1
|
Uher O, Hadrava Vanova K, Taïeb D, Calsina B, Robledo M, Clifton-Bligh R, Pacak K. The Immune Landscape of Pheochromocytoma and Paraganglioma: Current Advances and Perspectives. Endocr Rev 2024; 45:521-552. [PMID: 38377172 PMCID: PMC11244254 DOI: 10.1210/endrev/bnae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors derived from neural crest cells from adrenal medullary chromaffin tissues and extra-adrenal paraganglia, respectively. Although the current treatment for PPGLs is surgery, optimal treatment options for advanced and metastatic cases have been limited. Hence, understanding the role of the immune system in PPGL tumorigenesis can provide essential knowledge for the development of better therapeutic and tumor management strategies, especially for those with advanced and metastatic PPGLs. The first part of this review outlines the fundamental principles of the immune system and tumor microenvironment, and their role in cancer immunoediting, particularly emphasizing PPGLs. We focus on how the unique pathophysiology of PPGLs, such as their high molecular, biochemical, and imaging heterogeneity and production of several oncometabolites, creates a tumor-specific microenvironment and immunologically "cold" tumors. Thereafter, we discuss recently published studies related to the reclustering of PPGLs based on their immune signature. The second part of this review discusses future perspectives in PPGL management, including immunodiagnostic and promising immunotherapeutic approaches for converting "cold" tumors into immunologically active or "hot" tumors known for their better immunotherapy response and patient outcomes. Special emphasis is placed on potent immune-related imaging strategies and immune signatures that could be used for the reclassification, prognostication, and management of these tumors to improve patient care and prognosis. Furthermore, we introduce currently available immunotherapies and their possible combinations with other available therapies as an emerging treatment for PPGLs that targets hostile tumor environments.
Collapse
Affiliation(s)
- Ondrej Uher
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - Katerina Hadrava Vanova
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - David Taïeb
- Department of Nuclear Medicine, CHU de La Timone, Marseille 13005, France
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Familiar Cancer Clinical Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain
| | - Roderick Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital, Sydney 2065, NSW, Australia
- Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney 2065, NSW, Australia
| | - Karel Pacak
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| |
Collapse
|
2
|
Li C, Han L, Song Y, Liu R. Case report: A rare DLST mutation in patient with metastatic pheochromocytoma: clinical implications and management challenges. Front Oncol 2024; 14:1394552. [PMID: 38835385 PMCID: PMC11148276 DOI: 10.3389/fonc.2024.1394552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Background Pheochromocytoma is one of the most hereditary human tumors with at least 20 susceptible genes undergoing germline and somatic mutations, and other mutations less than 1% -2%. In recent years, other rare mutations have gradually been discovered to be possibly related to the pathogenesis and metastasis of pheochromocytoma. Most patients with pheochromocytoma experience common symptoms like headaches, palpitations, and sweating, while some may have less common symptoms. The diversity of symptoms, genetic mutations, and limited treatment options make management challenging. Case presentation A 53-year-old woman was hospitalized after experiencing episodic epigastric pain for one month. A mass was found in her right adrenal gland and she underwent robot-assisted laparoscopic surgery, revealing a pheochromocytoma. At the 16-month follow-up, multiple metastatic lesions consistent with metastatic pheochromocytoma were found. A germline mutation in the dihydrolipoamide succinyltransferase (DLST) gene (c.330 + 14A>G) was detected, and despite trying chemotherapy and adjuvant therapy, the patient had a limited response with an overall survival of 27 months. Conclusions DLST mutation is one of the rare pheochromocytoma-related mutated genes, and genetic sequencing is crucial for effective clinical management.
Collapse
Affiliation(s)
- Chang Li
- Department of VIP Unit, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Liang Han
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yuming Song
- Department of VIP Unit, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Rui Liu
- Department of VIP Unit, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Jeeyavudeen MS, Mathiyalagan N, Fernandez James C, Pappachan JM. Tumor metabolism in pheochromocytomas: clinical and therapeutic implications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:349-373. [PMID: 38745767 PMCID: PMC11090696 DOI: 10.37349/etat.2024.00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/27/2023] [Indexed: 05/16/2024] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) have emerged as one of the most common endocrine tumors. It epitomizes fascinating crossroads of genetic, metabolic, and endocrine oncology, providing a canvas to explore the molecular intricacies of tumor biology. Predominantly rooted in the aberration of metabolic pathways, particularly the Krebs cycle and related enzymatic functionalities, PPGLs manifest an intriguing metabolic profile, highlighting elevated levels of oncometabolites like succinate and fumarate, and furthering cellular malignancy and genomic instability. This comprehensive review aims to delineate the multifaceted aspects of tumor metabolism in PPGLs, encapsulating genetic factors, oncometabolites, and potential therapeutic avenues, thereby providing a cohesive understanding of metabolic disturbances and their ramifications in tumorigenesis and disease progression. Initial investigations into PPGLs metabolomics unveiled a stark correlation between specific genetic mutations, notably in the succinate dehydrogenase complex (SDHx) genes, and the accumulation of oncometabolites, establishing a pivotal role in epigenetic alterations and hypoxia-inducible pathways. By scrutinizing voluminous metabolic studies and exploiting technologies, novel insights into the metabolic and genetic aspects of PPGLs are perpetually being gathered elucidating complex interactions and molecular machinations. Additionally, the exploration of therapeutic strategies targeting metabolic abnormalities has burgeoned harboring potential for innovative and efficacious treatment modalities. This review encapsulates the profound metabolic complexities of PPGLs, aiming to foster an enriched understanding and pave the way for future investigations and therapeutic innovations in managing these metabolically unique tumors.
Collapse
Affiliation(s)
| | - Navin Mathiyalagan
- Department of Medical Oncology, Nottingham University Hospitals NHS Trust, NG5 1PB Nottingham, UK
| | - Cornelius Fernandez James
- Department of Endocrinology & Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, PE21 9QS Boston, UK
| | - Joseph M. Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, PR2 9HT Preston, UK
- Faculty of Science, Manchester Metropolitan University, M15 6BH Manchester, UK
- Faculty of Biology, Medicine, and Health, The University of Manchester, M13 9PL Manchester, UK
| |
Collapse
|
4
|
Mendes Serrão E, Klug M, Moloney BM, Jhaveri A, Lo Gullo R, Pinker K, Luker G, Haider MA, Shinagare AB, Liu X. Current Status of Cancer Genomics and Imaging Phenotypes: What Radiologists Need to Know. Radiol Imaging Cancer 2023; 5:e220153. [PMID: 37921555 DOI: 10.1148/rycan.220153] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Ongoing discoveries in cancer genomics and epigenomics have revolutionized clinical oncology and precision health care. This knowledge provides unprecedented insights into tumor biology and heterogeneity within a single tumor, among primary and metastatic lesions, and among patients with the same histologic type of cancer. Large-scale genomic sequencing studies also sparked the development of new tumor classifications, biomarkers, and targeted therapies. Because of the central role of imaging in cancer diagnosis and therapy, radiologists need to be familiar with the basic concepts of genomics, which are now becoming the new norm in oncologic clinical practice. By incorporating these concepts into clinical practice, radiologists can make their imaging interpretations more meaningful and specific, facilitate multidisciplinary clinical dialogue and interventions, and provide better patient-centric care. This review article highlights basic concepts of genomics and epigenomics, reviews the most common genetic alterations in cancer, and discusses the implications of these concepts on imaging by organ system in a case-based manner. This information will help stimulate new innovations in imaging research, accelerate the development and validation of new imaging biomarkers, and motivate efforts to bring new molecular and functional imaging methods to clinical radiology. Keywords: Oncology, Cancer Genomics, Epignomics, Radiogenomics, Imaging Markers Supplemental material is available for this article. © RSNA, 2023.
Collapse
Affiliation(s)
- Eva Mendes Serrão
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Maximiliano Klug
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Brian M Moloney
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Aaditeya Jhaveri
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Roberto Lo Gullo
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Katja Pinker
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Gary Luker
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Masoom A Haider
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Atul B Shinagare
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Xiaoyang Liu
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| |
Collapse
|
5
|
Hypermetabolism and Substrate Utilization Rates in Pheochromocytoma and Functional Paraganglioma. Biomedicines 2022; 10:biomedicines10081980. [PMID: 36009527 PMCID: PMC9406117 DOI: 10.3390/biomedicines10081980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
The overproduction of catecholamines in pheochromocytoma/paraganglioma (PPGL) induces a hypermetabolic state. The aim of this study was to evaluate the incidence of a hypermetabolic state and differences in substrate metabolism in consecutive PPGL patients divided by catecholamine phenotype. Resting energy expenditure (REE) and respiratory quotient (RQ) were measured in 108 consecutive PPGL patients and 70 controls by indirect calorimetry. Hypermetabolic state was defined according to the Mifflin St. Jeor Equation as a ratio above 110%. Hypermetabolic state was confirmed in 70% of PPGL patients, regardless of phenotype. Older age, prevalence of diabetes mellitus and arterial hypertension were correlated with hypermetabolic PPGL as compared to normometabolic form. Analysis according to overproduced catecholamine showed differences in VCO2 (p < 0.05) and RQ (p < 0.01) and thus different substate metabolism between phenotypes in hypermetabolic form of PPGL. Lipid utilization was higher in the adrenergic phenotype (p = 0.001) and positively associated with the percentage of REE ratio (R = 0.48, p < 0.001), whereas the noradrenergic phenotype preferentially oxidizes carbohydrates (P = 0.001) and is correlated with the percentage of REE ratio (R = 0.60, p < 0.001). Hypermetabolic state in PPGL is a common finding in both catecholamine phenotypes. Hypermetabolic PPGL patients are older and suffer more from diabetes mellitus and arterial hypertension. Under basal conditions, the noradrenergic type preferentially metabolizes carbohydrates, whereas the adrenergic phenotype preferentially metabolizes lipids.
Collapse
|
6
|
Bima C, Bioletto F, Lopez C, Bollati M, Arata S, Procopio M, Gesmundo I, Ghigo E, Maccario M, Parasiliti-Caprino M. Clinical and Pathological Tools for Predicting Recurrence and/or Metastasis in Patients with Pheochromocytoma and Paraganglioma. Biomedicines 2022; 10:biomedicines10081813. [PMID: 36009360 PMCID: PMC9404897 DOI: 10.3390/biomedicines10081813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Pheochromocytomas and paragangliomas are endocrine tumors belonging to the family of neural crest cell-derived neoplasms. They have an extremely variable clinical course, characterized by a non-negligible percentage of relapse and/or metastasis after radical surgery. To date, there are no reliable methods to predict the metastatic potential of these neoplasms, despite several clinical, molecular, and histopathological factors that have been extensively studied in the literature as predictors of the recurrence and/or metastasis in these neoplasms with different performances and results. In this review, we aimed to discuss and analyze the most important clinical and histopathological tools for predicting recurrence risk in patients affected by pheochromocytomas or paragangliomas. Thus, we compared the main available predictive models, exploring their applications in stratifying patients’ risks. In conclusion, we underlined the importance of simple and validated tools to better define disease aggressiveness and establish tailored patients’ treatments and follow-ups.
Collapse
|
7
|
Genetics of Pheochromocytomas and Paragangliomas Determine the Therapeutical Approach. Int J Mol Sci 2022; 23:ijms23031450. [PMID: 35163370 PMCID: PMC8836037 DOI: 10.3390/ijms23031450] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Pheochromocytomas and paragangliomas are the most heritable endocrine tumors. In addition to the inherited mutation other driver mutations have also been identified in tumor tissues. All these genetic alterations are clustered in distinct groups which determine the pathomechanisms. Most of these tumors are benign and their surgical removal will resolve patient management. However, 5–15% of them are malignant and therapeutical possibilities for them are limited. This review provides a brief insight about the tumorigenesis associated with pheochromocytomas/paragangliomas in order to present them as potential therapeutical targets.
Collapse
|
8
|
Winzeler B, Challis BG, Casey RT. Precision Medicine in Phaeochromocytoma and Paraganglioma. J Pers Med 2021; 11:jpm11111239. [PMID: 34834591 PMCID: PMC8620689 DOI: 10.3390/jpm11111239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Precision medicine is a term used to describe medical care, which is specifically tailored to an individual patient or disease with the aim of ensuring the best clinical outcome whilst reducing the risk of adverse effects. Phaeochromocytoma and paraganglioma (PPGL) are rare neuroendocrine tumours with uncertain malignant potential. Over recent years, the molecular profiling of PPGLs has increased our understanding of the mechanisms that drive tumorigenesis. A high proportion of PPGLs are hereditary, with non-hereditary tumours commonly harbouring somatic mutations in known susceptibility genes. Through detailed interrogation of genotype-phenotype, correlations PPGLs can be classified into three different subgroups or clusters. Thus, PPGLs serve as an ideal paradigm for developing, testing and implementing precision medicine concepts in the clinic. In this review, we provide an overview of PPGLs and highlight how detailed molecular characterisation of these tumours provides current and future opportunities for precision oncology.
Collapse
Affiliation(s)
- Bettina Winzeler
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, 4031 Basel, Switzerland;
- Department of Clinical Research, University of Basel, 4031 Basel, Switzerland
- Department of Medical Genetics, Cambridge Biomedical Campus, Cambridge University, Cambridge CB2 0QQ, UK
| | - Benjamin G. Challis
- Department of Endocrinology, Cambridge University Hospital, Cambridge CB2 0QQ, UK;
| | - Ruth T. Casey
- Department of Medical Genetics, Cambridge Biomedical Campus, Cambridge University, Cambridge CB2 0QQ, UK
- Department of Endocrinology, Cambridge University Hospital, Cambridge CB2 0QQ, UK;
- Correspondence:
| |
Collapse
|
9
|
Flores SK, Estrada-Zuniga CM, Thallapureddy K, Armaiz-Peña G, Dahia PLM. Insights into Mechanisms of Pheochromocytomas and Paragangliomas Driven by Known or New Genetic Drivers. Cancers (Basel) 2021; 13:cancers13184602. [PMID: 34572828 PMCID: PMC8467373 DOI: 10.3390/cancers13184602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/12/2021] [Accepted: 09/12/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Pheochromocytomas and paragangliomas are rare neuroendocrine tumors that are often hereditary. Although research has advanced considerably, significant gaps still persist in understanding risk factors, predicting metastatic potential and treating aggressive tumors. The study of rare mutations can provide new insights into how pheochromocytomas and paragangliomas develop. In this review, we provide examples of such rare events and how they can inform our understanding of the spectrum of mutations that can lead to these tumors and improve our ability to provide a genetic diagnosis. Abstract Pheochromocytomas and paragangliomas are rare tumors of neural crest origin. Their remarkable genetic diversity and high heritability have enabled discoveries of bona fide cancer driver genes with an impact on diagnosis and clinical management and have consistently shed light on new paradigms in cancer. In this review, we explore unique mechanisms of pheochromocytoma and paraganglioma initiation and management by drawing from recent examples involving rare mutations of hypoxia-related genes VHL, EPAS1 and SDHB, and of a poorly known susceptibility gene, TMEM127. These models expand our ability to predict variant pathogenicity, inform new functional domains, recognize environmental-gene connections, and highlight persistent therapeutic challenges for tumors with aggressive behavior.
Collapse
Affiliation(s)
- Shahida K. Flores
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (S.K.F.); (C.M.E.-Z.); (K.T.); (G.A.-P.)
| | - Cynthia M. Estrada-Zuniga
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (S.K.F.); (C.M.E.-Z.); (K.T.); (G.A.-P.)
| | - Keerthi Thallapureddy
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (S.K.F.); (C.M.E.-Z.); (K.T.); (G.A.-P.)
| | - Gustavo Armaiz-Peña
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (S.K.F.); (C.M.E.-Z.); (K.T.); (G.A.-P.)
| | - Patricia L. M. Dahia
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (S.K.F.); (C.M.E.-Z.); (K.T.); (G.A.-P.)
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Correspondence:
| |
Collapse
|
10
|
Casey R, Neumann HPH, Maher ER. Genetic stratification of inherited and sporadic phaeochromocytoma and paraganglioma: implications for precision medicine. Hum Mol Genet 2021; 29:R128-R137. [PMID: 33059362 DOI: 10.1093/hmg/ddaa201] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Over the past two decades advances in genomic technologies have transformed knowledge of the genetic basis of phaeochromocytoma and paraganglioma (PPGL). Though traditional teaching suggested that inherited cases accounted for only 10% of all phaeochromocytoma diagnosis, current estimates are at least three times this proportion. Inherited PPGL is a highly genetically heterogeneous disorder but the most frequently results from inactivating variants in genes encoding subunits of succinate dehydrogenase. Expanding knowledge of the genetics of PPGL has been translated into clinical practice by the provision of widespread testing for inherited PPGL. In this review, we explore how the molecular stratification of PPGL is being utilized to enable more personalized strategies for investigation, surveillance and management of affected individuals and their families. Translating recent genetic research advances into clinical service can not only bring benefits through more accurate diagnosis and risk prediction but also challenges when there is a suboptimal evidence base for the clinical consequences or significance of rare genotypes. In such cases, clinical, biochemical, pathological and functional imaging assessments can all contribute to more accurate interpretation and clinical management.
Collapse
Affiliation(s)
- Ruth Casey
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK.,NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK.,Department of Endocrinology, Cambridge University Hospital Foundation Trust, Cambridge CB2 0QQ, UK
| | - Hartmut P H Neumann
- Section for Preventive Medicine, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK.,NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| |
Collapse
|
11
|
HIF2alpha-Associated Pseudohypoxia Promotes Radioresistance in Pheochromocytoma: Insights from 3D Models. Cancers (Basel) 2021; 13:cancers13030385. [PMID: 33494435 PMCID: PMC7865577 DOI: 10.3390/cancers13030385] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/30/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PCCs/PGLs) are rare neuroendocrine tumors arising from chromaffin tissue located in the adrenal or ganglia of the sympathetic or parasympathetic nervous system. The treatment of non-resectable or metastatic PCCs/PGLs is still limited to palliative measures, including somatostatin type 2 receptor radionuclide therapy with [177Lu]Lu-DOTA-TATE as one of the most effective approaches to date. Nevertheless, the metabolic and molecular determinants of radiation response in PCCs/PGLs have not yet been characterized. This study investigates the effects of hypoxia-inducible factor 2 alpha (HIF2α) on the susceptibility of PCCs/PGLs to radiation treatments using spheroids grown from genetically engineered mouse pheochromocytoma (MPC) cells. The expression of Hif2α was associated with the significantly increased resistance of MPC spheroids to external X-ray irradiation and exposure to beta particle-emitting [177Lu]LuCl3 compared to Hif2α-deficient controls. Exposure to [177Lu]LuCl3 provided an increased long-term control of MPC spheroids compared to single-dose external X-ray irradiation. This study provides the first experimental evidence that HIF2α-associated pseudohypoxia contributes to a radioresistant phenotype of PCCs/PGLs. Furthermore, the external irradiation and [177Lu]LuCl3 exposure of MPC spheroids provide surrogate models for radiation treatments to further investigate the metabolic and molecular determinants of radiation responses in PCCs/PGLs and evaluate the effects of neo-adjuvant-in particular, radiosensitizing-treatments in combination with targeted radionuclide therapies.
Collapse
|
12
|
Gao S, Liu L, Li Z, Pang Y, Shi J, Zhu F. Seven Novel Genes Related to Cell Proliferation and Migration of VHL-Mutated Pheochromocytoma. Front Endocrinol (Lausanne) 2021; 12:598656. [PMID: 33828526 PMCID: PMC8021008 DOI: 10.3389/fendo.2021.598656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Pheochromocytoma, as a neuroendocrine tumor with the highest genetic correlation in all types of tumors, has attracted extensive attention. Von Hipper Lindau (VHL) has the highest mutation frequency among the genes associated with pheochromocytoma. However, the effect of VHL on the proteome of pheochromocytoma remains to be explored. In this study, the VHL knockdown (VHL-KD) PC12 cell model was established by RNA interference (shRNA). We compared the proteomics of VHL-KD and VHL-WT PC12 cell lines. The results showed that the expression of 434 proteins (VHL shRNA/WT > 1.3) changed significantly in VHL-KD-PC12 cells. Among the 434 kinds of proteins, 83 were involved in cell proliferation, cell cycle and cell migration, and so on. More importantly, among these proteins, we found seven novel key genes, including Connective Tissue Growth Factor (CTGF), Syndecan Binding Protein (SDCBP), Cysteine Rich Protein 61 (CYR61/CCN1), Collagen Type III Alpha 1 Chain (COL3A1), Collagen Type I Alpha 1 Chain (COL1A1), Collagen Type V Alpha 2 Chain (COL5A2), and Serpin Family E Member 1 (SERPINE1), were overexpressed and simultaneously regulated cell proliferation and migration in VHL-KD PC12 cells. Furthermore, the abnormal accumulation of HIF2α caused by VHL-KD significantly increased the expression of these seven genes during hypoxia. Moreover, cell-counting, scratch, and transwell assays demonstrated that VHL-KD could promote cell proliferation and migration, and changed cell morphology. These findings indicated that inhibition of VHL expression could promote the development of pheochromocytoma by activating the expression of cell proliferation and migration associated genes.
Collapse
Affiliation(s)
- Shuai Gao
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| | - Longfei Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuolin Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| | - Yingxian Pang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaqi Shi
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| | - Feizhou Zhu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
- *Correspondence: Feizhou Zhu,
| |
Collapse
|
13
|
Majewska A, Budny B, Ziemnicka K, Ruchała M, Wierzbicka M. Head and Neck Paragangliomas-A Genetic Overview. Int J Mol Sci 2020; 21:ijms21207669. [PMID: 33081307 PMCID: PMC7589036 DOI: 10.3390/ijms21207669] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Pheochromocytomas (PCC) and paragangliomas (PGL) are rare neuroendocrine tumors. Head and neck paragangliomas (HNPGL) can be categorized into carotid body tumors, which are the most common, as well as jugular, tympanic, and vagal paraganglioma. A review of the current literature was conducted to consolidate knowledge concerning PGL mutations, familial occurrence, and the practical application of this information. Available scientific databases were searched using the keywords head and neck paraganglioma and genetics, and 274 articles in PubMed and 1183 in ScienceDirect were found. From these articles, those concerning genetic changes in HNPGLs were selected. The aim of this review is to describe the known genetic changes and their practical applications. We found that the etiology of the tumors in question is based on genetic changes in the form of either germinal or somatic mutations. 40% of PCC and PGL have a predisposing germline mutation (including VHL, SDHB, SDHD, RET, NF1, THEM127, MAX, SDHC, SDHA, SDHAF2, HIF2A, HRAS, KIF1B, PHD2, and FH). Approximately 25–30% of cases are due to somatic mutations, such as RET, VHL, NF1, MAX, and HIF2A. The tumors were divided into three main clusters by the Cancer Genome Atlas (TCGA); namely, the pseudohypoxia group, the Wnt signaling group, and the kinase signaling group. The review also discusses genetic syndromes, epigenetic changes, and new testing technologies such as next-generation sequencing (NGS).
Collapse
Affiliation(s)
- Anna Majewska
- Department of Otolaryngology, Head and Neck Surgery, Poznan University of Medical Sciences, 60-355 Poznań, Poland;
- Correspondence:
| | - Bartłomiej Budny
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (B.B.); (K.Z.); (M.R.)
| | - Katarzyna Ziemnicka
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (B.B.); (K.Z.); (M.R.)
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (B.B.); (K.Z.); (M.R.)
| | - Małgorzata Wierzbicka
- Department of Otolaryngology, Head and Neck Surgery, Poznan University of Medical Sciences, 60-355 Poznań, Poland;
| |
Collapse
|
14
|
Taïeb D, Visvikis D, Hicks RJ, Pacak K. Molecular Imaging in the Era of Precision Medicine: Paraganglioma as a Template for Understanding Multiple Levels of Analysis. J Nucl Med 2020; 61:646-648. [DOI: 10.2967/jnumed.119.239095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/10/2020] [Indexed: 11/16/2022] Open
|
15
|
Abdul Sater Z, Jha A, Hamimi A, Mandl A, Hartley IR, Gubbi S, Patel M, Gonzales M, Taïeb D, Civelek AC, Gharib AM, Auh S, O’Mara AE, Pacak K, Cypess AM. Pheochromocytoma and Paraganglioma Patients With Poor Survival Often Show Brown Adipose Tissue Activation. J Clin Endocrinol Metab 2020; 105:5696788. [PMID: 31903484 PMCID: PMC7059996 DOI: 10.1210/clinem/dgz314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/02/2020] [Indexed: 01/22/2023]
Abstract
CONTEXT Pheochromocytomas/paragangliomas (PPGLs) are neuroendocrine tumors that can secrete norepinephrine (NE). Brown adipose tissue (BAT) activation is mediated through the action of NE on β-adrenoceptors (β-ARs). In some malignancies, BAT activation is associated with higher cancer activity. OBJECTIVE To study the relationship between BAT activation and PPGL clinical outcomes. DESIGN A retrospective case-control study that included 342 patients with PPGLs who underwent 18F-fluoro-2-deoxy-D-glucose positron emission tomography-computed tomography (18F-FDG PET/CT) imaging at the National Institutes of Health (NIH). We excluded all patients with parasympathetic tumors and those who underwent 18F-FDG PET/CT after PPGL resection. Scans of 205 patients were reviewed by 2 blinded nuclear medicine physicians; 16 patients had BAT activation on 18F-FDG PET/CT [7.80%; age 27.50 (15.00-45.50) years; 10 female/6 male; body mass index [BMI] 24.90 [19.60-25.35] kg/m2). From the remaining 189 patients, we selected 36 matched controls (age 34.4 [25.4-45.5] years; 21 female/15 male; BMI 25.0 [22.0-26.0] kg/m2). PRIMARY OUTCOME MEASURE Overall survival. RESULTS The presence of active BAT on 18F-FDG PET/CT was associated with decreased overall survival when compared with the control group (HRz 5.80; 95% CI, 1.05-32.05; P = 0.02). This association remained significant after adjusting for the SDHB mutation. Median plasma NE in the BAT group was higher than the control group [4.65 vs 0.55 times above the upper limit of normal; P < 0.01]. There was a significant association between higher plasma NE levels and mortality in PPGLs in both groups. CONCLUSIONS Our findings suggest that the detection of BAT activity in PPGL patients is associated with higher mortality. We suggest that BAT activation could either be reflecting or contributing to a state of increased host stress that may predict poor outcome in metastatic PPGL.
Collapse
Affiliation(s)
- Zahraa Abdul Sater
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Ahmed Hamimi
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Adel Mandl
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Iris R Hartley
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Sriram Gubbi
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Mayank Patel
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Melissa Gonzales
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| | - Ali Cahid Civelek
- Nuclear Medicine Division, Radiology, and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland
- Nuclear Medicine, Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, Maryland
| | - Ahmed M Gharib
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sungyoung Auh
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Alana E O’Mara
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Aaron M Cypess
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
- Correspondence and Reprint Requests: Aaron M. Cypess, MD, PhD, MMSc, Acting Section Chief, Translational Physiology Section, Diabetes, Endocrinology, and Obesity Branch, 10 Center Drive, Building 10, CRC, Room, Bethesda, Maryland 20892–1109 USA. E-mail:
| |
Collapse
|
16
|
Taïeb D, Pacak K. Genetic Determinants of Pheochromocytoma and Paraganglioma Imaging Phenotypes. J Nucl Med 2020; 61:643-645. [PMID: 32198315 DOI: 10.2967/jnumed.120.245613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
Parallel to the application of new PET radiopharmaceuticals for pheochromocytoma and paraganglioma (collectively named PPGLs) imaging, several studies have increased our understanding on their biology, genetics, metabolomics, and embryologic origin. In this review, we highlight the current relationship between genotypes and molecular imaging phenotypes. Additionally, we summarize the referral guidelines for imaging of PPGL patients with or without knowledge of their genetic background.
Collapse
Affiliation(s)
- David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France; and
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
17
|
Yu A, Li M, Xing C, Chen D, Wang C, Xiao Q, Zhang L, Pang Y, Wang Y, Zu X, Liu L. A Comprehensive Analysis Identified the Key Differentially Expressed Circular Ribonucleic Acids and Methylation-Related Function in Pheochromocytomas and Paragangliomas. Front Genet 2020; 11:15. [PMID: 32161614 PMCID: PMC7052364 DOI: 10.3389/fgene.2020.00015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
We investigated differentially expressed circular RNAs (circRNAs) and their potential functions in pheochromocytomas and paragangliomas (PCC/PGLs). Expression levels of circRNAs in tumor and adjacent normal tissues from seven PCC/PGL patients were analyzed through RNA sequencing. Real-time PCR was conducted to verify the key candidates identified in the sequencing data. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to predict the functions of these circRNAs. A total of 367 circRNAs were found differentially expressed between tumor and normal samples. The top three histone methylation-related circRNAs (hsa_circ_0000567, hsa_circ_0002897, and hsa_circ_0004473) and their target microRNAs (miRNAs) were identified and validated. We then mapped the circRNA-miRNA-messenger RNA (mRNA) coding-noncoding gene co-expression (CNC) networks to show the potential binding relationships between circRNAs and their targets in PCC/PGLs. The top five mRNAs, 88 miRNAs, and 132 circRNAs related to pathogenesis were utilized to map the CNC network, and we observed that the interactions of these candidates with their target miRNAs regulated histone methylation and further mediated PCC/PGL pathogenesis. This study is the first to provide the whole profile of differentially expressed circRNAs in PCC/PGLs. Our data indicate that altered circRNAs may control the pathogenesis of PCC/PGLs by regulating histone methylation processes, highlighting their role as potential biomarkers.
Collapse
Affiliation(s)
- Anze Yu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Minghao Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Changsheng Xing
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Danlei Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Cikui Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qiao Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liang Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yingxian Pang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Longfei Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Treglia G, Goichot B, Giovanella L, Hindié E, Jha A, Pacak K, Taïeb D, Walter T, Imperiale A. Prognostic and predictive value of nuclear imaging in endocrine oncology. Endocrine 2020; 67:9-19. [PMID: 31734779 PMCID: PMC7441826 DOI: 10.1007/s12020-019-02131-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/02/2019] [Indexed: 12/20/2022]
Abstract
In the last few years, the role and use of medical technologies in (neuro)endocrine oncology has greatly evolved allowing not only important diagnostic information but also prognostic stratification in different clinical situations. The terms "prognostic" and "predictive" are commonly used to describe the relationships between biomarkers and patients' clinical outcomes but have quite different meaning. The present work discusses the prognostic and predictive value of nuclear medicine imaging. It critically reviews the clinical significance and potential impact of molecular examinations on follow-up and therapeutic strategies in patients with neuroendocrine neoplasms, thyroid tumors, and adrenal malignancies.
Collapse
Affiliation(s)
- Giorgio Treglia
- Clinic of Nuclear Medicine and PET/CT Center, Imaging Institute of Southern Switzerland, Bellinzona, Switzerland
- Health Technology Assessment Unit, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Clinical Trial Unit, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Bernard Goichot
- Endocrinology and Internal Medicine Department, Hautepierre Hospital, University Hospitals of Strasbourg, Strasbourg, France
| | - Luca Giovanella
- Clinic of Nuclear Medicine and PET/CT Center, Imaging Institute of Southern Switzerland, Bellinzona, Switzerland
- University Hospital and University of Zürich, Zürich, Switzerland
| | - Elif Hindié
- Nuclear Medicine Department, Haut-Lévêque Hospital, University Hospitals of Bordeaux, University of Bordeaux, Bordeaux, France
- LabEx TRAIL, University of Bordeaux, Bordeaux, France
| | - Abhishek Jha
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - David Taïeb
- Nuclear Medicine, La Timone University Hospital, Aix-Marseille University, Marseille, France
- European Center for Research in Medical Imaging, Aix-Marseille University, Marseille, France
| | - Thomas Walter
- Medical Oncology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
- University of Lyon, Université Lyon 1, Lyon, France
| | - Alessio Imperiale
- Biophysics and Nuclear Medicine, Hautepierre Hospital, University Hospitals of Strasbourg, Strasbourg University/FMTS, Strasbourg, France.
- Molecular Imaging-DRHIM, IPHC, UMR 7178, CNRS/Unistra, Strasbourg, France.
| |
Collapse
|
19
|
Reichert T, Fakhry N, Lavieille JP, Amodru V, Sebag F, Romanet P, Loundou A, Castinetti F, Pacak K, Montava M, Taïeb D. Exploring the link between tumour metabolism and succinate dehydrogenase deficiency: A 18 F-FDOPA PET/CT study in head and neck paragangliomas. Clin Endocrinol (Oxf) 2019; 91:879-884. [PMID: 31479526 PMCID: PMC7446860 DOI: 10.1111/cen.14086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Nuclear imaging findings by virtue of phenotyping disease heavily depend on genetic background, metabolites, cell membrane specific targets and signalling pathways. PPGL related to succinate dehydrogenase subunits mutations (SDHx mutations) are less differentiated than other subgroups and therefore may lack to concentrate 18 F-FDOPA, a precursor of catecholamines biosynthesis. However, this 18 F-FDOPA negative phenotype has been reported mostly in SDHx-PPGL of sympathetic origin, suggesting that both genotype status and location (from sympathetic vs parasympathetic paraganglia; adrenal vs extra-adrenal) could influence 18 F-FDOPA uptake. The aim of this study was to test if SDHx drives 18 F-FDOPA uptake in presence of normal epinephrine/norepinephrine concentrations. DESIGN Retrospective study PATIENTS: A cohort of 86 head and neck PPGL patients (including three metastatic) with normal metanephrines underwent 18 F-FDOPA PET/CT. The relationships between 18 F-FDOPA uptake and tumour genotype were evaluated. RESULTS In nonmetastatic HNPGL (50 non-SDHx/33 SDHx), no significant difference was observed between these two groups for SUVmax (P = .256), SUVmean (P = .188), MTV 42% (P = .596) and total lesion uptake (P = .144). Metastatic HNPGL also had high elevated uptake values. CONCLUSIONS Our results suggest that SDH deficiency or metastatic behaviour have no influence on 18 F-FDOPA uptake in HNPGL probably due to their very-well differentiation status, even at metastatic stage. The potential prognosticator value of 18 F-FDOPA uptake would need to be further explored in the setting of metastatic PPGL of sympathetic origin.
Collapse
Affiliation(s)
- Thibaut Reichert
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| | - Nicolas Fakhry
- Department of Head and Neck Surgery, Conception Hospital, Aix-Marseille Univ, Marseille, France
| | - Jean-Pierre Lavieille
- Department of Head and Neck Surgery, Conception Hospital, Aix-Marseille Univ, Marseille, France
| | - Vincent Amodru
- Department of Endocrinology, Conception University Hospital, Aix-Marseille University, Marseille, France
| | - Frédéric Sebag
- Department of Endocrine Surgery, Conception University Hospital, Aix-Marseille University, Marseille, France
| | - Pauline Romanet
- Laboratory of Molecular Biology, Conception Hospital & CNRS, CRN2M UMR 7286, Aix-Marseille University, Marseille, France
| | - Anderson Loundou
- Department of Public Health, EA3279 Self-perceived Health Assessment Research Unit, Aix-Marseille University, Marseille, France
| | - Frédéric Castinetti
- Department of Endocrinology, Conception University Hospital, Aix-Marseille University, Marseille, France
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Marion Montava
- Department of Head and Neck Surgery, Conception Hospital, Aix-Marseille Univ, Marseille, France
| | - David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| |
Collapse
|
20
|
Taïeb D, Hicks RJ, Hindié E, Guillet BA, Avram A, Ghedini P, Timmers HJ, Scott AT, Elojeimy S, Rubello D, Virgolini IJ, Fanti S, Balogova S, Pandit-Taskar N, Pacak K. European Association of Nuclear Medicine Practice Guideline/Society of Nuclear Medicine and Molecular Imaging Procedure Standard 2019 for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging 2019; 46:2112-2137. [PMID: 31254038 PMCID: PMC7446938 DOI: 10.1007/s00259-019-04398-1] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 01/11/2023]
Abstract
PURPOSE Diverse radionuclide imaging techniques are available for the diagnosis, staging, and follow-up of phaeochromocytoma and paraganglioma (PPGL). Beyond their ability to detect and localise the disease, these imaging approaches variably characterise these tumours at the cellular and molecular levels and can guide therapy. Here we present updated guidelines jointly approved by the EANM and SNMMI for assisting nuclear medicine practitioners in not only the selection and performance of currently available single-photon emission computed tomography and positron emission tomography procedures, but also the interpretation and reporting of the results. METHODS Guidelines from related fields and relevant literature have been considered in consultation with leading experts involved in the management of PPGL. The provided information should be applied according to local laws and regulations as well as the availability of various radiopharmaceuticals. CONCLUSION Since the European Association of Nuclear Medicine 2012 guidelines, the excellent results obtained with gallium-68 (68Ga)-labelled somatostatin analogues (SSAs) in recent years have simplified the imaging approach for PPGL patients that can also be used for selecting patients for peptide receptor radionuclide therapy as a potential alternative or complement to the traditional theranostic approach with iodine-123 (123I)/iodine-131 (131I)-labelled meta-iodobenzylguanidine. Genomic characterisation of subgroups with differing risk of lesion development and subsequent metastatic spread is refining the use of molecular imaging in the personalised approach to hereditary PPGL patients for detection, staging, and follow-up surveillance.
Collapse
Affiliation(s)
- David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, 264 rue Saint-Pierre, 13005, Marseille Cedex 05, France.
| | - Rodney J Hicks
- Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Elif Hindié
- Department of Nuclear Medicine, Hôpital Haut-Lévêque, Bordeaux University Hospitals, Pessac, France
| | - Benjamin A Guillet
- Department of Radiopharmacy, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| | - Anca Avram
- Nuclear Medicine/Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Pietro Ghedini
- Nuclear Medicine Unit, Medicina Nucleare Metropolitana, University Hospital S.Orsola-Malpighi, Bologna, Italy
| | - Henri J Timmers
- Department of Endocrinology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - Saeed Elojeimy
- Department of Radiology, University of New Mexico, Albuquerque, NM, USA
| | - Domenico Rubello
- Department of Nuclear Medicine, Radiology, Neuroradiology, Medical Physics, Clinical Laboratory, Microbiology, Pathology, Transfusional Medicine, Santa Maria della Misericordia Hospital, Rovigo, Italy
| | - Irène J Virgolini
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Stefano Fanti
- Nuclear Medicine Unit, Medicina Nucleare Metropolitana, University Hospital S.Orsola-Malpighi, Bologna, Italy
| | - Sona Balogova
- Department of Nuclear Medicine, Comenius University and St. Elisabeth Oncology Institute, Heydukova 10, 81250, Bratislava, Slovakia
- Department of Nuclear Medicine, Hôpital Tenon Assistance Publique-Hôpitaux de Paris and Sorbonne University, Paris, France
| | - Neeta Pandit-Taskar
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karel Pacak
- Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Abstract
The mitochondrial enzyme succinate dehydrogenase (SDH) acts as a tumor suppressor. Biallelic inactivation of one of the genes encoding for SDH subunits (collectively named SDHx) leads to complete loss of the protein function and the development of diverse group of tumors. Pheochromocytomas-paragangliomas are the prime example of hereditary tumors caused by SDH deficiency. In this review, we discuss the roles of imaging examinations, and illustrate new insights into genotype-imaging phenotype relationships.
Collapse
Affiliation(s)
- David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| | - Henri Timmers
- Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Siejka DA, Vittorio AF, Thakur S, Burgess JR, Hardikar A. Resection of a functioning intrapericardial paraganglioma associated with succinate dehydrogenase B mutation. SAGE Open Med Case Rep 2019; 7:2050313X19839530. [PMID: 30967954 PMCID: PMC6444777 DOI: 10.1177/2050313x19839530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 03/01/2019] [Indexed: 01/29/2023] Open
Abstract
Functional paragangliomas are rare neuroendocrine tumours that secrete catecholamines and are infrequently found in the mediastinum. We report a case of a young male with symptoms of catecholamine excess and a personal and family history of the paraganglioma predisposing succinate dehydrogenase subunit B mutation. The lesion had anatomical intrapericardial juxtaposition to important cardiac anatomy and posed the significant challenge of dissection at surgery. The lesion was successfully resected via sternotomy on cardiopulmonary bypass and confirmed histopathologically as paraganglioma. Intrapericardial paraganglioma is rare and treatment is difficult and time critical considering the proximity of cardiac anatomy as well as malignant potential.
Collapse
Affiliation(s)
- Dylan A Siejka
- Tasmanian Cardiothoracic Unit, Royal Hobart Hospital, Hobart, TAS, Australia
| | | | - Sameer Thakur
- Tasmanian Cardiothoracic Unit, Royal Hobart Hospital, Hobart, TAS, Australia
| | - John R Burgess
- Department of Endocrinology, Royal Hobart Hospital, Hobart, TAS, Australia.,School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Ashutosh Hardikar
- Tasmanian Cardiothoracic Unit, Royal Hobart Hospital, Hobart, TAS, Australia
| |
Collapse
|
23
|
Jha A, de Luna K, Balili CA, Millo C, Paraiso CA, Ling A, Gonzales MK, Viana B, Alrezk R, Adams KT, Tena I, Chen A, Neuzil J, Raygada M, Kebebew E, Taieb D, O'Dorisio MS, O'Dorisio T, Civelek AC, Stratakis CA, Mercado-Asis L, Pacak K. Clinical, Diagnostic, and Treatment Characteristics of SDHA-Related Metastatic Pheochromocytoma and Paraganglioma. Front Oncol 2019; 9:53. [PMID: 30854332 PMCID: PMC6395427 DOI: 10.3389/fonc.2019.00053] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/18/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Pheochromocytoma and paraganglioma (PHEO/PGL) are rare neuroendocrine tumors which may cause potentially life-threatening complications, with about a third of cases found to harbor specific gene mutations. Thus, early diagnosis, treatment, and meticulous monitoring are of utmost importance. Because of low incidence of succinate dehydrogenase complex subunit A (SDHA)-related metastatic PHEO/PGL, currently there exists insufficient clinical information, especially with regards to its diagnostic and treatment characteristics. Methods: Ten patients with SDHA-related metastatic PHEO/PGL were followed-up prospectively and/or retrospectively between January 2010–July 2018. They underwent biochemical tests (n = 10), 123I-MIBG (n = 9) scintigraphy, and multiple whole-body positron emission tomography/computed tomography (PET/CT) scans with 68Ga-DOTATATE (n = 10), 18F-FDG (n = 10), and 18F-FDOPA (n = 6). Results: Our findings suggest that these tumors can occur early and at extra-adrenal locations, behave aggressively, and have a tendency to develop metastatic disease within a short period of time. None of our patients had a family history of PHEO/PGL, making them appear sporadic. Nine out of 10 patients showed abnormal PHEO/PGL-specific biochemical markers with predominantly noradrenergic and/or dopaminergic phenotype, suggesting their utility in diagnosing and monitoring the disease. Per patient detection rates of 68Ga-DOTATATE (n = 10/10), 18F-FDG (n = 10/10), 18F-FDOPA (n = 5/6) PET/CT, and 123I-MIBG (n = 7/9) scintigraphy were 100, 100, 83.33, and 77.77%, respectively. Five out of 7 123I-MIBG positive patients had minimal 123I-MIBG avidity or detected very few lesions compared to widespread metastatic disease on 18F-FDG PET/CT, implying that diagnosis and treatment with 123/131I-MIBG is not a good option. 68Ga-DOTATATE PET/CT was found to be superior or equal to 18F-FDG PET/CT in 7 out of 10 patients and hence, is recommended for evaluation and follow-up of these patients. All 7 out of 7 patients who received conventional therapies (chemotherapy, somatostatin analog therapy, radiation therapy, 131I-MIBG, peptide receptor radionuclide therapy) in addition to surgery showed disease progression. Conclusion: In our cohort of patients, SDHA-related metastatic PHEO/PGL followed a disease-course similar to that of SDHB-related metastatic PHEO/PGL, showing highly aggressive behavior, similar imaging and biochemical phenotypes, and suboptimal response to conventional therapies. Therefore, we recommend careful surveillance of the affected patients and a search for effective therapies.
Collapse
Affiliation(s)
- Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Kristine de Luna
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.,Section of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Santo Tomas Hospital, Manila, Philippines
| | - Charlene Ann Balili
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.,Section of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Santo Tomas Hospital, Manila, Philippines
| | - Corina Millo
- Positron Emission Tomography Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Cecilia Angela Paraiso
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.,Section of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Santo Tomas Hospital, Manila, Philippines
| | - Alexander Ling
- Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Melissa K Gonzales
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Bruna Viana
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Rami Alrezk
- Clinical Endocrine Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Karen T Adams
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Isabel Tena
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Alice Chen
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jiri Neuzil
- Mitochondria, Apoptosis and Cancer Research Group, School of Medical Science, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Molecular Therapy Group, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
| | - Margarita Raygada
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Electron Kebebew
- Endocrine Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, Aix-Marseille University, Marseille, France
| | - M Sue O'Dorisio
- Department of Pediatrics, RJ and LA Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Thomas O'Dorisio
- Neuroendocrine Tumor Program, Division of Endocrinology and Metabolism, Department of Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Ali Cahid Civelek
- Nuclear Medicine Division, Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD, United States.,Nuclear Medicine, Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Leilani Mercado-Asis
- Section of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Santo Tomas Hospital, Manila, Philippines
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
24
|
Mak IYF, Hayes AR, Khoo B, Grossman A. Peptide Receptor Radionuclide Therapy as a Novel Treatment for Metastatic and Invasive Phaeochromocytoma and Paraganglioma. Neuroendocrinology 2019; 109:287-298. [PMID: 30856620 DOI: 10.1159/000499497] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/09/2019] [Indexed: 11/19/2022]
Abstract
At present there is no clinical guideline or standardised protocol for the treatment of metastatic or invasive phaeochromocytoma and paraganglioma (collectively known as PPGL) due to the rarity of the disease and the lack of prospective studies or extended national databases. Prognosis is mainly determined by genetic predisposition, tumour burden, rate of disease progression, and location of metastases. For patients with progressive or symptomatic disease that is not amenable to surgery, there are various palliative treatment options available. These include localised therapies including radiotherapy, radiofrequency, or cryoablation, as well as liver-directed therapies for those patients with hepatic metastases (e.g., transarterial chemoembolisation) and systemic therapies including chemotherapy or molecular targeted therapies. There is currently intense research interest in the value of radionuclide therapy for neuroendocrine tumours, including phaeochromocytoma and paraganglioma, with either iodine-131 (131I)-radiolabelled metaiodobenzylguanidine or very recently peptide receptor radionuclide therapy (PRRT), and the most important contemporary clinical studies will be highlighted in this review. The studies to date suggest that PRRT may induce major clinical, biochemical, and radiological changes, with 177Lu-DOTATATE being most efficacious and presenting less toxicity than 90Y-DOTATATE. Newer combination therapies with combined radioisotopes, or combinations with chemotherapeutic agents, also look promising. Given the favourable efficacy, logistic, and safety profiles, we believe that PRRT will probably become the standard treatment for inoperable metastatic PPGL in the near future, but we await data from definitive randomised controlled trials to understand its role.
Collapse
Affiliation(s)
- Ingrid Y F Mak
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, United Kingdom,
| | - Aimee R Hayes
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, United Kingdom
| | - Bernard Khoo
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, United Kingdom
| | - Ashley Grossman
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
25
|
Amodru V, Romanet P, Scemama U, Montava M, Fakhry N, Sebag F, Castinetti F, Lavieille JP, Loundou A, Varoquaux A, Barlier A, Pacak K, Taïeb D. Tumor multifocality with vagus nerve involvement as a phenotypic marker of SDHD mutation in patients with head and neck paragangliomas: A 18 F-FDOPA PET/CT study. Head Neck 2018; 41:1565-1571. [PMID: 30584686 DOI: 10.1002/hed.25604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/14/2018] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND 18 F-FDOPA PET/CT was proved to be a highly sensitive imaging method for detecting head and neck paraganglioma (HNPGL). The primary aim of the study was to evaluate the relationship between tumor characteristics and the SDHx-mutational status in a large series of patients with HNPGL evaluated by 18 F-FDOPA PET/CT. METHODS A total of 104 patients with HNPGL (65 sporadic/39 SDHx-mutated) were included. RESULTS In comparison to SDHB/SDC/SDHx-negative cases, patients with SDHD were younger at diagnosis and had a higher rate of multifocal, vagal, and carotid paraganglioma. In patients with SDHD, vagal paraganglia represented the primary site of tumor origin. Multicentric involvement of the vagus nerve alone or in association with other locations was found to be a typical feature of SDHD cases compared to other cases (odds ratio = 59.4). CONCLUSION The present study shows that tumor multifocality within the vagus nerve is a phenotypic marker of SDHD mutation. This information is essential in the choice of the therapeutic strategy.
Collapse
Affiliation(s)
- Vincent Amodru
- Department of Endocrinology, Conception University Hospital, Aix-Marseille University, Marseille, France
| | - Pauline Romanet
- Laboratory of Molecular Biology, Conception Hospital & CNRS, CRN2M UMR 7286, Aix-Marseille University, Marseille, France
| | - Ugo Scemama
- Department of Radiology, Conception Hospital, Aix-Marseille University, Marseille, France
| | - Marion Montava
- Department of Otorhinolaryngology-Head and Neck Surgery, Conception Hospital, Aix-Marseille University, Marseille, France
| | - Nicolas Fakhry
- Department of Otorhinolaryngology-Head and Neck Surgery, Conception Hospital, Aix-Marseille University, Marseille, France
| | - Frédéric Sebag
- Department of Endocrine Surgery, Conception University Hospital, Aix-Marseille University, Marseille, France
| | - Frédéric Castinetti
- Department of Endocrinology, Conception University Hospital, Aix-Marseille University, Marseille, France
| | - Jean-Pierre Lavieille
- Laboratory of Molecular Biology, Conception Hospital & CNRS, CRN2M UMR 7286, Aix-Marseille University, Marseille, France
| | - Anderson Loundou
- Department of Public Health, EA3279 Self-perceived Health Assessment Research Unit, La Timone University, Aix-Marseille University, Marseille, France
| | - Arthur Varoquaux
- Department of Radiology, Conception Hospital, Aix-Marseille University, Marseille, France
| | - Anne Barlier
- Laboratory of Molecular Biology, Conception Hospital & CNRS, CRN2M UMR 7286, Aix-Marseille University, Marseille, France
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, Maryland
| | - David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, Aix-Marseille University, Marseille, France.,European Center for Research in Medical Imaging, Aix-Marseille University, Marseille, France
| |
Collapse
|
26
|
Tevosian SG, Ghayee HK. Pheochromocytoma/Paraganglioma: A Poster Child for Cancer Metabolism. J Clin Endocrinol Metab 2018; 103:1779-1789. [PMID: 29409060 DOI: 10.1210/jc.2017-01991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/26/2018] [Indexed: 12/26/2022]
Abstract
CONTEXT Pheochromocytomas (PCCs) are tumors that are derived from the chromaffin cells of the adrenal medulla. Extra-adrenal PCCs called paragangliomas (PGLs) are derived from the sympathetic and parasympathetic chain ganglia. PCCs secrete catecholamines, which cause hypertension and have adverse cardiovascular consequences as a result of catecholamine excess. PGLs may or may not produce catecholamines depending on their genetic type and anatomical location. The most worrisome aspect of these tumors is their ability to become aggressive and metastasize; there are no known cures for metastasized PGLs. METHODS Original articles and reviews indexed in PubMed were identified by querying with specific PCC/PGL- and Krebs cycle pathway-related terms. Additional references were selected through the in-depth analysis of the relevant publications. RESULTS We primarily discuss Krebs cycle mutations that can be instrumental in helping investigators identify key biological pathways and molecules that may serve as biomarkers of or treatment targets for PCC/PGL. CONCLUSION The mainstay of treatment of patients with PCC/PGLs is surgical. However, the tide may be turning with the discovery of new genes associated with PCC/PGLs that may shed light on oncometabolites used by these tumors.
Collapse
Affiliation(s)
- Sergei G Tevosian
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - Hans K Ghayee
- Department of Medicine, Division of Endocrinology, University of Florida, Gainesville, Florida
- Malcom Randall VA Medical Center, Gainesville, Florida
| |
Collapse
|
27
|
Díaz-Castellanos MA, Gómez de Las Heras KV, Díaz-Redondo T, González-Flores E, Albiñana V, Botella LM. Case Report: Propranolol increases the therapeutic response to temozolomide in a patient with metastatic paraganglioma. F1000Res 2017. [PMID: 29527294 PMCID: PMC5824325 DOI: 10.12688/f1000research.13185.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This case report presents the clinical evolution and management of a patient with a hereditary paraganglioma syndrome. This disease is characterized by rare tumors of neural crest origin that are symmetrically distributed along the paravertebral axis from the base of the skull and neck to the pelvis. In addition, these patients may develop renal cancer, gastrointestinal stromal tumors, pituitary adenomas, and bone metastasis in some cases. To date no successful therapeutic treatment has been reported. Total resection with postoperative radiotherapy and chemotherapy have been advocated, especially for the multiple metastasis. Here we show how the combination of high doses of the beta blocker propranolol (3 mg/Kg/day) and the DNA intercalating agent, temozolomide, has been successful in the treatment of a SDHA metastatic paraganglioma.
Collapse
Affiliation(s)
| | | | - Tamara Díaz-Redondo
- Servicio de Oncología, Hospital Universitario Carlos Haya, Málaga, 29010, Spain
| | | | | | | |
Collapse
|