1
|
Stocker CW, Bamford SM, Jahn M, Mazué GPF, Pettersen AK, Ritchie D, Rubin AM, Noble DWA, Seebacher F. The Effect of Temperature Variability on Biological Responses of Ectothermic Animals-A Meta-Analysis. Ecol Lett 2024; 27:e14511. [PMID: 39354891 DOI: 10.1111/ele.14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 10/03/2024]
Abstract
Climate change is altering temperature means and variation, and both need to be considered in predictions underpinning conservation. However, there is no consensus in the literature regarding the effects of temperature fluctuations on biological functions. Fluctuations may affect biological responses because of inequalities from non-linear responses, endocrine regulation or exposure to damaging temperatures. Here we establish the current state of knowledge of how temperature fluctuations impact biological responses within individuals and populations compared to constant temperatures with the same mean. We conducted a meta-analysis of 143 studies on ectothermic animals (1492 effect sizes, 118 species). In this study, 89% of effect sizes were derived from diel cycles, but there were no significant differences between diel cycles and shorter (<8 h) or longer (>48 h) cycles in their effect on biological responses. We show that temperature fluctuations have little effect overall on trait mean and variance. Nonetheless, temperature fluctuations can be stressful: fluctuations increased 'gene expression' in aquatic animals, which was driven mainly by increased hsp70. Fluctuating temperatures also decreased longevity, and increased amplitudes had negative effects on population responses in aquatic organisms. We conclude that mean temperatures and extreme events such as heat waves are important to consider, but regular (particularly diel) temperature fluctuations are less so.
Collapse
Affiliation(s)
- Clayton W Stocker
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales, Australia
| | - Stephanie M Bamford
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales, Australia
| | - Miki Jahn
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales, Australia
| | - Geoffrey P F Mazué
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Amanda K Pettersen
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales, Australia
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Daniel Ritchie
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales, Australia
| | - Alexander M Rubin
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Taff CC, McNew SM, Campagna L, Vitousek MN. Corticosterone exposure is associated with long-term changes in DNA methylation, physiology and breeding decisions in a wild bird. Mol Ecol 2024; 33:e17456. [PMID: 38953311 DOI: 10.1111/mec.17456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
When facing challenges, vertebrates activate a hormonal stress response that can dramatically alter behaviour and physiology. Although this response can be costly, conceptual models suggest that it can also recalibrate the stress response system, priming more effective responses to future challenges. Little is known about whether this process occurs in wild animals, particularly in adulthood, and if so, how information about prior experience with stressors is encoded. One potential mechanism is hormonally mediated changes in DNA methylation. We simulated the spikes in corticosterone that accompany a stress response using non-invasive dosing in tree swallows (Tachycineta bicolor) and monitored the phenotypic effects 1 year later. In a subset of individuals, we characterized DNA methylation using reduced representation bisulfite sequencing shortly after treatment and a year later. The year after treatment, experimental females had stronger negative feedback and initiated breeding earlier-traits that are associated with stress resilience and reproductive performance in our population-and higher baseline corticosterone. We also found that natural variation in corticosterone predicted patterns of DNA methylation. Finally, corticosterone treatment influenced methylation on short (1-2 weeks) and long (1 year) time scales; however, these changes did not have clear links to functional regulation of the stress response. Taken together, our results are consistent with corticosterone-induced priming of future stress resilience and support DNA methylation as a potential mechanism, but more work is needed to demonstrate functional consequences. Uncovering the mechanisms linking experience with the response to future challenges has implications for understanding the drivers of stress resilience.
Collapse
Affiliation(s)
- Conor C Taff
- Department of Ecology & Evolutionary Biology and Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
- Department of Biology, Colby College, Waterville, Maine, USA
| | - Sabrina M McNew
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Leonardo Campagna
- Department of Ecology & Evolutionary Biology and Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
| | - Maren N Vitousek
- Department of Ecology & Evolutionary Biology and Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Taff CC, Baldan D, Mentesana L, Ouyang JQ, Vitousek MN, Hau M. Endocrine flexibility can facilitate or constrain the ability to cope with global change. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220502. [PMID: 38310929 PMCID: PMC10838644 DOI: 10.1098/rstb.2022.0502] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/21/2023] [Indexed: 02/06/2024] Open
Abstract
Global climate change has increased average environmental temperatures world-wide, simultaneously intensifying temperature variability and extremes. Growing numbers of studies have documented phenological, behavioural and morphological responses to climate change in wild populations. As systemic signals, hormones can contribute to orchestrating many of these phenotypic changes. Yet little is known about whether mechanisms like hormonal flexibility (reversible changes in hormone concentrations) facilitate or limit the ability of individuals, populations and species to cope with a changing climate. In this perspective, we discuss different mechanisms by which hormonal flexibility, primarily in glucocorticoids, could promote versus hinder evolutionary adaptation to changing temperature regimes. We focus on temperature because it is a key gradient influenced by climate change, it is easy to quantify, and its links to hormones are well established. We argue that reaction norm studies that connect individual responses to population-level and species-wide patterns will be critical for making progress in this field. We also develop a case study on urban heat islands, where several key questions regarding hormonal flexibility and adaptation to climate change can be addressed. Understanding the mechanisms that allow animals to cope when conditions become more challenging will help in predicting which populations are vulnerable to ongoing climate change. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Conor C. Taff
- Laboratory Ornithology and Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Biology, Colby College, Waterville, ME 04901, USA
| | - Davide Baldan
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Lucia Mentesana
- Evolutionary Physiology, Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany
- Faculty of Sciences, Republic University, Montevideo, 11200, Uruguay
| | - Jenny Q. Ouyang
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Maren N. Vitousek
- Laboratory Ornithology and Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Michaela Hau
- Evolutionary Physiology, Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany
- Department of Biology, University of Konstanz, Konstanz, 78467, Germany
| |
Collapse
|
4
|
Crino OL, Bonduriansky R, Martin LB, Noble DWA. A conceptual framework for understanding stress-induced physiological and transgenerational effects on population responses to climate change. Evol Lett 2024; 8:161-171. [PMID: 38370553 PMCID: PMC10871929 DOI: 10.1093/evlett/qrad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/03/2023] [Accepted: 09/04/2023] [Indexed: 02/20/2024] Open
Abstract
Organisms are experiencing higher average temperatures and greater temperature variability because of anthropogenic climate change. Some populations respond to changes in temperature by shifting their ranges or adjusting their phenotypes via plasticity and/or evolution, while others go extinct. Predicting how populations will respond to temperature changes is challenging because extreme and unpredictable climate changes will exert novel selective pressures. For this reason, there is a need to understand the physiological mechanisms that regulate organismal responses to temperature changes. In vertebrates, glucocorticoid hormones mediate physiological and behavioral responses to environmental stressors and thus are likely to play an important role in how vertebrates respond to global temperature changes. Glucocorticoids have cascading effects that influence the phenotype and fitness of individuals, and some of these effects can be transmitted to offspring via trans- or intergenerational effects. Consequently, glucocorticoid-mediated responses could affect populations and could even be a powerful driver of rapid evolutionary change. Here, we present a conceptual framework that outlines how temperature changes due to global climate change could affect population persistence via glucocorticoid responses within and across generations (via epigenetic modifications). We briefly review glucocorticoid physiology, the interactions between environmental temperatures and glucocorticoid responses, and the phenotypic consequences of glucocorticoid responses within and across generations. We then discuss possible hypotheses for how glucocorticoid-mediated phenotypic effects might impact fitness and population persistence via evolutionary change. Finally, we pose pressing questions to guide future research. Understanding the physiological mechanisms that underpin the responses of vertebrates to elevated temperatures will help predict population-level responses to the changing climates we are experiencing.
Collapse
Affiliation(s)
- Ondi L Crino
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Russell Bonduriansky
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Lynn B Martin
- Global Health and Infectious Disease Research Center and Center for Genomics, University of South Florida, Tampa, FL, United States
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
5
|
Resende AC, Pereira DMC. IBRtools: An R package for calculating integrated biomarker indexes. Ecol Evol 2024; 14:e10864. [PMID: 38304267 PMCID: PMC10834099 DOI: 10.1002/ece3.10864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/14/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Multibiomarker studies are useful to evaluate the early warning signs of environmental degradation, and their unified responses are often assessed through two common indexes, Integrated Biomarker Response (IBR) and Integrated Biological Responses version 2 (IBRv2). The R package IBRtools allows users to calculate both IBR and IBRv2 while simultaneously incorporating all the biomarkers under evaluation. The package includes functions for calculating the indexes IBR and IBRv2 and obtaining their standardized values, as well a function for radar chart creation and three example datasets. Here we describe the main algorithms involved in IBR and IBRv2 calculations, a description of the novel package and illustrate a workflow using data examples available on the package to guide the user on how to accurately acquire the values for either the IBR index or the IBRv2 index. The IBRtools package provides a user-friendly platform for R users to obtain IBR index and IBRv2 values, making it straightforward even for large datasets.
Collapse
Affiliation(s)
- Anna Carolina Resende
- Marine Ecology and Ecosystem Modelling Lab, School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | - Diego Mauro Carneiro Pereira
- Carl Peter von Dietrich Glycobiology Laboratory, Biochemistry DepartmentFederal University of São PauloSão PauloBrazil
| |
Collapse
|
6
|
Jimeno B, Verhulst S. Meta-analysis reveals glucocorticoid levels reflect variation in metabolic rate, not 'stress'. eLife 2023; 12:RP88205. [PMID: 37889839 PMCID: PMC10611431 DOI: 10.7554/elife.88205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023] Open
Abstract
Glucocorticoid (GC) variation has long been thought to reflect variation in organismal 'stress,' but associations between GCs and Darwinian fitness components are diverse in magnitude, direction, and highly context-dependent. This paradox reveals our poor understanding of the causes of GC variation, contrasting with the detailed knowledge of the functional consequences of GC variation. Amongst an array of effects in many physiological systems, GCs orchestrate energy availability to anticipate and recover from predictable and unpredictable environmental fluctuations and challenges. Although this is mechanistically well-known, the extent to which GC levels are quantitatively explained by energy metabolism is unresolved. We investigated this association through meta-analysis, selecting studies of endotherms in which (1) an experiment was performed that affected metabolic rate and (2) metabolic rate and GC levels were measured simultaneously. We found that an increase in metabolic rate was associated with an increase in GC levels in 20 out of 21 studies (32 out of 35 effect sizes). More importantly, there was a strong positive correlation between the increases in metabolic rate and GCs (p=0.003). This pattern was similar in birds and mammals, and independent of the nature of the experimental treatment. We conclude that metabolic rate is a major driver of GC variation within individuals. Stressors often affect metabolic rate, leading us to question whether GC levels provide information on 'stress' beyond the stressor's effect on metabolic rate.
Collapse
Affiliation(s)
- Blanca Jimeno
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCC, Ciudad Real, Spain
- Instituto Pirenaico de Ecologia (IPE), CSIC, Avda. Nuestra Señora de la Victoria, Jaca, Spain
| | | |
Collapse
|
7
|
Lagasse E, Levin M. Future medicine: from molecular pathways to the collective intelligence of the body. Trends Mol Med 2023; 29:687-710. [PMID: 37481382 PMCID: PMC10527237 DOI: 10.1016/j.molmed.2023.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/24/2023]
Abstract
The remarkable anatomical homeostasis exhibited by complex living organisms suggests that they are inherently reprogrammable information-processing systems that offer numerous interfaces to their physiological and anatomical problem-solving capacities. We briefly review data suggesting that the multiscale competency of living forms affords a new path for biomedicine that exploits the innate collective intelligence of tissues and organs. The concept of tissue-level allostatic goal-directedness is already bearing fruit in clinical practice. We sketch a roadmap towards 'somatic psychiatry' by using advances in bioelectricity and behavioral neuroscience to design methods that induce self-repair of structure and function. Relaxing the assumption that cellular control mechanisms are static, exploiting powerful concepts from cybernetics, behavioral science, and developmental biology may spark definitive solutions to current biomedical challenges.
Collapse
Affiliation(s)
- Eric Lagasse
- McGowan Institute for Regenerative Medicine and Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
8
|
Ruiz-Raya F, Noguera JC, Velando A. Covariation between glucocorticoid levels and receptor expression modulates embryo development and postnatal phenotypes in gulls. Horm Behav 2023; 149:105316. [PMID: 36731260 DOI: 10.1016/j.yhbeh.2023.105316] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/21/2022] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
The hypothalamic-pituitary-adrenocortical axis can translate, through glucocorticoid secretion, the prenatal environment to development to produce phenotypes that match prevailing environmental conditions. However, whether developmental plasticity is modulated by the interaction between circulating glucocorticoids and receptor expression remains unclear. Here, we tested whether covariation between plasma corticosterone (CORT) and glucocorticoid receptor gene (Nr3c1) expression in blood underlies embryonic developmental programming in yellow-legged gulls (Larus michahellis). We examined variations in circulating levels of CORT and the expression and DNA methylation patterns of Nr3c1 in response to two ecologically relevant prenatal factors: adult alarm calls (a cue of predator presence) and changes in prenatal light environment (a cue of competitive disadvantage). We then determined whether embryonic development and postnatal phenotypes were associated with CORT levels and Nr3c1 expression, and explored direct and indirect relationships between the prenatal environment, hormone-receptor covariation, and postnatal phenotypes. Prenatal exposure to alarm calls increased CORT levels and up-regulated Nr3c1 expression in gull chicks, while exposure to light cues reduced both hormone levels and receptor expression. Chicks prenatally exposed to alarm calls showed altered DNA methylation profiles in the Nr3c1 regulatory region, but patterns varied throughout the breeding season and between years. Moreover, our results suggest a negative relationship between DNA methylation and expression in Nr3c1 , at least at specific CpG sites. The interplay between circulating CORT and Nr3c1 expression affected embryo developmental timing and vocalizations, as well as hatchling mass and fitness-relevant behaviours. These findings provide a link between prenatal inputs, glucocorticoid function and phenotypic outcomes, suggesting that hormone-receptor interaction may underlie developmental programming in free-living animals.
Collapse
Affiliation(s)
- Francisco Ruiz-Raya
- Centro de Investigación Mariña, Universidade de Vigo, Grupo de Ecoloxía Animal, Vigo 36310, Spain.
| | - Jose C Noguera
- Centro de Investigación Mariña, Universidade de Vigo, Grupo de Ecoloxía Animal, Vigo 36310, Spain
| | - Alberto Velando
- Centro de Investigación Mariña, Universidade de Vigo, Grupo de Ecoloxía Animal, Vigo 36310, Spain
| |
Collapse
|
9
|
Zimmer C, Taff CC, Ardia DR, Rosvall KA, Kallenberg C, Bentz AB, Taylor AR, Johnson LS, Vitousek MN. Gene expression in the female tree swallow brain is associated with inter- and intra-population variation in glucocorticoid levels. Horm Behav 2023; 147:105280. [PMID: 36403365 DOI: 10.1016/j.yhbeh.2022.105280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 10/12/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
Studies of the evolutionary causes and consequences of variation in circulating glucocorticoids (GCs) have begun to reveal how they are shaped by selection. Yet the extent to which variation in circulating hormones reflects variation in other important regulators of the hypothalamic-pituitary-adrenal (HPA) axis, and whether these relationships vary among populations inhabiting different environments, remain poorly studied. Here, we compare gene expression in the brain of female tree swallows (Tachycineta bicolor) from populations that breed in environments that differ in their unpredictability. We find evidence of inter-population variation in the expression of glucocorticoid and mineralocorticoid receptors in the hypothalamus, with the highest gene expression in a population from an extreme environment, and lower expression in a population from a more consistent environment as well as in birds breeding at an environmentally variable high-altitude site that are part of a population that inhabits a mixture of high and low altitude habitats. Within some populations, variation in circulating GCs predicted differences in gene expression, particularly in the hypothalamus. However, some patterns were present in all populations, whereas others were not. These results are consistent with the idea that some combination of local adaptation and phenotypic plasticity may modify components of the HPA axis affecting stress resilience. Our results also underscore that a comprehensive understanding of the function and evolution of the stress response cannot be gained from measuring circulating hormones alone, and that future studies that apply a more explicitly evolutionary approach to important regulatory traits are likely to provide significant insights.
Collapse
Affiliation(s)
- Cedric Zimmer
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; Laboratoire d'Ethologie Expérimentale et Comparée, LEEC, Université Sorbonne Paris Nord, UR 4443, 93430 Villetaneuse, France.
| | - Conor C Taff
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| | - Daniel R Ardia
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604, USA
| | - Kimberly A Rosvall
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Christine Kallenberg
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Alexandra B Bentz
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA; Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Audrey R Taylor
- Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - L Scott Johnson
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| | - Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| |
Collapse
|
10
|
Jimeno B, Zimmer C. Glucocorticoid receptor expression as an integrative measure to assess glucocorticoid plasticity and efficiency in evolutionary endocrinology: A perspective. Horm Behav 2022; 145:105240. [PMID: 35933849 DOI: 10.1016/j.yhbeh.2022.105240] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
Organisms have to cope with the changes that take place in their environment in order to keep their physical and psychological stability. In vertebrates, the hypothalamic-pituitary-adrenal (HPA) axis plays a key role in mediating phenotypic adjustments to environmental changes, primarily by regulating glucocorticoids (GCs). Although circulating GCs have widely been used as proxy for individual health and fitness, our understanding of HPA regulation is still very limited, especially in free-living animals. Circulating GCs only exert their actions when they are bound to receptors, and therefore, GC receptors play a pivotal role mediating HPA regulation and GC downstream phenotypic changes. Because under challenging conditions GC actions (as well as negative feedback activation) occur mainly through binding to low-affinity glucocorticoid receptors (GR), we propose that GR activity, and in particular GR expression, may play a crucial role in GC regulation and dynamics, and be ultimately related to organismal capacity to appropriately respond to environmental changes. Thus, we suggest that GR expression will provide more comprehensive information of GC variation and function. To support this idea, we compile previous evidence demonstrating the fundamental role of GR on GC responses and the fine-tuning of circulating GCs. We also make predictions about the phenotypic differences in GC responsiveness - and ultimately HPA regulation capacity - associated with differences in GR expression, focusing on GC plasticity and efficiency. Finally, we discuss current priorities and limitations of integrating measures of GR expression into evolutionary endocrinology and ecology studies, and propose further research directions towards the use of GR expression and the study of the mechanisms regulating GR activity to gather information on coping strategies and stress resilience. Our goals are to provide an integrative perspective that will prompt reconsideration on the ecological and physiological interpretation of current GC measurements, and motivate further research on the role of GR in tuning individual responses to dynamic environments.
Collapse
Affiliation(s)
- Blanca Jimeno
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Cedric Zimmer
- Laboratoire d'Ethologie Expérimentale et Comparée, LEEC, Université Sorbonne Paris Nord, UR 4443, 93430 Villetaneuse, France; Global Health and Infectious Disease Research Center, University of South Florida, 33612 Tampa, FL, USA
| |
Collapse
|
11
|
Martin LB, Zimmer C. Endocrine flexibility. J Exp Biol 2022; 225:276445. [PMID: 36017760 DOI: 10.1242/jeb.244646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022]
Affiliation(s)
- Lynn B Martin
- University of South Florida, Center for Global Health and Infectious Disease Research and Center for Genomics, Tampa, FL 33612, USA
| | - Cedric Zimmer
- Laboratoire d'Ethologie Expérimentale et Comparée, LEEC, Université Sorbonne Paris Nord, UR 4443, 93430 Villetaneuse, France
| |
Collapse
|
12
|
Luttbeg B, Grindstaff JL. Optimal hormonal regulation when stressor cues are imperfect. Horm Behav 2022; 144:105227. [PMID: 35780563 PMCID: PMC10153792 DOI: 10.1016/j.yhbeh.2022.105227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/04/2022]
Abstract
The endocrine system uses information about the environment and the individual's state to regulate circulating concentrations of hormones, and then those hormones, through receptor binding, cause changes in the phenotype. How quickly individuals can up- and down-regulate their hormones can affect baseline and elevated hormone levels and presumably affects how successfully individuals can cope with a varying environment. To respond to environmental change, individuals first need to perceive and process cues about the state of the environment. Individuals may receive imperfect cues about the environment due to perceptual errors, variation in cues, or inexperience with novel stressors. In this paper we use a mathematical model to ask how these imperfect cues should affect how individuals regulate their glucocorticoid concentrations. We find imperfect cues can lead to changes in hormone regulation with individuals generally having higher baseline and lower elevated hormone levels as environmental cues become less reliable. Informational constraints and physiological constraints appear to have generally additive effects, with informational constraints having less of an impact as physiological constraints increase. Our results highlight the different means by which imperfect information can affect hormone regulation. We find that mistakes caused by imperfect cues are commonly responsible for changes in average hormone levels, but imperfect cues also cause individuals to be slower and less certain in their updated estimates of the environmental state, which affects hormone regulation. We also demonstrate the separate effects of false positive and false negative cues and how these are shaped by the relative fitness consequences of baseline and stress-induced hormone levels. Our model shows how given our assumptions imperfect stressor cues should affect endocrine flexibility and regulation, and we hope provides a piece for future conversations and models of endocrine regulation.
Collapse
Affiliation(s)
- Barney Luttbeg
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, United States.
| | - Jennifer L Grindstaff
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
13
|
Ramos A, Robin JP, Manizan L, Audroin C, Rodriguez E, Kemp YJM, Sueur C. Glucocorticoids of European Bison in Relation to Their Status: Age, Dominance, Social Centrality and Leadership. Animals (Basel) 2022; 12:849. [PMID: 35405836 PMCID: PMC8996974 DOI: 10.3390/ani12070849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Stress is the body's response to cope with the environment and generally better survive unless too much chronic stress persists. While some studies suggest that it would be more stressful to be the dominant individual of the group, others support the opposite hypothesis. Several variables can actually affect this relationship, or even cancel it. This study therefore aims to make the link between social status and the basal level of stress of 14 wild European bison (Bison bonasus, L. 1758) living together. We collected faeces and measured the faecal glucocorticoid metabolites (FGM). We showed that FGM is linked to different variables of social status of European bison, specifically age, dominance rank, eigenvector centrality but also to interactions between the variables. Preferential leaders in bison, i.e., the older and more dominant individuals which are more central ones, are less stressed compared to other group members. Measurement of such variables could thus be a valuable tool to follow and improve the conservation of species by collecting data on FGM and other social variables and adapt group composition or environmental conditions (e.g., supplement in food) according to the FGM concentration of herd individuals.
Collapse
Affiliation(s)
- Amandine Ramos
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; (A.R.); (J.-P.R.); (L.M.); (C.A.)
| | - Jean-Patrice Robin
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; (A.R.); (J.-P.R.); (L.M.); (C.A.)
| | - Lola Manizan
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; (A.R.); (J.-P.R.); (L.M.); (C.A.)
| | - Cyril Audroin
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; (A.R.); (J.-P.R.); (L.M.); (C.A.)
| | - Esther Rodriguez
- PWN Waterleidingbedrijf Noord-Holland, Postbus 2113, 1990 AC Velserbroek, The Netherlands; (E.R.); (Y.J.M.K.)
| | - Yvonne J. M. Kemp
- PWN Waterleidingbedrijf Noord-Holland, Postbus 2113, 1990 AC Velserbroek, The Netherlands; (E.R.); (Y.J.M.K.)
- ARK Nature, Molenveldlaan 43, 6523 RJ Nijmegen, The Netherlands
| | - Cédric Sueur
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; (A.R.); (J.-P.R.); (L.M.); (C.A.)
- Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
14
|
Grindstaff JL, Beaty LE, Ambardar M, Luttbeg B. Integrating theoretical and empirical approaches for a robust understanding of endocrine flexibility. J Exp Biol 2022; 225:274311. [PMID: 35258612 PMCID: PMC8987727 DOI: 10.1242/jeb.243408] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is growing interest in studying hormones beyond single 'snapshot' measurements, as recognition that individual variation in the endocrine response to environmental change may underlie many rapid, coordinated phenotypic changes. Repeated measures of hormone levels in individuals provide additional insight into individual variation in endocrine flexibility - that is, how individuals modulate hormone levels in response to the environment. The ability to quickly and appropriately modify phenotype is predicted to be favored by selection, especially in unpredictable environments. The need for repeated samples from individuals can make empirical studies of endocrine flexibility logistically challenging, but methods based in mathematical modeling can provide insights that circumvent these challenges. Our Review introduces and defines endocrine flexibility, reviews existing studies, makes suggestions for future empirical work, and recommends mathematical modeling approaches to complement empirical work and significantly advance our understanding. Mathematical modeling is not yet widely employed in endocrinology, but can be used to identify innovative areas for future research and generate novel predictions for empirical testing.
Collapse
Affiliation(s)
| | - Lynne E Beaty
- School of Science, Penn State Erie - The Behrend College, Erie, PA 16563, USA
| | - Medhavi Ambardar
- Department of Biological Sciences, Fort Hays State University, Hays, KS 67601, USA
| | - Barney Luttbeg
- Department of Integrative Biology, Oklahoma State University, OK 74078, USA
| |
Collapse
|