1
|
Zhang L, Lou K, Zhang Y, Leng Y, Huang Y, Liao X, Liu X, Feng S, Feng G. Tools for regulating metabolic diseases: extracellular vesicles from adipose macrophages. Front Endocrinol (Lausanne) 2024; 15:1510712. [PMID: 39735643 PMCID: PMC11674605 DOI: 10.3389/fendo.2024.1510712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Metabolic diseases have gradually become one of the most significant global medical burdens. Diseases such as obesity, diabetes, and metabolic syndrome, along with their complications, are clinically categorized as metabolic diseases. Long-term oral medication significantly reduces patient compliance and quality of life. Therefore, alternative therapies that intervene at the cellular level or target the root causes of metabolic diseases might help change this predicament. Research has found that extracellular vesicles derived from adipose macrophages can effectively regulate metabolic diseases by influencing the disease's development. This regulation is likely related to the role of these extracellular vesicles as important mediators in modulating adipose tissue function and insulin sensitivity, and their involvement in the crosstalk between adipocytes and macrophages. This review aims to describe the regulation of metabolic diseases mediated by adipose macrophage-derived extracellular vesicles, with a focus on their involvement in adipocyte crosstalk, the regulation of metabolism-related autoimmunity, and their potential as therapeutic agents for metabolic diseases, providing new avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Kecheng Lou
- Department of Urology, Lanxi People’s Hospital, Jinhua, Zhejiang, China
| | - Yunmeng Zhang
- Department of Anesthesiology, Jiujiang College Hospital, Jiujiang, Jiangxi, China
| | - Yuanjing Leng
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Yuqing Huang
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Xinxin Liao
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Xiaoliang Liu
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Shangzhi Feng
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Guoqiang Feng
- Department of Rehabilitation, Jiujiang College Hospital, Jiujiang, Jiangxi, China
| |
Collapse
|
2
|
Armengol-Badia O, Maggi J, Casal C, Cortés R, Abián J, Carrascal M, Closa D. The Microenvironment in an Experimental Model of Acute Pancreatitis Can Modify the Formation of the Protein Corona of sEVs, with Implications on Their Biological Function. Int J Mol Sci 2024; 25:12969. [PMID: 39684681 DOI: 10.3390/ijms252312969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
A considerable number of the physiological functions of extracellular vesicles are conditioned by the protein corona attached to their surface. The composition of this corona is initially defined during their intracellular synthesis, but it can be subsequently modified by interactions with the microenvironment. Here, we evaluated how the corona of small extracellular vesicles exposed to the inflammatory environment generated in acute pancreatitis is modified and what functional changes occur as a result of these modifications. Small extracellular vesicles obtained from a pancreatic cell line were incubated with the ascitic fluid generated in experimental acute pancreatitis in rats. Using proteomic techniques, we detected the appearance of new proteins and an increase the uptake of extracellular vesicles by certain cell types and the response induced in inflammatory cells. The inhibition of different pattern recognition receptors reversed this activation, indicating that some of these effects could be due to binding of damage-associated molecular patterns to the corona. All of this indicates that in pathologies such as acute pancreatitis, characterized by an inflammatory response and intense tissue damage, the microenvironment substantially influences the corona of extracellular vesicles, thus altering their behavior and enhancing their inflammatory activity.
Collapse
Affiliation(s)
- Olga Armengol-Badia
- Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Doctorate in Biotechnology, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jaxaira Maggi
- Biological and Environmental Proteomics, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Carme Casal
- Microscopy Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - Roser Cortés
- Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Joaquín Abián
- Biological and Environmental Proteomics, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Montserrat Carrascal
- Biological and Environmental Proteomics, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Daniel Closa
- Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| |
Collapse
|
3
|
Rabas N, Ferreira RMM, Di Blasio S, Malanchi I. Cancer-induced systemic pre-conditioning of distant organs: building a niche for metastatic cells. Nat Rev Cancer 2024; 24:829-849. [PMID: 39390247 DOI: 10.1038/s41568-024-00752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/12/2024]
Abstract
From their early genesis, tumour cells integrate with the surrounding normal cells to form an abnormal structure that is tightly integrated with the host organism via blood and lymphatic vessels and even neural associations. Using these connections, emerging cancers send a plethora of mediators that efficiently perturb the entire organism and induce changes in distant tissues. These perturbations serendipitously favour early metastatic establishment by promoting a more favourable tissue environment (niche) that supports the persistence of disseminated tumour cells within a foreign tissue. Because the establishment of early metastatic niches represents a key limiting step for metastasis, the creation of a more suitable pre-conditioned tissue strongly enhances metastatic success. In this Review, we provide an updated view of the mechanisms and mediators of primary tumours described so far that induce a pro-metastatic conditioning of distant organs, which favours early metastatic niche formation. We reflect on the nature of cancer-induced systemic conditioning, considering that non-cancer-dependent perturbations of tissue homeostasis are also able to trigger pro-metastatic conditioning. We argue that a more holistic view of the processes catalysing metastatic progression is needed to identify preventive or therapeutic opportunities.
Collapse
Affiliation(s)
- Nicolas Rabas
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Rute M M Ferreira
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Stefania Di Blasio
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Ilaria Malanchi
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
4
|
Liu C, Zhang Y, Zhao J, Zhang J, Meng Z, Yang Y, Xie Y, Jiao X, Liang B, Cao J, Wang Y. Vaping/e-cigarette-induced pulmonary extracellular vesicles contribute to exacerbated cardiomyocyte impairment through the translocation of ERK5. Life Sci 2024; 358:123195. [PMID: 39481834 DOI: 10.1016/j.lfs.2024.123195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
AIMS The impact of e-cigarettes/vaping on cardiac function remains contradictory owing to insufficient direct evidence of interorgan communication. Extracellular vesicles (EVs) have protective or detrimental effects depending on pathological conditions, making it crucial to understand their role in lung-cardiac cell interactions mediated by vaping inhalation. METHODS AND KEY FINDINGS Pulmonary EVs were characterized from animals that underwent 12 weeks of nicotine inhalation (vaping component) (EVsNicotine) or vehicle control (EVsVehicle). EVsNicotine significantly increased in size and abundance compared with EVsVehicle. The direct effect of EVs Nicotine and EVs Vehicle on cardiomyocytes was then assessed in vitro and in vivo. EVs Nicotine led to a decrease in cardiac function as manifested by reduced cardiac contractility and impaired relaxation. EVs Nicotine induced increased levels of cleaved caspase-1 and cleaved caspase-11 in cardiomyocytes, indicating the promotion of pyroptosis. Meanwhile, EVsNicotine stimulated the secretion of fibrotic factors. Further analysis revealed that nicotine inhalation stimulated EVs Nicotine enriched with high levels of ERK5 (EVs Nicotine-ERK5). It was discovered that these EVs derived from pulmonary epithelial cells. Furthermore, inhibiting cardiac ERK5 blunted the EVs Nicotine-induced pyroptosis and fibrotic factor secretion. We further identified GATA4, a pro-pyroptosis transcription factor, as being activated through ERK5-dependent phosphorylation. SIGNIFICANCE Our research demonstrates that nicotine inhalation exacerbates cardiac injury through the activation of EVs derived from the lungs during e-cigarettes/vaping. Specifically, the EVs containing ERK5 play a crucial role in mediating the detrimental effects on cardiac function. This research provides new insights into the cardiac toxicity of vaping and highlights the role of EVs Nicotine-ERK5 in this process.
Collapse
Affiliation(s)
- Caihong Liu
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yanwei Zhang
- Department of Cardiology, The First Affiliated Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Jianli Zhao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zhijun Meng
- Clinical Laboratory, Shanxi Provincial People's Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yuhui Yang
- Department of Anesthesiology, Guangdong Medical University, Guangzhou 510182, Guangdong, China
| | - Yaoli Xie
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Xiangying Jiao
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Bin Liang
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Department of Cardiology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Jimin Cao
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Yajing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
5
|
Kukla-Bartoszek M, Głombik K. Train and Reprogram Your Brain: Effects of Physical Exercise at Different Stages of Life on Brain Functions Saved in Epigenetic Modifications. Int J Mol Sci 2024; 25:12043. [PMID: 39596111 PMCID: PMC11593723 DOI: 10.3390/ijms252212043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Multiple studies have demonstrated the significant effects of physical exercise on brain plasticity, the enhancement of memory and cognition, and mood improvement. Although the beneficial impact of exercise on brain functions and mental health is well established, the exact mechanisms underlying this phenomenon are currently under thorough investigation. Several hypotheses have emerged suggesting various possible mechanisms, including the effects of hormones, neurotrophins, neurotransmitters, and more recently also other compounds such as lactate or irisin, which are released under the exercise circumstances and act both locally or/and on distant tissues, triggering systemic body reactions. Nevertheless, none of these actually explain the long-lasting effect of exercise, which can persist for years or even be passed on to subsequent generations. It is believed that these long-lasting effects are mediated through epigenetic modifications, influencing the expression of particular genes and the translation and modification of specific proteins. This review explores the impact of regular physical exercise on brain function and brain plasticity and the associated occurrence of epigenetic modifications. It examines how these changes contribute to the prevention and treatment of neuropsychiatric and neurological disorders, as well as their influence on the natural aging process and mental health.
Collapse
Affiliation(s)
| | - Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland;
| |
Collapse
|
6
|
Huang H, Lei P, Yu H, Du J, Wu B, Wang H, Yang Q, Cheng Y, Sun D, Wan L. Micro/nano plastics in the urinary system: Pathways, mechanisms, and health risks. ENVIRONMENT INTERNATIONAL 2024; 193:109109. [PMID: 39500122 DOI: 10.1016/j.envint.2024.109109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/25/2024]
Abstract
Micro/Nano plastics (MNPs) pollutants are widespread in the environment, raising significant concerns about their biosafety. Emerging studies indicate that the urinary system is a primary accumulation site for MNPs, leading to severe tissue and functional damage. This review aims to summarize recent research on the potential hazards that MNPs may pose to the urinary system, highlighting the mechanisms of toxicity and the current state of knowledge. Studies have shown that MNPs enter the human body through drinking water, the food chain, inhalation, and skin contact. They may penetrate the bloodstream via the digestive, respiratory, and skin systems, subsequently dispersing to various organs, including the urinary system. The potential accumulation of MNPs in the urinary system might induce cellular oxidative stress, inflammation, apoptosis, autophagy, the "intestine-kidney axis", and other possible toxic mechanisms. These processes could disrupt kidney metabolic functions and promote tissue fibrosis, thereby potentially increasing the risk of urinary system diseases. Despite ongoing research, the understanding of MNPs' impact on the urinary system remains limited. Therefore, this review provides a comprehensive overview of MNPs' potential toxicity mechanisms in the urinary system, highlights key challenges, and outlines future research directions. It offers a theoretical basis for the development of effective protective measures and policies.
Collapse
Affiliation(s)
- Hang Huang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Key Laboratory of Novel Nuclide Technologies on Precision Diagnosis and Treatment & Clinical Transformation of Wenzhou City, Wenzhou 325035, Zhejiang, China; Institute of Urology, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Pengyu Lei
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jiao Du
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Baihui Wu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Yongwei Cheng
- MedTech (Wenzhou) Health Innovation Achievement Transformation Institute, Wenzhou Institue of Industry & Science, Wenzhou 325000, China
| | - Da Sun
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Lijun Wan
- Department of Urology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| |
Collapse
|
7
|
Esparza D, Lima C, Abuelreich S, Ghaeli I, Hwang J, Oh E, Lenz A, Gu A, Jiang N, Kandeel F, Thurmond DC, Jovanovic-Talisman T. Pancreatic β-cells package double C2-like domain beta protein into extracellular vesicles via tandem C2 domains. Front Endocrinol (Lausanne) 2024; 15:1451279. [PMID: 39497805 PMCID: PMC11532064 DOI: 10.3389/fendo.2024.1451279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/10/2024] [Indexed: 11/07/2024] Open
Abstract
Introduction Double C2-like domain beta (DOC2B) is a vesicle priming protein critical for glucose-stimulated insulin secretion in β-cells. Individuals with type 1 diabetes (T1D) have lower levels of DOC2B in their residual functional β-cell mass and platelets, a phenotype also observed in a mouse model of T1D. Thus, DOC2B levels could provide important information on β-cell dys(function). Objective Our objective was to evaluate the DOC2B secretome of β-cells. In addition to soluble extracellular protein, we assessed DOC2B localized within membrane-delimited nanoparticles - extracellular vesicles (EVs). Moreover, in rat clonal β-cells, we probed domains required for DOC2B sorting into EVs. Method Using Single Extracellular VEsicle Nanoscopy, we quantified EVs derived from clonal β-cells (human EndoC-βH1, rat INS-1 832/13, and mouse MIN6); two other cell types known to regulate glucose homeostasis and functionally utilize DOC2B (skeletal muscle rat myotube L6-GLUT4myc and human neuronal-like SH-SY5Y cells); and human islets sourced from individuals with no diabetes (ND). EVs derived from ND human plasma, ND human islets, and cell lines were isolated with either size exclusion chromatography or differential centrifugation. Isolated EVs were comprehensively characterized using dotblots, transmission electron microscopy, nanoparticle tracking analysis, and immunoblotting. Results DOC2B was present within EVs derived from ND human plasma, ND human islets, and INS-1 832/13 β-cells. Compared to neuronal-like SH-SY5Y cells and L6-GLUT4myc myotubes, clonal β-cells (EndoC-βH1, INS-1 832/13, and MIN6) produced significantly more EVs. DOC2B levels in EVs (over whole cell lysates) were higher in INS-1 832/13 β-cells compared to L6-GLUT4myc myotubes; SH-SY5Y neuronal-like cells did not release appreciable DOC2B. Mechanistically, we show that DOC2B was localized to the EV lumen; the tandem C2 domains were sufficient to confer sorting to INS-1 832/13 β-cell EVs. Discussion Clonal β-cells and ND human islets produce abundant EVs. In cell culture, appreciable DOC2B can be packaged into EVs, and a small fraction is excreted as a soluble protein. While DOC2B-laden EVs and soluble protein are present in ND plasma, further studies will be necessary to determine if DOC2B originating from β-cells significantly contributes to the plasma secretome.
Collapse
Affiliation(s)
- Diana Esparza
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Carinna Lima
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Sarah Abuelreich
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Ima Ghaeli
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Jinhee Hwang
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Eunjin Oh
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Ayelet Lenz
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Angel Gu
- Department of Translational Research and Cellular Therapeutics, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Nan Jiang
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Fouad Kandeel
- Department of Translational Research and Cellular Therapeutics, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Tijana Jovanovic-Talisman
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, United States
| |
Collapse
|
8
|
Wu S, Zhou Z, Li Y, Jiang J. Advancements in diabetic foot ulcer research: Focus on mesenchymal stem cells and their exosomes. Heliyon 2024; 10:e37031. [PMID: 39286219 PMCID: PMC11403009 DOI: 10.1016/j.heliyon.2024.e37031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetes represents a widely acknowledged global public health concern. Diabetic foot ulcer (DFU) stands as one of the most severe complications of diabetes, its occurrence imposing a substantial economic burden on patients, profoundly impacting their quality of life. Despite the deepening comprehension regarding the pathophysiology and cellular as well as molecular responses of DFU, the current therapeutic arsenal falls short of efficacy, failing to offer a comprehensive remedy for deep-seated chronic wounds and microvascular occlusions. Conventional treatments merely afford symptomatic alleviation or retard the disease's advancement, devoid of the capacity to effectuate further restitution of compromised vasculature and nerves. An escalating body of research underscores the prominence of mesenchymal stem cells (MSCs) owing to their paracrine attributes and anti-inflammatory prowess, rendering them a focal point in the realm of chronic wound healing. Presently, MSCs have been validated as a highly promising cellular therapeutic approach for DFU, capable of effectuating cellular repair, epithelialization, granulation tissue formation, and neovascularization by means of targeted differentiation, angiogenesis promotion, immunomodulation, and paracrine activities, thereby fostering wound healing. The secretome of MSCs comprises cytokines, growth factors, chemokines, alongside exosomes harboring mRNA, proteins, and microRNAs, possessing immunomodulatory and regenerative properties. The present study provides a systematic exposition on the etiology of DFU and elucidates the intricate molecular mechanisms and diverse functionalities of MSCs in the context of DFU treatment, thereby furnishing pioneering perspectives aimed at harnessing the therapeutic potential of MSCs for DFU management and advancing wound healing processes.
Collapse
Affiliation(s)
- ShuHui Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - ZhongSheng Zhou
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Ding Y, Liang L, Guo Y, Zhu B. Bibliometric analysis of research on osteoarthritis and extracellular vesicles: Trends and frontiers. Heliyon 2024; 10:e36127. [PMID: 39224260 PMCID: PMC11366935 DOI: 10.1016/j.heliyon.2024.e36127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Extensive research has made significant progress in exploring the potential application of extracellular vesicles (EV) in the diagnosis and treatment of osteoarthritis (OA). However, there is current a lack of study on bibliometrics. In this study, we completed a novel bibliometric analysis of EV research in OA over the past two decades. Specifically, we identified a total of 354 relevant publications obtained between January 1, 2003 and December 31, 2022. We also provided a description of the distribution information regarding the countries or regions of publication, institutions involved, journals, authors, citations, and keywords. The primary research focuses encompassed the role of extracellular vesicles in the diagnosis of OA, delivery of active ingredients, treatment strategies, and cartilage repair. These findings highlight the latest research frontiers and emerging areas, providing valuable insights for further investigations on the application of extracellular vesicles in the context of osteoarthritis.
Collapse
Affiliation(s)
- Yongkang Ding
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, 014040, China
| | - Lu Liang
- Central Clinical Medical College, Baotou Medical College, Baotou, Inner Mongolia, 014040, China
| | - Ye Guo
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, 014040, China
| | - Bing Zhu
- Central Clinical Medical College, Baotou Medical College, Baotou, Inner Mongolia, 014040, China
| |
Collapse
|
10
|
Wang J, Barr MM, Wehman AM. Extracellular vesicles. Genetics 2024; 227:iyae088. [PMID: 38884207 PMCID: PMC11304975 DOI: 10.1093/genetics/iyae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Extracellular vesicles (EVs) encompass a diverse array of membrane-bound organelles released outside cells in response to developmental and physiological cell needs. EVs play important roles in remodeling the shape and content of differentiating cells and can rescue damaged cells from toxic or dysfunctional content. EVs can send signals and transfer metabolites between tissues and organisms to regulate development, respond to stress or tissue damage, or alter mating behaviors. While many EV functions have been uncovered by characterizing ex vivo EVs isolated from body fluids and cultured cells, research using the nematode Caenorhabditis elegans has provided insights into the in vivo functions, biogenesis, and uptake pathways. The C. elegans EV field has also developed methods to analyze endogenous EVs within the organismal context of development and adult physiology in free-living, behaving animals. In this review, we summarize major themes that have emerged for C. elegans EVs and their relevance to human health and disease. We also highlight the diversity of biogenesis mechanisms, locations, and functions of worm EVs and discuss open questions and unexplored topics tenable in C. elegans, given the nematode model is ideal for light and electron microscopy, genetic screens, genome engineering, and high-throughput omics.
Collapse
Affiliation(s)
- Juan Wang
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Maureen M Barr
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| |
Collapse
|
11
|
De Paula GC, Aldana BI, Battistella R, Fernández-Calle R, Bjure A, Lundgaard I, Deierborg T, Duarte JMN. Extracellular vesicles released from microglia after palmitate exposure impact brain function. J Neuroinflammation 2024; 21:173. [PMID: 39014461 PMCID: PMC11253458 DOI: 10.1186/s12974-024-03168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Dietary patterns that include an excess of foods rich in saturated fat are associated with brain dysfunction. Although microgliosis has been proposed to play a key role in the development of brain dysfunction in diet-induced obesity (DIO), neuroinflammation with cytokine over-expression is not always observed. Thus, mechanisms by which microglia contribute to brain impairment in DIO are uncertain. Using the BV2 cell model, we investigated the gliosis profile of microglia exposed to palmitate (200 µmol/L), a saturated fatty acid abundant in high-fat diet and in the brain of obese individuals. We observed that microglia respond to a 24-hour palmitate exposure with increased proliferation, and with a metabolic network rearrangement that favors energy production from glycolysis rather than oxidative metabolism, despite stimulated mitochondria biogenesis. In addition, while palmitate did not induce increased cytokine expression, it modified the protein cargo of released extracellular vesicles (EVs). When administered intra-cerebroventricularly to mice, EVs secreted from palmitate-exposed microglia in vitro led to memory impairment, depression-like behavior, and glucose intolerance, when compared to mice receiving EVs from vehicle-treated microglia. We conclude that microglia exposed to palmitate can mediate brain dysfunction through the cargo of shed EVs.
Collapse
Affiliation(s)
- Gabriela C De Paula
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, Lund, 221 84, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Roberta Battistella
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, Lund, 221 84, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Rosalía Fernández-Calle
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, Lund, 221 84, Sweden
| | - Andreas Bjure
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, Lund, 221 84, Sweden
| | - Iben Lundgaard
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, Lund, 221 84, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, Lund, 221 84, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - João M N Duarte
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, Lund, 221 84, Sweden.
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
12
|
Jiao YR, Chen KX, Tang X, Tang YL, Yang HL, Yin YL, Li CJ. Exosomes derived from mesenchymal stem cells in diabetes and diabetic complications. Cell Death Dis 2024; 15:271. [PMID: 38632264 PMCID: PMC11024187 DOI: 10.1038/s41419-024-06659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Diabetes, a group of metabolic disorders, constitutes an important global health problem. Diabetes and its complications place a heavy financial strain on both patients and the global healthcare establishment. The lack of effective treatments contributes to this pessimistic situation and negative outlook. Exosomes released from mesenchymal stromal cells (MSCs) have emerged as the most likely new breakthrough and advancement in treating of diabetes and diabetes-associated complication due to its capacity of intercellular communication, modulating the local microenvironment, and regulating cellular processes. In the present review, we briefly outlined the properties of MSCs-derived exosomes, provided a thorough summary of their biological functions and potential uses in diabetes and its related complications.
Collapse
Affiliation(s)
- Yu-Rui Jiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Kai-Xuan Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiang Tang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yu-Long Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Hai-Lin Yang
- Department of Orthopaedics, The Second Affiliated Hospital of Fuyang Normal University, Fuyang, Anhui, 236000, China
| | - Yu-Long Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Laboratory Animal Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
13
|
Yin W, Ma H, Qu Y, Wang S, Zhao R, Yang Y, Guo ZN. Targeted exosome-based nanoplatform for new-generation therapeutic strategies. Biomed Mater 2024; 19:032002. [PMID: 38471163 DOI: 10.1088/1748-605x/ad3310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Exosomes, typically 30-150 nm in size, are lipid-bilayered small-membrane vesicles originating in endosomes. Exosome biogenesis is regulated by the coordination of various mechanisms whereby different cargoes (e.g. proteins, nucleic acids, and lipids) are sorted into exosomes. These components endow exosomes with bioregulatory functions related to signal transmission and intercellular communication. Exosomes exhibit substantial potential as drug-delivery nanoplatforms owing to their excellent biocompatibility and low immunogenicity. Proteins, miRNA, siRNA, mRNA, and drugs have been successfully loaded into exosomes, and these exosome-based delivery systems show satisfactory therapeutic effects in different disease models. To enable targeted drug delivery, genetic engineering and chemical modification of the lipid bilayer of exosomes are performed. Stimuli-responsive delivery nanoplatforms designed with appropriate modifications based on various stimuli allow precise control of on-demand drug delivery and can be utilized in clinical treatment. In this review, we summarize the general properties, isolation methods, characterization, biological functions, and the potential role of exosomes in therapeutic delivery systems. Moreover, the effective combination of the intrinsic advantages of exosomes and advanced bioengineering, materials science, and clinical translational technologies are required to accelerate the development of exosome-based delivery nanoplatforms.
Collapse
Affiliation(s)
- Wenjing Yin
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Hongyin Ma
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Siji Wang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Ruoyu Zhao
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
- Neuroscience Research Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| |
Collapse
|
14
|
Nguyen KT, Rima XY, Hisey CL, Doon-Ralls J, Nagaraj CK, Reátegui E. Limiting Brownian Motion to Enhance Immunogold Phenotyping and Superimpose Optical and Non-Optical Single-EP Analyses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581663. [PMID: 38464234 PMCID: PMC10925179 DOI: 10.1101/2024.02.22.581663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Optical and non-optical techniques propelled the field of single extracellular particle (EP) research through phenotypic and morphological analyses, revealing the similarities, differences, and co-isolation of EP subpopulations. Overcoming the challenges of optical and non-optical techniques motivates the use of orthogonal techniques while analyzing extracellular particles (EPs), which require varying concentrations and preparations. Herein, we introduce the nano-positioning matrix (NPMx) technique capable of superimposing optical and non-optical modalities for a single-EP orthogonal analysis. The NPMx technique is realized by ultraviolet-mediated micropatterning to reduce the stochasticity of Brownian motion. While providing a systematic orthogonal measurement of a single EP via total internal reflection fluorescence microscopy and transmission electron microscopy, the NPMx technique is compatible with low-yield samples and can be utilized for non-biased electrostatic capture and enhanced positive immunogold sorting. The success of the NPMx technique thus provides a novel platform by marrying already trusted optical and non-optical techniques at a single-EP resolution.
Collapse
|
15
|
Li X, Han Y, Meng Y, Yin L. Small RNA-big impact: exosomal miRNAs in mitochondrial dysfunction in various diseases. RNA Biol 2024; 21:1-20. [PMID: 38174992 PMCID: PMC10773649 DOI: 10.1080/15476286.2023.2293343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/21/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Mitochondria are multitasking organelles involved in maintaining the cell homoeostasis. Beyond its well-established role in cellular bioenergetics, mitochondria also function as signal organelles to propagate various cellular outcomes. However, mitochondria have a self-destructive arsenal of factors driving the development of diseases caused by mitochondrial dysfunction. Extracellular vesicles (EVs), a heterogeneous group of membranous nano-sized vesicles, are present in a variety of bodily fluids. EVs serve as mediators for intercellular interaction. Exosomes are a class of small EVs (30-100 nm) released by most cells. Exosomes carry various cargo including microRNAs (miRNAs), a class of short noncoding RNAs. Recent studies have closely associated exosomal miRNAs with various human diseases, including diseases caused by mitochondrial dysfunction, which are a group of complex multifactorial diseases and have not been comprehensively described. In this review, we first briefly introduce the characteristics of EVs. Then, we focus on possible mechanisms regarding exosome-mitochondria interaction through integrating signalling networks. Moreover, we summarize recent advances in the knowledge of the role of exosomal miRNAs in various diseases, describing how mitochondria are changed in disease status. Finally, we propose future research directions to provide a novel therapeutic strategy that could slow the disease progress mediated by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xiaqing Li
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
- Nephrology department, The Fifth Affiliated Hospital (Heyuan Shenhe People’s Hospital), Jinan University, Heyuan, China
| | - Yi Han
- Traditional Chinese Medicine Department, People’s Hospital of Yanjiang District, Ziyang, Sichuan, China
| | - Yu Meng
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
- Nephrology department, The Fifth Affiliated Hospital (Heyuan Shenhe People’s Hospital), Jinan University, Heyuan, China
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Du Y, Wu L, Wang L, Reiter RJ, Lip GYH, Ren J. Extracellular vesicles in cardiovascular diseases: From pathophysiology to diagnosis and therapy. Cytokine Growth Factor Rev 2023; 74:40-55. [PMID: 37798169 DOI: 10.1016/j.cytogfr.2023.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Extracellular vesicles (EVs), encompassing exosomes, microvesicles (MVs), and apoptotic bodies (ABs), are cell-derived heterogeneous nanoparticles with a pivotal role in intercellular communication. EVs are enclosed by a lipid-bilayer membrane to escape enzymatic degradation. EVs contain various functional molecules (e.g., nucleic acids, proteins, lipids and metabolites) which can be transferred from donor cells to recipient cells. EVs provide many advantages including accessibility, modifiability and easy storage, stability, biocompatibility, heterogeneity and they readily penetrate through biological barriers, making EVs ideal and promising candidates for diagnosis/prognosis biomarkers and therapeutic tools. Recently, EVs were implicated in both physiological and pathophysiological settings of cardiovascular system through regulation of cell-cell communication. Numerous studies have reported a role for EVs in the pathophysiological progression of cardiovascular diseases (CVDs) and have evaluated the utility of EVs for the diagnosis/prognosis and therapeutics of CVDs. In this review, we summarize the biology of EVs, evaluate the perceived biological function of EVs in different CVDs along with a consideration of recent progress for the application of EVs in diagnosis/prognosis and therapies of CVDs.
Collapse
Affiliation(s)
- Yuxin Du
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Lin Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Litao Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, TX, USA
| | - Gregory Y H Lip
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA98195, USA.
| |
Collapse
|
17
|
Fyfe J, Casari I, Manfredi M, Falasca M. Role of lipid signalling in extracellular vesicles-mediated cell-to-cell communication. Cytokine Growth Factor Rev 2023; 73:20-26. [PMID: 37648617 DOI: 10.1016/j.cytogfr.2023.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Lipid signalling plays a crucial role in extracellular vesicle (EV)-mediated cell-to-cell communication. Extracellular vesicles are small membrane-bound structures released by various cell types into the extracellular environment. They include exosomes, microvesicles, and apoptotic bodies. These vesicles contain a variety of bioactive molecules, including proteins, nucleic acids (such as miRNAs and mRNAs), and lipids. Lipids are important components of EVs and are involved in various aspects of their biogenesis, cargo sorting, and functional effects on target cells. In this review, we will discuss how lipid signalling is involved in EV-mediated cell-to-cell communication. In summary, lipid signalling is intricately involved in extracellular vesicle-mediated cell-to-cell communication. The lipid composition of EVs influences their biogenesis, cargo sorting, interactions with target cells, and functional effects on recipient cells. Understanding the role of lipids in EV-mediated communication is essential for deciphering the mechanisms underlying intercellular signalling and developing potential therapeutic strategies based on EVs.
Collapse
Affiliation(s)
- Jordan Fyfe
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|