precisely the communication network of this species.
Collapse
Affiliation(s)
- Nicolas Mathevon
- Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, USA
| | | | | | | | | |
Collapse
|
28
|
Seney ML, Kelly DA, Goldman BD, Sumbera R, Forger NG. Social structure predicts genital morphology in African mole-rats. PLoS One 2009; 4:e7477. [PMID: 19829697 PMCID: PMC2759003 DOI: 10.1371/journal.pone.0007477] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 08/24/2009] [Indexed: 11/18/2022] Open
Abstract
Background African mole-rats (Bathyergidae, Rodentia) exhibit a wide range of social structures, from solitary to eusocial. We previously found a lack of sex differences in the external genitalia and morphology of the perineal muscles associated with the phallus in the eusocial naked mole-rat. This was quite surprising, as the external genitalia and perineal muscles are sexually dimorphic in all other mammals examined. We hypothesized that the lack of sex differences in naked mole-rats might be related to their unusual social structure. Methodology/Principal Findings We compared the genitalia and perineal muscles in three African mole-rat species: the naked mole-rat, the solitary silvery mole-rat, and the Damaraland mole-rat, a species considered to be eusocial, but with less reproductive skew than naked mole-rats. Our findings support a relationship between social structure, mating system, and sexual differentiation. Naked mole-rats lack sex differences in genitalia and perineal morphology, silvery mole-rats exhibit sex differences, and Damaraland mole-rats are intermediate. Conclusions/Significance The lack of sex differences in naked mole-rats is not an attribute of all African mole-rats, but appears to have evolved in relation to their unusual social structure and reproductive biology.
Collapse
Affiliation(s)
- Marianne L Seney
- Center for Neuroendocrine Studies and Department of Psychology, University of Massachusetts, Amherst, MA, USA.
| | | | | | | | | |
Collapse
|
29
|
Abstract
Most mammal species show traditional patterns of sexual dimorphism (e.g., greater male size and aggression), the proximal mechanism of which involves the male's greater pre- and postnatal exposure to circulating androgens. But in several species, females diverge from the traditional pattern, converging on the male form or even reversing sexual dimorphisms. Such “masculinized” females might show elongation of the clitoris, enhanced body size, and aggressively mediated social dominance over males, and they are interesting case studies for examining the role of androgens in females. This review addresses our understanding of the mediating mechanisms of morphological and behavioral development in both traditional and exceptional mammal species. Although certain lines of evidence implicate testosterone in female masculinization, the role for sex steroids in female development remains unclear. The results call for continued study of both hormonal and nonhormonal mechanisms of sexual differentiation, particularly focused on active processes of feminine development.
Collapse
|
30
|
Steinetz B, Lasano S, De Haas van Dorsser F, Glickman S, Bergfelt D, Santymire R, Songsassen N, Swanson W. Relaxin Concentrations in Serum and Urine of Endangered and Crazy Mixed-Up Species. Ann N Y Acad Sci 2009; 1160:179-85. [DOI: 10.1111/j.1749-6632.2008.03824.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
|
32
|
Adaptation. Evolution 2009. [DOI: 10.1007/978-3-8274-2233-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Hotchkiss AK, Ankley GT, Wilson VS, Hartig PC, Durhan EJ, Jensen KM, Martinovi D, Gray LE. Of Mice and Men (and Mosquitofish): Antiandrogens and Androgens in the Environment. Bioscience 2008. [DOI: 10.1641/b581107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
34
|
Paitz RT, Bowden RM. A proposed role of the sulfotransferase/sulfatase pathway in modulating yolk steroid effects. Integr Comp Biol 2008; 48:419-27. [DOI: 10.1093/icb/icn034] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Drea CM, Weil A. External genital morphology of the ring-tailed lemur (Lemur catta): females are naturally "masculinized". J Morphol 2008; 269:451-63. [PMID: 17972270 DOI: 10.1002/jmor.10594] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The extravagance and diversity of external genitalia have been well characterized in male primates; however, much less is known about sex differences or variation in female form. Our study represents a departure from traditional investigations of primate reproductive anatomy because we 1) focus on external rather than internal genitalia, 2) measure both male and female structures, and 3) examine a strepsirrhine rather than an anthropoid primate. The subjects for morphological study were 21 reproductively intact, adult ring-tailed lemurs (Lemur catta), including 10 females and 11 males, two of which (one per sex) subsequently died of natural causes and also served as specimens for gross anatomical dissection. Male external genitalia presented a typical masculine configuration, with a complex distal penile morphology. In contrast, females were unusual among mammals, presenting an enlarged, pendulous external clitoris, tunneled by the urethra. Females had a shorter anogenital distance and a larger urethral meatus than did males, but organ diameter and circumference showed no sex differences. Dissection confirmed these characterizations. Noteworthy in the male were the presence of a "levator penis" muscle and discontinuity in the corpus spongiosum along the penile shaft; noteworthy in the female were an elongated clitoral shaft and glans clitoridis. The female urethra, while incorporated within the clitoral body, was not surrounded by erectile tissue, as we detected no corpus spongiosum. The os clitoridis was 43% the length and 24% the height of the os penis. On the basis of these first detailed descriptions of strepsirrhine external genitalia (for either sex), we characterize those of the female ring-tailed lemur as moderately "masculinized." Our results highlight certain morphological similarities and differences between ring-tailed lemurs and the most male-like of female mammals, the spotted hyena (Crocuta crocuta), and call attention to a potential hormonal mechanism of "masculinization" in female lemur development.
Collapse
Affiliation(s)
- Christine M Drea
- Department of Biological Anthropology and Anatomy, Duke University, Durham, North Carolina 27708-0383, USA.
| | | |
Collapse
|
36
|
Conley AJ, Corbin CJ, Browne P, Mapes SM, Place NJ, Hughes AL, Glickman SE. Placental Expression and Molecular Characterization of Aromatase Cytochrome P450 in the Spotted Hyena (Crocuta crocuta). Placenta 2007; 28:668-75. [PMID: 17198727 DOI: 10.1016/j.placenta.2006.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 11/13/2006] [Accepted: 11/17/2006] [Indexed: 11/29/2022]
Abstract
At birth, the external genitalia of female spotted hyenas (Crocuta crocuta) are the most masculinized of any known mammal, but are still sexually differentiated. Placental aromatase cytochrome P450 (P450arom) is an important route of androgen metabolism protecting human female fetuses from virilization in utero. Therefore, placental P450arom expression was examined in spotted hyenas to determine levels during genital differentiation, and to compare molecular characteristics between the hyena and human placental enzymes. Hyena placental P450arom activity was determined at gestational days (GD) 31, 35, 45, 65 and 95 (term, 110), and the relative sensitivity of hyena and human placental enzyme to inhibition by the specific inhibitor, Letrozole, was also examined. Expression of hyena P450arom in placenta was localized by immuno-histochemistry, and a full-length cDNA was cloned for phylogenetic analysis. Aromatase activity increased from GD31 to a peak at 45 and 65, apparently decreasing later in gestation. This activity was more sensitive to inhibition by Letrozole than was human placental aromatase activity. Expression of P450arom was localized to syncytiotrophoblast and giant cells of mid-gestation placentas. The coding sequence of hyena P450arom was 94% and 86% identical to the canine and human enzymes respectively, as reflected by phylogenetic analyses. These data demonstrate for the first time that hyena placental aromatase activity is comparable to that of human placentas when genital differentiation is in progress. This suggests that even in female spotted hyenas clitoral differentiation is likely protected from virilization by placental androgen metabolism. Decreased placental aromatase activity in late gestation may be equally important in allowing androgen to program behaviors at birth. Although hyena P450arom is closely related to the canine enzyme, both placental anatomy and P450arom expression differ. Other hyaenids and carnivores must be investigated to determine the morphological and functional ancestral state of their placentas, as it relates to evolutionary relationships among species in this important taxonomic group.
Collapse
Affiliation(s)
- A J Conley
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, 1 Shields Avenue, Davis, CA 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Drea CM. Sex and seasonal differences in aggression and steroid secretion in Lemur catta: are socially dominant females hormonally 'masculinized'? Horm Behav 2007; 51:555-67. [PMID: 17382329 DOI: 10.1016/j.yhbeh.2007.02.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 02/12/2007] [Accepted: 02/14/2007] [Indexed: 11/20/2022]
Abstract
Female social dominance characterizes many strepsirrhine primates endemic to Madagascar, but currently there is no comprehensive explanation for how or why female lemurs routinely dominate males. Reconstructing the evolutionary pressures that may have shaped female dominance depends on better understanding the mechanism of inheritance, variation in trait expression, and correlating variables. Indeed, relative to males, many female lemurs also display delayed puberty, size monomorphism, and 'masculinized' external genitalia. As in the spotted hyena (Crocuta crocuta), a species characterized by extreme masculinization of the female, this array of traits focuses attention on the role of androgens in female development. Consequently, I examined endocrine profiles and social interaction in the ringtailed lemur (Lemur catta) to search for a potential source of circulating androgen in adult females and an endocrine correlate of female dominance or its proxy, aggression. I measured serum androstenedione (A(4)), testosterone (T), and estradiol (E(2)) in reproductively intact, adult lemurs (10 females; 12 males) over four annual cycles. Whereas T concentrations in males far exceeded those in females, A(4) concentrations were only slightly greater in males than in females. In both sexes, A(4) and T were positively correlated, implicating the Delta(4)-biosynthetic pathway. Moreover, seasonal changes in reproductive function in both sexes coincided with seasonal changes in behavior, with A(4) and T in males versus A(4) and E(2) in females increasing during periods marked by heightened aggression. Therefore, A(4) and/or E(2) may be potentially important steroidal sources in female lemurs that could modulate aggression and underlie a suite of masculinized features.
Collapse
Affiliation(s)
- Christine M Drea
- Department of Biological Anthropology and Anatomy, Duke University, 08 Biological Sciences Bldg., Box 90383, Durham, NC 27708-0383, USA.
| |
Collapse
|