1
|
Esposito M, Amory JK, Kang Y. The pathogenic role of retinoid nuclear receptor signaling in cancer and metabolic syndromes. J Exp Med 2024; 221:e20240519. [PMID: 39133222 PMCID: PMC11318670 DOI: 10.1084/jem.20240519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
The retinoid nuclear receptor pathway, activated by the vitamin A metabolite retinoic acid, has been extensively investigated for over a century. This study has resulted in conflicting hypotheses about how the pathway regulates health and how it should be pharmaceutically manipulated. These disagreements arise from a fundamental contradiction: retinoid agonists offer clear benefits to select patients with rare bone growth disorders, acute promyelocytic leukemia, and some dermatologic diseases, yet therapeutic retinoid pathway activation frequently causes more harm than good, both through acute metabolic dysregulation and a delayed cancer-promoting effect. In this review, we discuss controlled clinical, mechanistic, and genetic data to suggest several disease settings where inhibition of the retinoid pathway may be a compelling therapeutic strategy, such as solid cancers or metabolic syndromes, and also caution against continued testing of retinoid agonists in cancer patients. Considerable evidence suggests a central role for retinoid regulation of immunity and metabolism, with therapeutic opportunities to antagonize retinoid signaling proposed in cancer, diabetes, and obesity.
Collapse
Affiliation(s)
- Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Kayothera, Inc , Seattle, WA, USA
| | | | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research Princeton Branch , Princeton, NJ, USA
| |
Collapse
|
2
|
Griswold M, Hogarth C. Synchronizing spermatogenesis in the mouse. Biol Reprod 2022; 107:1159-1165. [PMID: 35871549 DOI: 10.1093/biolre/ioac148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 07/20/2022] [Indexed: 01/24/2025] Open
Abstract
The formation of spermatozoa starts with a germ-line stem cell creating a pool of progenitor cells or undifferentiated spermatogonia. There is a requirement for these progenitor cells to be stimulated by retinoic acid (RA) to enter differentiation and ultimately form spermatocytes, undergo meiosis, form spermatids, and ultimately spermatozoa. After the stimulation by RA, which occurs at sites in the seminiferous tubules, it takes ~35 days to complete this complex process. As a result, the adult testis contains germ cells in all possible states of differentiation, and the isolation of individual cell types or study of functional aspects of the cycle of the seminiferous epithelium is very difficult. We describe the use of WIN 18 446-an inhibitor of RA synthesis followed by injection of RA as a mechanism for the synchronization of spermatogenesis to one to three stages of the cycle of the seminiferous epithelium. The result is that only one to four germ cell types are prevalent during the first wave of spermatogenesis. In the adult only a predictable few stages of the cycle are present throughout the entire testis enriching the targeted cells or stages of the cycle.
Collapse
Affiliation(s)
- Michael Griswold
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Cathryn Hogarth
- Department of Pharmacy and Biomedical Sciences, LaTrobe University, Wodonga, Victoria, Australia
| |
Collapse
|
3
|
Griswold MD. Cellular and molecular basis for the action of retinoic acid in spermatogenesis. J Mol Endocrinol 2022; 69:T51-T57. [PMID: 35670629 DOI: 10.1530/jme-22-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/08/2022]
Abstract
Spermatogenesis is a highly organized and regulated process that requires the constant production of millions of gametes over the reproductive lifetime of the mammalian male. This is possible because of an active stem cell pool and an ordered entry into the germ cell developmental sequence. The ordered entry is a result of the synthesis and action of retinoic acid allowing for the onset of spermatogonial differentiation and an irreversible commitment to spermatogenesis. The periodic appearance and actions of retinoic acid along the seminiferous tubules is a result of the interactions between germ cells and Sertoli cells that result in the generation and maintenance of the cycle of the seminiferous epithelium and is the subject of this review.
Collapse
Affiliation(s)
- Michael D Griswold
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
4
|
Topping T, Griswold MD. Global Deletion of ALDH1A1 and ALDH1A2 Genes Does Not Affect Viability but Blocks Spermatogenesis. Front Endocrinol (Lausanne) 2022; 13:871225. [PMID: 35574006 PMCID: PMC9097449 DOI: 10.3389/fendo.2022.871225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/15/2022] [Indexed: 12/02/2022] Open
Abstract
The transition of undifferentiated A spermatogonia to differentiated spermatogonia requires the action of retinoic acid (RA). The synthesis of retinoic acid from retinal in the seminiferous epithelium is a result of the action of aldehyde dehydrogenases termed ALDH1A1, ALDH1A2, and ALDH1A3. We used a mouse with a global deletion of the Aldh1a1 gene that is phenotypically normal and the CRE-loxP approach to eliminate Aldh1a2 genes globally and from Sertoli cells and germ cells. The results show that global elimination of Aldh1a1 and Aldh1a2 genes blocks spermatogenesis but does not appear to affect viability. The cell specific elimination of Aldh1a2 gene showed that retinoic acid synthesis by Sertoli cells is required for the initial round of spermatogonial differentiation but that there is no requirement for retinoic acid synthesis by germ cells. In both the global gene deletion and the cell specific gene deletions the maintenance of Aldh1a3 activity could not compensate.
Collapse
Affiliation(s)
| | - Michael D. Griswold
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
5
|
Schleif MC, Havel SL, Griswold MD. Function of Retinoic Acid in Development of Male and Female Gametes. Nutrients 2022; 14:1293. [PMID: 35334951 PMCID: PMC8951023 DOI: 10.3390/nu14061293] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023] Open
Abstract
Retinoic acid, an active metabolite of vitamin A, is necessary for many developmental processes in mammals. Much of the field of reproduction has looked toward retinoic acid as a key transcriptional regulator and catalyst of differentiation events. This review focuses on the effects of retinoic acid on male and female gamete formation and regulation. Within spermatogenesis, it has been well established that retinoic acid is necessary for the proper formation of the blood-testis barrier, spermatogonial differentiation, spermiation, and assisting in meiotic completion. While many of the roles of retinoic acid in male spermatogenesis are known, investigations into female oogenesis have provided differing results.
Collapse
Affiliation(s)
| | | | - Michael D. Griswold
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA 99163, USA; (M.C.S.); (S.L.H.)
| |
Collapse
|
6
|
Erukainure OL, Mansoor S, Chukwuma CI, Oyebode OA, Koorbanally NA, Islam MS. GC-MS metabolomics reveals dysregulated lipid metabolic pathways and metabolites in diabetic testicular toxicity: Therapeutic potentials of raffia palm (Raphia hookeri G. Mann & H. Wendl) wine. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114390. [PMID: 34224812 DOI: 10.1016/j.jep.2021.114390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/16/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Raffia palm (Raphia hookeri G. Mann & H. Wendl) wine (RPW) is a natural beverage obtained from the R. hookeri consumed for refreshment and medicinal purposes. For medicinal purposes, it is used singly or as macerating agent for other medicinal plants for the treatment of several diseases. AIM This study investigates the effect of Raffia palm wine on dysregulated lipid metabolic pathways in testicular tissues of type 2 diabetic (T2D) rats. METHODS Raffia palm wine (150 and 300 mg/kg bodyweight) was administered to two T2D groups respectively, another T2D group was not administered treatment and served as negative control, while metformin served as the standard drug. After 6 weeks of treatment, the rats were sacrificed, and the testes collected. After weighing, the organs were homogenized in 20% methanol/ethanol and centrifuged at 20,000 g to extract the lipid metabolites. RESULTS GC-MS analysis of the supernatants revealed an alteration of the metabolites on induction of T2D, with concomitant generation of 10 metabolites. Raffia palm wine inhibited the T2D-generated metabolites while replenishing cholesterol and squalene levels, with concomitant generation of 7 and 8 metabolites for low and high dose treatment respectively. Pathway enrichment analysis of the metabolites revealed a decreased level of steroid biosynthesis and increased level of fatty acid biosynthesis. Raffia palm wine inactivated glycerolipid, fatty acid, and arachidonic acid metabolisms, fatty acid biosynthesis and fatty acid elongation in mitochondria pathways, and activated pathways for plasmalogen synthesis, mitochondrial beta-oxidation of long chain saturated fatty acids. CONCLUSION The replenishment and generation of these metabolites and additional ones as well as activation of pathways involved in energy generation, phospholipids, antioxidant activity, steroidogenesis and spermatogenesis suggest a therapeutic effect of Raffia palm wine against hyperglycemic-induced testicular dysfunction.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa; Department of Pharmacology, University of the Free State, Bloemfontein, 9300, South Africa.
| | - Shazia Mansoor
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa
| | - Chika I Chukwuma
- Centre for the Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, 9300, South Africa
| | - Olajumoke A Oyebode
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa; Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Neil A Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa.
| |
Collapse
|
7
|
Abstract
Male meiosis is a complex process whereby spermatocytes undergo cell division to form haploid cells. This review focuses on the role of retinoic acid (RA) in meiosis, as well as several processes regulated by RA before cell entry into meiosis that are critical for proper meiotic entry and completion. Here, we discuss RA metabolism in the testis as well as the roles of stimulated by retinoic acid gene 8 (STRA8) and MEIOSIN, which are responsive to RA and are critical for meiosis. We assert that transcriptional regulation in the spermatogonia is critical for successful meiosis.
Collapse
Affiliation(s)
- Rachel L Gewiss
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - M Christine Schleif
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Michael D Griswold
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
8
|
Klyuyeva AV, Belyaeva OV, Goggans KR, Krezel W, Popov KM, Kedishvili NY. Changes in retinoid metabolism and signaling associated with metabolic remodeling during fasting and in type I diabetes. J Biol Chem 2021; 296:100323. [PMID: 33485967 PMCID: PMC7949101 DOI: 10.1016/j.jbc.2021.100323] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Liver is the central metabolic hub that coordinates carbohydrate and lipid metabolism. The bioactive derivative of vitamin A, retinoic acid (RA), was shown to regulate major metabolic genes including phosphoenolpyruvate carboxykinase, fatty acid synthase, carnitine palmitoyltransferase 1, and glucokinase among others. Expression levels of these genes undergo profound changes during adaptation to fasting or in metabolic diseases such as type 1 diabetes (T1D). However, it is unknown whether the levels of hepatic RA change during metabolic remodeling. This study investigated the dynamics of hepatic retinoid metabolism and signaling in the fed state, in fasting, and in T1D. Our results show that fed-to-fasted transition is associated with significant decrease in hepatic retinol dehydrogenase (RDH) activity, the rate-limiting step in RA biosynthesis, and downregulation of RA signaling. The decrease in RDH activity correlates with the decreased abundance and altered subcellular distribution of RDH10 while Rdh10 transcript levels remain unchanged. In contrast to fasting, untreated T1D is associated with upregulation of RA signaling and an increase in hepatic RDH activity, which correlates with the increased abundance of RDH10 in microsomal membranes. The dynamic changes in RDH10 protein levels in the absence of changes in its transcript levels imply the existence of posttranscriptional regulation of RDH10 protein. Together, these data suggest that the downregulation of hepatic RA biosynthesis, in part via the decrease in RDH10, is an integral component of adaptation to fasting. In contrast, the upregulation of hepatic RA biosynthesis and signaling in T1D might contribute to metabolic inflexibility associated with this disease.
Collapse
Affiliation(s)
- Alla V Klyuyeva
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kelli R Goggans
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wojciech Krezel
- Institute of Genetics and Molecular and Cellular Biology (IGBMC) - INSERM, University of Strasbourg, Strasbourg, France
| | - Kirill M Popov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
9
|
Noman MAA, Kyzer JL, Chung SSW, Wolgemuth DJ, Georg GI. Retinoic acid receptor antagonists for male contraception: current status†. Biol Reprod 2020; 103:390-399. [PMID: 32671394 PMCID: PMC7401398 DOI: 10.1093/biolre/ioaa122] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/04/2019] [Accepted: 07/14/2020] [Indexed: 01/01/2023] Open
Abstract
Retinoic acid receptor alpha (RARA), a nuclear receptor protein, has been validated as a target for male contraception by gene knockout studies and also pharmacologically using a pan-retinoic acid receptor antagonist. Retinoic acid receptor alpha activity is indispensable for the spermatogenic process, and therefore its antagonists have potential as male contraceptive agents. This review discusses the effects of systematic dosing regimen modifications of the orally bioavailable and reversible pan-antagonist BMS-189453 as well as studies with the alpha-selective antagonists BMS-189532 and BMS-189614 in a murine model. We also provide an overview of structure-activity studies of retinoic acid receptor alpha antagonists that provide insight for the design of novel alpha-selective ligands.
Collapse
Affiliation(s)
- Md Abdullah Al Noman
- Department of Medicinal Chemistry, College of Pharmacy, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, USA
| | - Jillian L Kyzer
- Department of Medicinal Chemistry, College of Pharmacy, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, USA
| | - Sanny S W Chung
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Debra J Wolgemuth
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
- The Institute of Human Nutrition, The Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Gunda I Georg
- Department of Medicinal Chemistry, College of Pharmacy, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Germ cell depletion in recipient testis has adverse effects on spermatogenesis in orthotopically transplanted testis pieces via retinoic acid insufficiency. Sci Rep 2020; 10:10796. [PMID: 32612133 PMCID: PMC7330030 DOI: 10.1038/s41598-020-67595-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/09/2020] [Indexed: 12/22/2022] Open
Abstract
Germ cell depletion in recipient testes is indispensable for successful transplantation of spermatogonial stem cells. However, we found that such treatment had an adverse effect on spermatogenesis of orthotopically transplanted donor testis tissues. In the donor tissue, the frequency of stimulated by retinoic acid (RA) 8 (STRA8) expression was reduced in germ cells, suggesting that RA signalling indispensable for spermatogenesis was attenuated in germ cell-depleted recipient testes. In this context, germ cell depletion diminished expression of testicular Aldh1a2, which is responsible for testicular RA synthesis, while Cyp26b1, which is responsible for testicular RA metabolism, was still expressed even after germ cell depletion, suggesting an alteration of the RA synthesis/metabolism ratio. These observations suggested that RA insufficiency was one of the causes of the defective donor spermatogenesis. Indeed, repetitive RA administrations significantly improved donor spermatogenesis to produce fertile offspring without any side effects. These findings may contribute to improving fertility preservation techniques for males, especially to prevent iatrogenic infertility induced by chemotherapy in prepubertal cancer patients.
Collapse
|
11
|
Czuba LC, Zhong G, Yabut KC, Isoherranen N. Analysis of vitamin A and retinoids in biological matrices. Methods Enzymol 2020; 637:309-340. [PMID: 32359651 DOI: 10.1016/bs.mie.2020.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vitamin A signaling pathways are predominantly driven by the cellular concentrations of all-trans-retinoic acid (atRA), as the main mechanism of retinoid signaling is via activation of retinoic acid receptors. atRA concentrations are in turn controlled by the storage of vitamin A and enzymatic processes that synthesize and clear atRA. This has resulted in the need for robust and highly specific analytical methods to accurately quantify retinoids in diverse biological matrices. Tissue-specific differences in both the quantity of retinoids and background matrix interferences can confound the quantification of retinoids, and the bioanalysis requires high performance instrumentation, such as liquid chromatography mass-spectrometry (LC-MS). Successful bioanalysis of retinoids is further complicated by the innate structural instability of retinoids and their relatively high lipophilicity. Further, in vitro experiments with retinoids require attention to experimental design and interpretation to account for the instability of retinoids due to isomerization and degradation, sequential metabolism to numerous structurally similar metabolites, and substrate depletion during experiments. In addition, in vitro biological activity is often confounded by residual presence of retinoids in common biological reagents such as cell culture media. This chapter identifies common biological and analytical complexities in retinoid bioanalysis in diverse biological matrices, and in the use of retinoids in cell culture and metabolic incubations. In addition, this chapter highlights best practices for the successful detection and quantification of the vitamin A metabolome in a wide range of biological matrices.
Collapse
Affiliation(s)
- Lindsay C Czuba
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Guo Zhong
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - King C Yabut
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States.
| |
Collapse
|
12
|
do Nascimento MAW, Cavalari FC, Staldoni de Oliveria V, Gonçalves R, Menegaz D, da Silveira Loss E, Silva FRMB. Crosstalk in the non-classical signal transduction of testosterone and retinol in immature rat testes. Steroids 2020; 153:108522. [PMID: 31622614 DOI: 10.1016/j.steroids.2019.108522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 08/30/2019] [Accepted: 10/04/2019] [Indexed: 01/27/2023]
Abstract
This study aimed to investigate the effects of the interaction between testosterone and retinol on the rapid responses of cultured Sertoli cells obtained from 10-day-old immature rat testes. Non-classical actions of testosterone and retinol were investigated, and the activities of L-type voltage-dependent calcium channels (L-VDCC) and voltage-dependent potassium channels (Kv) were determined by measuring 45Ca2+ influx in whole testis. Additionally, the effects of testosterone and retinol on these channels were studied in primary culture of Sertoli cells using the patch-clamp technique. 45Ca2+ influx was used to observe a dose-response curve on tissues treated with retinol and/or testosterone for 2 min (10-12, 10-9 and 10-6 M and 10-9 and 10-6 M), and a concentration of 10-6 M was selected to investigate the mechanism of action of testosterone and retinol on rapid responses. Participation of the L-VDCC and Kv channels was investigated using nifedipine and tetraethylammonium chloride (TEA) inhibitors, respectively. Both, testosterone and retinol act through non-classical mechanisms, stimulating 45Ca2+ influx in immature rat testes. The response to testosterone was abolished by nifedipine and TEA, whereas the effects of retinol were partially blocked by nifedipine and completely inhibited by TEA. Retinol amplified the testosterone-induced effect on 45Ca2+ influx in the testes, suggesting a crosstalk between rapid responses (calcium influx) and cell repolarization via activation of Kv channels. Whole-cell electrophysiology data demonstrated that testosterone and retinol increased voltage-dependent potassium currents (Kv) in Sertoli cells; inhibition of these responses by TEA confirmed the involvement of TEA-sensitive K+ channels in these effects. Taken together, we demonstrate, for the first time, crosstalk between testosterone and retinol that is mediated by a non-classical mechanism involving the L-VDCC-triggered cell depolarization and activation of repolarization by Kv currents in Sertoli cells. These ionic modulations play a physiological role in Sertoli cells and male fertility via stimulation of secretory activities.
Collapse
Affiliation(s)
- Monica Andressa Wessner do Nascimento
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900 Florianópolis, SC, Brazil; Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900 Florianópolis, SC, Brazil; Departamento de Ciências Fisiológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Carvalho Cavalari
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900 Florianópolis, SC, Brazil; Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900 Florianópolis, SC, Brazil
| | - Vanessa Staldoni de Oliveria
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900 Florianópolis, SC, Brazil
| | - Renata Gonçalves
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900 Florianópolis, SC, Brazil
| | - Danusa Menegaz
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900 Florianópolis, SC, Brazil; Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900 Florianópolis, SC, Brazil
| | - Eloisa da Silveira Loss
- Departamento de Ciências Fisiológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900 Florianópolis, SC, Brazil; Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP: 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
13
|
Masaki K, Sakai M, Kuroki S, Jo JI, Hoshina K, Fujimori Y, Oka K, Amano T, Yamanaka T, Tachibana M, Tabata Y, Shiozawa T, Ishizuka O, Hochi S, Takashima S. FGF2 Has Distinct Molecular Functions from GDNF in the Mouse Germline Niche. Stem Cell Reports 2018; 10:1782-1792. [PMID: 29681540 PMCID: PMC5989648 DOI: 10.1016/j.stemcr.2018.03.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 01/15/2023] Open
Abstract
Both glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2) are bona fide self-renewal factors for spermatogonial stem cells, whereas retinoic acid (RA) induces spermatogonial differentiation. In this study, we investigated the functional differences between FGF2 and GDNF in the germline niche by providing these factors using a drug delivery system in vivo. Although both factors expanded the GFRA1+ subset of undifferentiated spermatogonia, the FGF2-expanded subset expressed RARG, which is indispensable for proper differentiation, 1.9-fold more frequently than the GDNF-expanded subset, demonstrating that FGF2 expands a differentiation-prone subset in the testis. Moreover, FGF2 acted on the germline niche to suppress RA metabolism and GDNF production, suggesting that FGF2 modifies germline niche functions to be more appropriate for spermatogonial differentiation. These results suggest that FGF2 contributes to induction of differentiation rather than maintenance of undifferentiated spermatogonia, indicating reconsideration of the role of FGF2 in the germline niche.
Collapse
Affiliation(s)
- Kaito Masaki
- Department of Textile Science and Technology, Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan
| | - Mizuki Sakai
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Shunsuke Kuroki
- Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8501, Japan
| | - Jun-Ichiro Jo
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Kazuo Hoshina
- Nagano Animal Industry Experiment Station, Shiojiri 399-0711, Japan
| | - Yuki Fujimori
- Nagano Animal Industry Experiment Station, Shiojiri 399-0711, Japan
| | - Kenji Oka
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Toshiyasu Amano
- Department of Urology, Nagano Red Cross Hospital, Nagano 380-8582, Japan
| | - Takahiro Yamanaka
- Department of Textile Science and Technology, Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan
| | - Makoto Tachibana
- Division of Epigenome Dynamics, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8501, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Tanri Shiozawa
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Osamu Ishizuka
- Department of Urology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Shinichi Hochi
- Department of Textile Science and Technology, Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan; Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Seiji Takashima
- Department of Textile Science and Technology, Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan; Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan.
| |
Collapse
|
14
|
Sakai M, Masaki K, Aiba S, Tone M, Takashima S. Expression dynamics of self-renewal factors for spermatogonial stem cells in the mouse testis. J Reprod Dev 2018; 64:267-275. [PMID: 29657241 PMCID: PMC6021615 DOI: 10.1262/jrd.2018-015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2) are bona fide self-renewal factors for spermatogonial stem cells (SSCs). Although GDNF is indispensable for the maintenance of SSCs, the role of FGF2 in the testis remains to be elucidated. To clarify this, the expression dynamics and regulatory mechanisms of Fgf2 and Gdnf in the mouse testes were analyzed. It is well known that Sertoli cells express Gdnf, and its receptor is expressed in a subset of undifferentiated spermatogonia, including SSCs. However, we found that Fgf2 was mainly expressed in the germ cells and its receptors were expressed not only in the cultured spermatogonial cell line, but also in testicular somatic cells. Aging, hypophysectomy, retinoic acid treatment, and testicular injury induced distinct Fgf2 and Gdnf expression dynamics, suggesting a difference in the expression mechanism of Fgf2 and Gdnf in the testis. Such differences might cause a dynamic fluctuation of Gdnf/Fgf2 ratio depending on the intrinsic/extrinsic cues. Considering that FGF2-cultured spermatogonia exhibit more differentiated phenotype than those cultured with GDNF, FGF2 might play a role distinct from that of GDNF in the testis, despite the fact that both factors are self-renewal factor for SSC in vitro.
Collapse
Affiliation(s)
- Mizuki Sakai
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Kaito Masaki
- Department of Textile Science and Technology, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Shota Aiba
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Masaaki Tone
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Seiji Takashima
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan.,Department of Textile Science and Technology, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Ueda 386-8567, Japan
| |
Collapse
|
15
|
Naz M, Kamal M. Classification, causes, diagnosis and treatment of male infertility: a review. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s13596-017-0269-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Retinoic acid combined with spermatogonial stem cell conditions facilitate the generation of mouse germ-like cells. Biosci Rep 2017; 37:BSR20170637. [PMID: 28314787 PMCID: PMC5398254 DOI: 10.1042/bsr20170637] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/10/2017] [Accepted: 03/17/2017] [Indexed: 11/23/2022] Open
Abstract
Spermatogenic lineage has been directly generated in spermatogonial stem cell (SSC) conditions from human pluripotent stem cells (PSCs). However, it remains unknown whether mouse embryonic stem cells (ESCs) can directly differentiate into advanced male germ cell lineage in the same conditions. Here, we showed rather low efficiency of germ-like cell generation from mouse ESCs in SSC conditions. Interestingly, addition of retinoic acid (RA) into SSC conditions enabled efficient differentiation of mouse ESCs into germ-like cells, as shown by the activation of spermatogenesis-associated genes such as Mvh, Dazl, Prdm14, Stella, Scp1, Scp3, Stra8 and Rec8. In contrast, for cells cultured in control medium, the activation of the above genes barely occurred. In addition, RA with SSC conditions yielded colonies of Acrosin-expressing cells and the positive ratio reached a peak at day 6. Our work thus establishes a simple and cost-efficient approach for male germ like cell differentiation from mouse PSCs and may propose a useful strategy for studying spermatogenesis in vitro.
Collapse
|
17
|
Abstract
Mammalian spermatogenesis requires a stem cell pool, a period of amplification of cell numbers, the completion of reduction division to haploid cells (meiosis), and the morphological transformation of the haploid cells into spermatozoa (spermiogenesis). The net result of these processes is the production of massive numbers of spermatozoa over the reproductive lifetime of the animal. One study that utilized homogenization-resistant spermatids as the standard determined that human daily sperm production (dsp) was at 45 million per day per testis (60). For each human that means ∼1,000 sperm are produced per second. A key to this level of gamete production is the organization and architecture of the mammalian testes that results in continuous sperm production. The seemingly complex repetitious relationship of cells termed the "cycle of the seminiferous epithelium" is driven by the continuous commitment of undifferentiated spermatogonia to meiosis and the period of time required to form spermatozoa. This commitment termed the A to A1 transition requires the action of retinoic acid (RA) on the undifferentiated spermatogonia or prospermatogonia. In stages VII to IX of the cycle of the seminiferous epithelium, Sertoli cells and germ cells are influenced by pulses of RA. These pulses of RA move along the seminiferous tubules coincident with the spermatogenic wave, presumably undergoing constant synthesis and degradation. The RA pulse then serves as a trigger to commit undifferentiated progenitor cells to the rigidly timed pathway into meiosis and spermatid differentiation.
Collapse
Affiliation(s)
- Michael D Griswold
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington
| |
Collapse
|
18
|
Kent T, Arnold SL, Fasnacht R, Rowsey R, Mitchell D, Hogarth CA, Isoherranen N, Griswold MD. ALDH Enzyme Expression Is Independent of the Spermatogenic Cycle, and Their Inhibition Causes Misregulation of Murine Spermatogenic Processes. Biol Reprod 2015; 94:12. [PMID: 26632609 PMCID: PMC4809557 DOI: 10.1095/biolreprod.115.131458] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 11/13/2015] [Indexed: 01/14/2023] Open
Abstract
Perturbations in the vitamin A metabolism pathway could be a significant cause of male infertility, as well as a target toward the development of a male contraceptive, necessitating the need for a better understanding of how testicular retinoic acid (RA) concentrations are regulated. Quantitative analyses have recently demonstrated that RA is present in a pulsatile manner along testis tubules. However, it is unclear if the aldehyde dehydrogenase (ALDH) enzymes, which are responsible for RA synthesis, contribute to the regulation of these RA concentration gradients. Previous studies have alluded to fluctuations in ALDH enzymes across the spermatogenic cycle, but these inferences have been based primarily on qualitative transcript localization experiments. Here, we show via various quantitative methods that the three well-known ALDH enzymes (ALDH1A1, ALDH1A2, and ALDH1A3), and an ALDH enzyme previously unreported in the murine testis (ALDH8A1), are not expressed in a stage-specific manner in the adult testis, but do fluctuate throughout juvenile development in perfect agreement with the first appearance of each advancing germ cell type. We also show, via treatments with a known ALDH inhibitor, that lowered testicular RA levels result in an increase in blood-testis barrier permeability, meiotic recombination, and meiotic defects. Taken together, these data further our understanding of the complex regulatory actions of RA on various spermatogenic events and, in contrast with previous studies, also suggest that the ALDH enzymes are not responsible for regulating the recently measured RA pulse.
Collapse
Affiliation(s)
- Travis Kent
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Samuel L Arnold
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Rachael Fasnacht
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Ross Rowsey
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Debra Mitchell
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Cathryn A Hogarth
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Michael D Griswold
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| |
Collapse
|
19
|
The Induction Effect of Am80 and TSA on ESC Differentiation via Regulation of Stra8 in Chicken. PLoS One 2015; 10:e0140262. [PMID: 26606052 PMCID: PMC4659672 DOI: 10.1371/journal.pone.0140262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022] Open
Abstract
Stra8 encodes stimulated by retinoic acid gene 8, a protein that is important for initiation of meiosis in mammals and birds. This study was aimed at identifying the active control area of chicken STRA8 gene core promoter, to screen optimum inducers of the STRA8 gene, thus to enhance the differentiation of embryonic stem cells (ESCs) into spermatogonial stem cells. Fragments of chicken STRA8 gene promoter were cloned into fluorescent reporter plasmids and transfected into DF-1 cells. Then Dual-Luciferase® Reporter Assay System was used to identify the activity of the STRA8 gene under different inducers. Our studies showed that the promoter fragment -1055 bp to +54 bp of Suqin chicken Stra8 revealed the strongest activity. The dual-luciferase® reporter showed that Tamibarotene (Am80) and TrichostatinA (TSA) could significantly enhance STRA8 transcription. The in vitro inductive culture of chicken ESCs demonstrated that spermatogonial stem cells (SSC)-like cells appeared and Integrinβ1 protein was expressed on day 10, indicating that Am80 and TSA can promote ESCs differentiation into SSCs via regulation of Stra8.
Collapse
|
20
|
Role of retinoic acid receptor (RAR) signaling in post-natal male germ cell differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:84-93. [DOI: 10.1016/j.bbagrm.2014.05.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/12/2014] [Accepted: 05/19/2014] [Indexed: 12/21/2022]
|
21
|
Hogarth CA, Arnold S, Kent T, Mitchell D, Isoherranen N, Griswold MD. Processive pulses of retinoic acid propel asynchronous and continuous murine sperm production. Biol Reprod 2014; 92:37. [PMID: 25519186 DOI: 10.1095/biolreprod.114.126326] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The asynchronous cyclic nature of spermatogenesis is essential for continual sperm production and is one of the hallmarks of mammalian male fertility. While various mRNA and protein localization studies have indirectly implicated changing retinoid levels along testis tubules, no quantitative evidence for these changes across the cycle of the seminiferous epithelium currently exists. This study utilized a unique mouse model of induced synchronous spermatogenesis, localization of the retinoid-signaling marker STRA8, and sensitive quantification of retinoic acid concentrations to determine whether there are fluctuations in retinoid levels at each of the individual stages of germ cell differentiation and maturation to sperm. These data show that processive pulses of retinoic acid are generated during spermatogonial differentiation and are the likely trigger for cyclic spermatogenesis and allow us, for the first time, to understand how the cycle of the seminiferous epithelium is generated and maintained. In addition, this study represents the first direct quantification of a retinoid gradient controlling cellular differentiation in a postnatal tissue.
Collapse
Affiliation(s)
- Cathryn A Hogarth
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Samuel Arnold
- University of Washington Medical Center, University of Washington, Seattle, Washington
| | - Travis Kent
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Debra Mitchell
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Nina Isoherranen
- University of Washington Medical Center, University of Washington, Seattle, Washington
| | - Michael D Griswold
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| |
Collapse
|
22
|
Evans E, Hogarth C, Mitchell D, Griswold M. Riding the spermatogenic wave: profiling gene expression within neonatal germ and sertoli cells during a synchronized initial wave of spermatogenesis in mice. Biol Reprod 2014; 90:108. [PMID: 24719255 DOI: 10.1095/biolreprod.114.118034] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Continual sperm production relies on germ cells undergoing spermatogenesis asynchronously. As a result, the testis always contains a mixed population of germ cells at different stages of their differentiation process. The heterogeneous nature of the testis makes profiling gene expression within Sertoli cells or specific populations of germ cells impossible when a wild-type testis is assessed. We recently reported a unique method for synchronizing spermatogenesis without affecting fertility by manipulating RA levels within the neonatal testis. Using this protocol, combined with the RiboTag transgenic mouse line, we have mapped the Sertoli and germ cell translatome during the initial synchronized wave of spermatogenesis. Using microarray analysis, we identified 392 and 194 germ cell and Sertoli cells transcripts, respectively, that dynamically change during spermatogonial differentiation, division, and the onset of meiosis. Functional annotation clustering revealed that transcripts enriched in germ cells were mostly associated with meiosis (21 transcripts), chromatin organization (12 transcripts), and cell cycle (3 transcripts). In addition, glycoproteins (65 transcripts), cell adhesion (15 transcripts), and cell junction (13 transcripts) transcripts were overrepresented in the Sertoli cell-enriched list. These datasets represent the first transcriptional analysis of spermatogonial differentiation, division, and meiotic onset. These data suggest that several of the genes encoding meiotic proteins are expressed and are actively being translated well before germ cells enter meiosis. In addition, this study provides novel candidate genes, Asf1b and Esyt3, that may be involved in the regulation of spermatogonial chromatin reorganization, germ-Sertoli cell interactions, and/or blood-testis barrier formation.
Collapse
Affiliation(s)
- Elizabeth Evans
- School of Molecular Biosciences and The Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Cathryn Hogarth
- School of Molecular Biosciences and The Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Debra Mitchell
- School of Molecular Biosciences and The Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Michael Griswold
- School of Molecular Biosciences and The Center for Reproductive Biology, Washington State University, Pullman, Washington
| |
Collapse
|
23
|
Murdoch FE, Goldberg E. Male contraception: another Holy Grail. Bioorg Med Chem Lett 2013; 24:419-24. [PMID: 24368213 DOI: 10.1016/j.bmcl.2013.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 12/11/2022]
Abstract
The idea that men should participate in family planning by playing an active role in contraception has become more acceptable in recent years. Up to the present the condom and vasectomy have been the main methods of male contraception. There have been and continue to be efforts to develop an acceptable hormonal contraceptive involving testosterone (T) suppression. However the off target affects, delivery of the analogs and the need for T replacement have proven difficult obstacles to this technology. Research into the development of non-hormonal contraception for men is progressing in several laboratories and this will be the subject of the present review. A number of promising targets for the male pill are being investigated. These involve disruption of spermatogenesis by compromising the integrity of the germinal epithelium, interfering with sperm production at the level of meiosis, attacking specific sperm proteins to disrupt fertilizing ability, or interfering with the assembly of seminal fluid components required by ejaculated sperm for acquisition of motility. Blocking contractility of the vas deferens smooth muscle vasculature to prevent ejaculation is a unique approach that prevents sperm from reaching the egg. We shall note the lack of interest by big pharma with most of the support for male contraception provided by the NIH.
Collapse
Affiliation(s)
- Fern E Murdoch
- The Center for Reproductive Science Northwestern University, Evanston, IL 60208, United States
| | - Erwin Goldberg
- The Center for Reproductive Science Northwestern University, Evanston, IL 60208, United States; Department of Molecular Biosciences Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
24
|
Nicholls PK, Harrison CA, Rainczuk KE, Wayne Vogl A, Stanton PG. Retinoic acid promotes Sertoli cell differentiation and antagonises activin-induced proliferation. Mol Cell Endocrinol 2013; 377:33-43. [PMID: 23831638 DOI: 10.1016/j.mce.2013.06.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/25/2013] [Accepted: 06/26/2013] [Indexed: 12/12/2022]
Abstract
From puberty and throughout adult spermatogenesis, retinoid signalling is essential for germ cell differentiation and male fertility. The initiation of spermatogonial differentiation and germ cell meiosis occurs under the direction of local retinoid signalling in the testis, and corresponds with the final phase of somatic Sertoli cell differentiation at puberty. Here, we consider the cellular and molecular basis of retinoid actions upon Sertoli cell differentiation. Primary rat Sertoli cells were isolated during the pubertal proliferative and quiescent phases at postnatal days 10- and 20- respectively, and cultured with all-trans-retinoic acid. We show that retinoid signalling can potently suppress activin-induced proliferation by antagonising G1 phase progression and entry into the cell cycle. Retinoid signalling was also found to initiate tight junction formation in primary Sertoli cells, consistent with a pro-differentiative role. This study implicates retinoid signalling in the differentiation of both somatic and germ cells in the testis at puberty.
Collapse
Affiliation(s)
- Peter K Nicholls
- Prince Henry's Institute of Medical Research, Clayton, Victoria 3168, Australia
| | | | | | | | | |
Collapse
|
25
|
Differentiation of spermatogonial stem cell-like cells from murine testicular tissue into haploid male germ cells in vitro. Cytotechnology 2013; 66:365-72. [PMID: 23728854 DOI: 10.1007/s10616-013-9584-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 05/08/2013] [Indexed: 10/26/2022] Open
Abstract
In vitro differentiation of spermatogonial stem cells (SSCs) promotes the understanding of the mechanism of spermatogenesis. The purpose of this study was to isolate spermatogonial stem cell-like cells from murine testicular tissue, which then were induced into haploid germ cells by retinoic acid (RA). The spermatogonial stem cell-like cells were purified and enriched by a two-step plating method based on different adherence velocities of SSCs and somatic cells. Cell colonies were present after culture in M1-medium for 3 days. Through alkaline phosphatase, RT-PCR and indirect immunofluorescence cell analysis, cell colonies were shown to be SSCs. Subsequently, cell colonies of SSCs were cultured in M2-medium containing RA for 2 days. Then the cell colonies of SSCs were again cultured in M1-medium for 6-8 days, RT-PCR and indirect immunofluorescence cell analysis were chosen to detect haploid male germ cells. It could be demonstrated that 10(-7) mol l(-1) of RA effectively induced the SSCs into haploid male germ cells in vitro.
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Description of new evidence to support the model for how retinoic acid regulates spermatogonial differentiation, male meiosis and the cycle of the seminiferous epithelium. RECENT FINDINGS It has been known since the 1920s that vitamin A is essential for spermatogenesis. However, only recently has significant progress been made toward understanding how the active metabolite of vitamin A, retinoic acid, regulates spermatogenesis at multiple different differentiation steps, including the onset of meiosis. Current publications suggest that the initiation and maintenance of the cycle of the seminiferous epithelium is linked to retinoic-acid-driving spermatogonial differentiation and meiotic onset. SUMMARY Retinoic acid appears to act in a pulsatile manner, periodically driving spermatogonial differentiation and meiotic onset at discrete points along testis tubules, and as a result, is likely to be responsible for generating and maintaining the cycle of the seminiferous epithelium.
Collapse
Affiliation(s)
- Cathryn A Hogarth
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | | |
Collapse
|
27
|
Barakat B, Itman C, Mendis SH, Loveland KL. Activins and inhibins in mammalian testis development: new models, new insights. Mol Cell Endocrinol 2012; 359:66-77. [PMID: 22406273 DOI: 10.1016/j.mce.2012.02.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 01/15/2023]
Abstract
The discovery of activin and inhibins as modulators of the hypothalamic-pituitary-gonadal axis has set the foundation for understanding their central importance to many facets of development and disease. This review contains an overview of the processes and cell types that are central to testis development and spermatogenesis and then provides an update focussed on information gathered over the past five years to address new concepts about how these proteins function to control testis development in fetal and juvenile life. Current knowledge about the interactive nature of the transforming growth factor-β (TGFβ) superfamily signalling network is applied to recent findings about activins and inhibins in the testis. Information about the regulated synthesis of signalling components and signalling regulators in the testis is integrated with new concepts that demonstrate their functional significance. The importance of activin bioactivity levels or dosage in controlling balanced growth of spermatogonial cells and their niche at different stages of testis development is highlighted.
Collapse
Affiliation(s)
- B Barakat
- Monash Institute of Reproduction and Development, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
28
|
Abstract
The blood-testis barrier (BTB) is one of the tightest blood-tissue barriers in the mammalian body. It divides the seminiferous epithelium into the basal and the apical (adluminal) compartments. Meiosis I and II, spermiogenesis, and spermiation all take place in a specialized microenvironment behind the BTB in the apical compartment, but spermatogonial renewal and differentiation and cell cycle progression up to the preleptotene spermatocyte stage take place outside of the BTB in the basal compartment of the epithelium. However, the BTB is not a static ultrastructure. Instead, it undergoes extensive restructuring during the seminiferous epithelial cycle of spermatogenesis at stage VIII to allow the transit of preleptotene spermatocytes at the BTB. Yet the immunological barrier conferred by the BTB cannot be compromised, even transiently, during the epithelial cycle to avoid the production of antibodies against meiotic and postmeiotic germ cells. Studies have demonstrated that some unlikely partners, namely adhesion protein complexes (e.g., occludin-ZO-1, N-cadherin-β-catenin, claudin-5-ZO-1), steroids (e.g., testosterone, estradiol-17β), nonreceptor protein kinases (e.g., focal adhesion kinase, c-Src, c-Yes), polarity proteins (e.g., PAR6, Cdc42, 14-3-3), endocytic vesicle proteins (e.g., clathrin, caveolin, dynamin 2), and actin regulatory proteins (e.g., Eps8, Arp2/3 complex), are working together, apparently under the overall influence of cytokines (e.g., transforming growth factor-β3, tumor necrosis factor-α, interleukin-1α). In short, a "new" BTB is created behind spermatocytes in transit while the "old" BTB above transiting cells undergoes timely degeneration, so that the immunological barrier can be maintained while spermatocytes are traversing the BTB. We also discuss recent findings regarding the molecular mechanisms by which environmental toxicants (e.g., cadmium, bisphenol A) induce testicular injury via their initial actions at the BTB to elicit subsequent damage to germ-cell adhesion, thereby leading to germ-cell loss, reduced sperm count, and male infertility or subfertility. Moreover, we also critically evaluate findings in the field regarding studies on drug transporters in the testis and discuss how these influx and efflux pumps regulate the entry of potential nonhormonal male contraceptives to the apical compartment to exert their effects. Collectively, these findings illustrate multiple potential targets are present at the BTB for innovative contraceptive development and for better delivery of drugs to alleviate toxicant-induced reproductive dysfunction in men.
Collapse
Affiliation(s)
- C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|
29
|
Cheng CY, Mruk DD. Male contraception: Where do we go from here? SPERMATOGENESIS 2011; 1:281-282. [PMID: 22332110 DOI: 10.4161/spmg.1.4.19014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 12/12/2011] [Indexed: 01/06/2023]
Affiliation(s)
- C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; The Population Council; New York, NY USA
| | | |
Collapse
|