1
|
Downes-Ward B, Behzadfar A, Thawoos S, Suits AG. Product branching in the photodissociation of oxazole detected by broadband rotational spectroscopy. Phys Chem Chem Phys 2024; 26:27439-27446. [PMID: 39445608 DOI: 10.1039/d4cp03276d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The photodissociation of oxazole (c-C3H3NO) following excitation at 193 nm is studied using mm-Wave rotational spectroscopy in a uniform supersonic flow. Molecules entrained in the flow are excited to a ππ* state after which it is believed most relax back to the ground state via ring opening at the O-C[N] bond with subsequent fragmentation. From the line intensities of the probed products, we obtained the branching fractions for seven different products which are the result of five different dissociation pathways. The detected photoproducts and respective branching fractions (%) are the following: HCN (70.4), HCO (22.8), CH2CN (4.2), CH2CO (1.0), CH3CN (1.0), HNC (0.9), HNCO (0.08). We suspect much of the HCO may be formed in conjunction with the isocyanomethyl radical, CH2NC, which we did not probe. We discuss our results in relation to previous work, in particular our own study on the related isomer isoxazole, as well as direct dynamics theoretical simulations from the literature. We also studied the relaxation of a number of vibrationally excited levels of HCN produced at 20 K.
Collapse
Affiliation(s)
- Briony Downes-Ward
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA.
| | - Abbas Behzadfar
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA.
| | - Shameemah Thawoos
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA.
| | - Arthur G Suits
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA.
| |
Collapse
|
2
|
Li S, Liu G, Zhang Z, Chen R, Tian H, Wang H, Chen X. Metal free C-O bond cleavage: a new strategy for the synthesis of substituted oxazoles. RSC Adv 2024; 14:28210-28214. [PMID: 39234524 PMCID: PMC11372780 DOI: 10.1039/d4ra05122j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024] Open
Abstract
A strategy for the efficient metal-free C-O bond cleavage of ester using amines for the synthesis of substituted oxazoles was developed for the first time. The synthesis proceeded smoothly under metal-free conditions, combining C-O bond cleavage as well as C-N and C-O bond formation in one pot to yield desired products in moderate to excellent yields, and accommodated a wide range of functional groups and substrates.
Collapse
Affiliation(s)
- Shengwang Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology Xianning 437100 China (+)86-715-8338007
| | - Guiqin Liu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology Xianning 437100 China (+)86-715-8338007
| | - Zheyan Zhang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology Xianning 437100 China (+)86-715-8338007
| | - Ruiling Chen
- School of Pharmacy, Changzhi Medical College Changzhi 046000 China
| | - Haiying Tian
- School of Pharmacy, Changzhi Medical College Changzhi 046000 China
| | - Huifeng Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology Xianning 437100 China (+)86-715-8338007
| | - Xiuling Chen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology Xianning 437100 China (+)86-715-8338007
| |
Collapse
|
3
|
Liu JR, Jiang EY, Sukhbaatar O, Zhang WH, Zhang MZ, Yang GF, Gu YC. Natural and synthetic 5-(3'-indolyl)oxazoles: Biological activity, chemical synthesis and advanced molecules. Med Res Rev 2024. [PMID: 39152525 DOI: 10.1002/med.22078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
5-(3'-Indolyl)oxazole moiety is a privileged heterocyclic scaffold, embedded in many biologically interesting natural products and potential therapeutic agents. Compounds containing this scaffold, whether from natural sources or synthesized, have demonstrated a wide array of biological activities. This has piqued the interest of synthetic chemists, leading to a large number of reported synthetic approaches to 5-(3'-indolyl)oxazole scaffold in recent years. In this review, we comprehensively overviewed the different biological activities and chemical synthetic methods for the 5-(3'-indolyl)oxazole scaffold reported in the literatures from 1963 to 2024. The focus of this study is to highlight the significance of 5-(3'-indolyl)oxazole derivatives as the lead compounds for the lead discovery of anticancer, pesticidal, antimicrobial, antiviral, antioxidant and anti-inflammatory agents, to summarize the synthetic methods for the 5-(3'-indolyl)oxazole scaffold. In addition, the reported mechanism of action of 5-(3'-indolyl)oxazoles and advanced molecules studied in animal models are also reviewed. Furthermore, this review offers perspectives on how 5-(3'-indolyl)oxazole scaffold as a privileged structure might be exploited in the future.
Collapse
Affiliation(s)
- Jing-Rui Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - En-Yu Jiang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Otgonpurev Sukhbaatar
- Department of Chemistry, School of Applied Sciences, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ming-Zhi Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, China
| | - Yu-Cheng Gu
- Jealott's Hill International Research Centre, Syngenta, Bracknell, Berkshire, UK
| |
Collapse
|
4
|
Marshall CM, Federice JG, Bell CN, Cox PB, Njardarson JT. An Update on the Nitrogen Heterocycle Compositions and Properties of U.S. FDA-Approved Pharmaceuticals (2013-2023). J Med Chem 2024; 67:11622-11655. [PMID: 38995264 DOI: 10.1021/acs.jmedchem.4c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
This Perspective is a continuation of our analysis of U.S. FDA-approved small-molecule drugs (1938-2012) containing nitrogen heterocycles. In this study we report drug structure and property analyses of 321 unique new small-molecule drugs approved from January 2013 to December 2023 as well as information about frequency of important heteroatoms such as sulfur and fluorine and key small nitrogen substituents (CN and NO2). The most notable change is an incredible increase in drugs containing at least one nitrogen heterocycle─82%, compared to 59% from preceding decades─as well as a significant increase in the number of nitrogen heterocycles per drug. Pyridine has claimed the #1 high-frequency nitrogen heterocycle occurrence spot from piperidine (#2), with pyrimidine (#5), pyrazole (#6), and morpholine (#9) being the big top 10 climbers. Also notable is high number of fused nitrogen heterocycles, apparently driven largely by newly approved cancer drugs.
Collapse
Affiliation(s)
- Christopher M Marshall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - John G Federice
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Chloe N Bell
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Philip B Cox
- Discovery Research, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Jon T Njardarson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
5
|
Mahaur P, Rajput K, Singh V, Srivastava V, Singh S. Enhancing C-S and C-N bond formation with ultrasound assistance: lipase-catalyzed synthesis of 2,4-disubstituted thiazole derivatives from arylethanones and thioamides. RSC Adv 2024; 14:21213-21218. [PMID: 38974751 PMCID: PMC11224951 DOI: 10.1039/d4ra03290j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024] Open
Abstract
The present study explores an innovative approach for the efficient synthesis of 2,4-disubstituted thiazole derivatives, a class of compounds with diverse biological and pharmaceutical significance. This research presents lipase as a highly effective and environmentally friendly catalyst for thiazole synthesis. Under mild circumstances, the condensation of aryl ethenone, KBrO3, and thioamide is aided by using ultrasonic energy. Moreover, we harness the power of ultrasound irradiation to accelerate the reaction, reducing reaction times and improving product yields. The lipase-catalyzed, ultrasound-assisted synthesis presented in this study represents a greener and more sustainable alternative to traditional synthetic pathways for these important compounds, offering promising potential for applications in medicinal chemistry and drug development. This approach holds the promise of advancing the field of thiazole synthesis, contributing to more sustainable and efficient chemical processes.
Collapse
Affiliation(s)
- Priya Mahaur
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi 221005 U.P. India +91-9453365168 91-9451658650
| | - Khushbu Rajput
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi 221005 U.P. India +91-9453365168 91-9451658650
| | - Vishal Singh
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi 221005 U.P. India +91-9453365168 91-9451658650
| | - Vandana Srivastava
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi 221005 U.P. India +91-9453365168 91-9451658650
| | - Sundaram Singh
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi 221005 U.P. India +91-9453365168 91-9451658650
| |
Collapse
|
6
|
Rangaswamy S, Sreenivasulu R, Babu VR, Syed T, Kapavarapu RK, Jayaprakash HV, Abbaraju VDNK. Design, Synthesis, Anticancer Evaluation, and Molecular Docking Studies of Oxazole-Incorporated Naphthyridine Derivatives. Chem Biodivers 2023; 20:e202300466. [PMID: 37864549 DOI: 10.1002/cbdv.202300466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/23/2023]
Abstract
A novel series of oxazole incorporated naphthyridine (21 a-j) derivatives were designed and, synthesized followed by screening of their anticancer activity profiles against human breast cancer (MCF-7), human lung cancer (A549) and human prostate (PC3 & DU-145) cancer cell lines by employing MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay using etoposide as the positive control. Of these compounds, N-(6-chloro-3-(4-(3,4,5-trimethoxyphenyl)oxazol-2-yl)-1,5-naphthyridin-4-yl)oxazol-2-amine with 3,4,5-trimethoxy substituent on the aryl moiety attached to oxazole ring showed potent anticancer activity against PC3, A549, MCF-7, and DU-145 cell lines with IC50 values of 0.13±0.095 μM; 0.10±0.084 μM; 0.18±0.087 μM and 0.15±0.076 μM respectively. Apart from this, compounds N-(6-chloro-3-(4-(3,5-dimethoxyphenyl)oxazol-2-yl)-1,5-naphthyridin-4-yl)oxazol-2-amine, N-(6-chloro-3-(4-(4-methoxyphenyl)oxazol-2-yl)-1,5-naphthyridin-4-yl)oxazol-2-amine, and N-(6-chloro-3-(4-(3,5-dimethylphenyl)oxazol-2-yl)-1,5-naphthyridin-4-yl)oxazol-2-amine also showed better anticancer activities against four cancer cell lines screened for. These activities were also validated through the molecular docking simulations, which further indicated demonstration of better interaction energy and profile by these compounds.
Collapse
Affiliation(s)
- Singamsetty Rangaswamy
- Department of Chemistry, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Reddymasu Sreenivasulu
- Department of Chemistry, University College of Engineering (Autonomous), Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, 533003, India
| | - Vankayala Ramesh Babu
- Department of Chemistry, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Tasqeeruddin Syed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ravi Kumar Kapavarapu
- Department of Pharmaceutical Chemistry and Phytochemistry, Nirmala College of Pharmacy, Atmakur, Mangalagiri, Andhra Pradesh, 522503, India
| | - Hulikunte Veeranna Jayaprakash
- Department of Chemistry, Sri Siddartha Institute of Technology, Sri Siddartha Academy of Higher Education (Deemed to be University) Tumkur, Karnataka, 572107, India
| | - Venkata Durga Nagendra Kumar Abbaraju
- Department of Chemistry, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| |
Collapse
|
7
|
Das B, Sahoo AK, Banjare SK, Panda SJ, Purohit CS, Doddi A. Dicationic copper(I) complexes bearing ENE (E = S, Se) pincer ligands; catalytic applications in regioselective cyclization of 1,6-diynes. Dalton Trans 2023; 52:16151-16158. [PMID: 37603440 DOI: 10.1039/d3dt01989f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Two novel dicationic binuclear Cu(I) complexes of the type [{(BPPP)E2}Cu]2[BF4]2 (E = S (3a); Se (3b)) bearing (BPPP)E2 (BPPP = bis(diphenylphosphino)pyridine) pincer systems were isolated, and structurally characterized. The solid-state structures of 3a/3b display the presence of intermolecular cuprophilic (Cu⋯Cu) interactions between the two monocationic species, and consist of weak Cu⋯S bonding between the two cations. Besides, complex 3a was introduced as a molecular copper(I) catalyst in cyclization reactions, and new protocols were developed for the synthesis of a series of new oxazole and triazole derivatives bearing alkyne-phenyl propargylic ether substituents. 3a was also found to be active in achieving these two classes of heterocyclic compounds by the mechanical grinding method. One of the key intermediate copper-azide species was detected by the high-resolution mass spectrometry technique, which supports the proposed catalytic pathway. All the reported transformations were accomplished sustainably by employing a well-defined, earth-abundant, and cheap copper(I) catalytic system.
Collapse
Affiliation(s)
- Bhagyashree Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Industrial Training Institute (ITI), Engineering School Road, Ganjam, 760010, Odisha, India.
| | - Amiya Kumar Sahoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Industrial Training Institute (ITI), Engineering School Road, Ganjam, 760010, Odisha, India.
| | - Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India
| | - Subhra Jyoti Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India
| | - Chandra Shekhar Purohit
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India
| | - Adinarayana Doddi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Industrial Training Institute (ITI), Engineering School Road, Ganjam, 760010, Odisha, India.
| |
Collapse
|
8
|
Zhuang JQ, Guo YQ, Deng CL, Zhang XG, Tu HY. TBAI-Mediated Cyclization and Methylsulfonylation of Propargylic Amides with Dimethyl Sulfite. J Org Chem 2023. [PMID: 37467194 DOI: 10.1021/acs.joc.3c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
A tetramethylammonium iodide (TBAI)-mediated cyclization and methylsulfonylation of propargylic amides enabled by dimethyl sulfite as a SO2 surrogate and methyl source have been developed. The transition metal-free and oxidant-free reaction provides a practical and efficient approach for the selective synthesis of methylsulfonyl oxazoles in moderate to excellent yields with good functional group compatibility.
Collapse
Affiliation(s)
- Jia-Qing Zhuang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Ying-Qiong Guo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Chen-Liang Deng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xing-Guo Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Hai-Yong Tu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
9
|
Wang CY, Tian R, Li JX, Zhu YM. Nickel/Copper Cooperative Catalysis Decarbonylative Heteroarylation of Aryl Anhydrides with Benzoxazoles via C-O/C-H Coupling. J Org Chem 2023; 88:3378-3385. [PMID: 36579720 DOI: 10.1021/acs.joc.2c01449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A new strategy for the synthesis of 2-arylbenzoxazole derivatives via nickel-/copper-catalyzed decarbonylative heteroarylation of aryl anhydrides via C-O/C-H coupling has been developed. The reaction is promoted by a user-friendly, inexpensive, and air- and moisture-stable Ni precatalyst. A variety of 2-arylbenzoxazole derivatives have been successfully synthesized and have good functional group tolerance in this process, which afforded products in moderate-to-excellent yields.
Collapse
Affiliation(s)
- Cheng-Yi Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou215123, China
| | - Rui Tian
- College of Pharmaceutical Sciences, Soochow University, Suzhou215123, China
| | - Jia-Xin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou215123, China
| | - Yong-Ming Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou215123, China
| |
Collapse
|
10
|
(Z)-5-Benzylidene-4-phenyl-2-(p-tolyl)-4,5-dihydrooxazole. MOLBANK 2023. [DOI: 10.3390/m1600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
By strategic use of the valence difference between hard gold(III) and soft gold(I) catalysts, one-pot synthesis of (Z)-5-benzylidene-4-phenyl-2-(p-tolyl)-4,5-dihydrooxazole (15) from propargylic alcohol (9) and p-toluamide (13) was achieved via gold(III)-catalyzed propargylic substitution followed by gold(I)-catalyzed cyclization. The structure of 15 was confirmed by X-ray crystallographic analysis.
Collapse
|
11
|
Li A, Zhao J, Zhang C, Jiang Q, Zhu B, Cao H. Lewis Acid-Promoted Three-Component Cyclization for the Construction of Functionalized Oxazoles. J Org Chem 2023; 88:27-38. [PMID: 36563287 DOI: 10.1021/acs.joc.2c01432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A simple and efficient synthetic strategy from amides, ynals, and sodium sulfinates via a Lewis acid-promoted three-component reaction has been reported. Thus, a broad range of various aryl (not alkyl)-substituted oxazoles could be synthesized via the formation of C-N, C-O, and C-S bonds in a one-pot process. In addition, this reaction possesses other unique advantages, such as transition metal-free catalysis, high step economy, good functional group tolerance, and good regioselectivity.
Collapse
Affiliation(s)
- Anquan Li
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Chen Zhang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Qiuxia Jiang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Baofu Zhu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| |
Collapse
|
12
|
Prashanth S, Adarsh D, Bantu R, Sridhar B, Subba Reddy B. Cu(II)-catalyzed synthesis of 2,4,5-trisubstituted oxazoles. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Li Z, Zhao L, Zhang Y, Yan H, Huang X, Shen G. Cascade Nucleophilic Attack/Addition Cyclization Reactions to Synthesize Oxazolidin-2-imines via ( Z)-2-Bromo-3-phenylprop-2-en-1-ols/3-phenylprop-2-yn-1-ols and Diphenyl Carbodiimides. J Org Chem 2022; 87:12721-12732. [PMID: 36099272 DOI: 10.1021/acs.joc.2c01268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two concise strategies to synthesize oxazolidin-2-imines by cascade nucleophilic attack/addition cyclization reactions of (Z)-2-bromo-3-phenylprop-2-en-1-ols/3-phenylprop-2-yn-1-ols and diphenyl carbodiimides without a transition-metal catalyst have been developed. The reactions exhibited good substrate applicability tolerance, and a variety of substituted (Z)-4-((Z)-benzylidene)-N,3-diphenyloxazolidin-2-imines were synthesized in moderate to excellent yields with good stereoselectivity. The reports also provided a convenient strategy to synthesize 3-phenylprop-2-yn-1-ols by (Z)-2-bromo-3-phenylprop-2-en-1-ols. The economic and practical methods provide a great advantage for potential industrial synthesis of oxazolidin-2-imines.
Collapse
Affiliation(s)
- Zhanjun Li
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Avenue, Liaocheng, Shandong 252000, P. R. China
| | - Lingyu Zhao
- Chemistry and Chemical Engineering, Jinan University, 106 Jiwei Road, Jinan, Shandong 250022, P. R. China
| | - Yalin Zhang
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Avenue, Liaocheng, Shandong 252000, P. R. China
| | - Hui Yan
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Avenue, Liaocheng, Shandong 252000, P. R. China
| | - Xianqiang Huang
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Avenue, Liaocheng, Shandong 252000, P. R. China
| | - Guodong Shen
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Avenue, Liaocheng, Shandong 252000, P. R. China.,Chemistry and Chemical Engineering, Jinan University, 106 Jiwei Road, Jinan, Shandong 250022, P. R. China
| |
Collapse
|
14
|
Teng Y, Fang T, Lin Z, Qin L, Jiang M, Wu W, You Y, Weng Z. Ring-expansion reaction for the synthesis of 2-(trifluoromethyl)oxazoles and 3-(trifluoromethyl)-1,2,4-triazines. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
15
|
Wang Y, Zhao X, Wu X, Zhang L, Li G, He Y. Electrochemical Synthesis of Trisubstituted Oxazoles and Imines from β‐Diketones and Amines. ChemElectroChem 2022. [DOI: 10.1002/celc.202200378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yangli Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources State Ethnic Affairs Commission & Ministry of Education Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes State Ethnic Affairs Commission School of Ethnic Medicine Yunnan Minzu University Kunming 650500 China
| | - Xiao‐Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources State Ethnic Affairs Commission & Ministry of Education Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes State Ethnic Affairs Commission School of Ethnic Medicine Yunnan Minzu University Kunming 650500 China
| | - Xi Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources State Ethnic Affairs Commission & Ministry of Education Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes State Ethnic Affairs Commission School of Ethnic Medicine Yunnan Minzu University Kunming 650500 China
| | - Lizhu Zhang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources State Ethnic Affairs Commission & Ministry of Education Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes State Ethnic Affairs Commission School of Ethnic Medicine Yunnan Minzu University Kunming 650500 China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources State Ethnic Affairs Commission & Ministry of Education Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes State Ethnic Affairs Commission School of Ethnic Medicine Yunnan Minzu University Kunming 650500 China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources State Ethnic Affairs Commission & Ministry of Education Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes State Ethnic Affairs Commission School of Ethnic Medicine Yunnan Minzu University Kunming 650500 China
| |
Collapse
|
16
|
KI-TBHP mediated cascade oxidative annulations of enaminones: A facile approach towards 2, 4, 5-Trisubstituted oxazoles. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Bhogireddy DN, Surapureddi SR, Syed T, Prashanth T, Tadiboina BR. Synthesis and biological evaluation of aryl derivatives of isoxazole pyrazolo[1,5-a] pyrimidines as anticancer agents. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2056846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Danayya Nayudu Bhogireddy
- Department of Chemistry, KoneruLakshmaiah Education Foundation, Vaddeswaram, Guntur, India
- Laurus Labs Limited, IKP Knowledge Park, Genome Valley, Hyderabad, Telangana, India
| | | | - Tasqeeruddin Syed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Thodupunuri Prashanth
- Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Bhaskara Rao Tadiboina
- Department of Chemistry, KoneruLakshmaiah Education Foundation, Vaddeswaram, Guntur, India
| |
Collapse
|
18
|
Ishida H, Homma S, Kasuga R, Yamamoto K, Itoh T. Synthesis of Tetrahydrofuro[2,3-d]oxazoles and Oxazoles by Hypervalent Iodine (III)-Promoted [2 + 2 + 1] Annulation. Chem Pharm Bull (Tokyo) 2022; 70:192-194. [PMID: 35228383 DOI: 10.1248/cpb.c21-01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reaction of a hypervalent iodine reagent with bistriflimide efficiently promotes three-component regioselective cyclization of tetrahydrofuro[2,3-d]oxazoles and oxazoles from homopropargyl alcohols bearing a phenyl group, with different substituents on the aryl alkyne compounds affecting the selectivity of the resulting product. Utilizing the hydroxyethyl oxazole derivatives obtained in this research could aid in the development of various peroxisome proliferator-activated receptor agonist derivatives.
Collapse
Affiliation(s)
- Hiroaki Ishida
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University
| | - Shoya Homma
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University
| | - Ryota Kasuga
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University
| | - Keiko Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University
| | - Toshimasa Itoh
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University
| |
Collapse
|
19
|
Syed T, Asiri YI, Shaheen S. Synthesis and Anticancer Assessment of Various Amide Derivatives of Imidazo[2,1-b]Oxazoles as Anticancer Agents. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2030766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tasqeeruddin Syed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Yahya I. Asiri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - S. Shaheen
- Anwarul Uloom College of Pharmacy, Hyderabad, India
| |
Collapse
|
20
|
Rossi R, Ciofalo M. Palladium-Catalysed Intermolecular Direct C–H Bond Arylation of Heteroarenes with Reagents Alternative to Aryl Halides: Current State of the Art. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220201124008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Abstract: This unprecedented review with 322 references provides a critical up-to-date picture of the Pd-catalysed intermolecular direct C–H bond arylation of heteroarenes with arylating reagents alternative to aryl halides that include aryl sulfonates (aryl triflates, tosylates, mesylates, and imidazole-1-sulfonates), diaryliodonium salts, [(diacetoxy)iodo]arenes, arenediazonium salts, 1-aryltriazenes, arylhydrazines and N’-arylhydrazides, arenesulfonyl chlorides, sodium arenesulfinates, arenesulfinic acids, and arenesulfonohydrazides. Particular attention has been paid to summarise the preparation of the various arylating reagents and to highlight the practicality, versatility, and limitations of the various developed arylation protocols, also comparing their results with those achieved in analogous Pd-catalysed arylation reactions involving the use of aryl halides as electrophiles. Mechanistic proposals have also been briefly summarised and discussed. However, data concerning Pd-catalysed direct C–H bond arylations involving the C–H bonds of aryl substituents of the examined heteroarene derivatives have not been taken into account.
Collapse
Affiliation(s)
- Renzo Rossi
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 3, I-56124 Pisa, Italy
| | - Maurizio Ciofalo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Viale delle Scienze, Edificio 4, I-90128, Palermo, Italy
| |
Collapse
|
21
|
Basavaiah D, Golime G, Banoth S, Todeti S. An umpolung strategy for intermolecular [2 + 2 + 1] cycloaddition of aryl aldehydes and nitriles: a facile access to 2,4,5-trisubstituted oxazoles. Chem Sci 2022; 13:8080-8087. [PMID: 35919435 PMCID: PMC9278343 DOI: 10.1039/d2sc00046f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/10/2022] [Indexed: 11/21/2022] Open
Abstract
We have described the first example of an umpolung strategy for intermolecular [2 + 2 + 1] cycloaddition between two aryl aldehydes and a nitrile under the influence of TMSOTf that proceeds through the formation of N–C, O–C and C–C bonds providing a simple synthetic protocol for obtaining 2,4,5-trisubstituted oxazoles. An unprecedented intermolecular [2 + 2 + 1] cycloaddition strategy between two aryl aldehydes and a nitrile, wherein one of the aryl aldehydes serves as a carbanion (or equivalent) in the presence of TMSOTf for obtaining oxazole framework is presented.![]()
Collapse
Affiliation(s)
- Deevi Basavaiah
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India
| | | | - Shivalal Banoth
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India
| | - Saidulu Todeti
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India
| |
Collapse
|
22
|
Mao Z, Zeng H. Gold-catalyzed synthesis of oxazoles from alkynyl triazenes and dioxazoles. RSC Adv 2022; 12:24857-24860. [PMID: 36128381 PMCID: PMC9428897 DOI: 10.1039/d2ra04559a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
A gold-catalyzed regioselective [3 + 2] cycloaddition of alkynyl triazenes with 1,2,4-dioxazoles was developed.
Collapse
Affiliation(s)
- Zhenjun Mao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hao Zeng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
23
|
Yang X, Guo X, Yuan X, Chen B. K 2S 2O 8-promoted rearrangement of nitrones for the synthesis of benzo[ d]oxazoles. Org Chem Front 2022. [DOI: 10.1039/d2qo00680d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An efficient route for the synthesis of valuable benzoxazoles has been developed through self-oxidative cyclization with N–O bond cleavage.
Collapse
Affiliation(s)
- Xueying Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu, China
| | - Xin Guo
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, China
| | - Xinglong Yuan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu, China
| | - Baohua Chen
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
24
|
Xie H, Hu QQ, Qin XT, Liang JM, Li L, Zhang YL, Lu Z. One-Pot Synthesis of Fully Substituted Oxazol-2-amines via Staudinger/Aza-Wittig/Isomerization Reaction. HETEROCYCLES 2022. [DOI: 10.3987/com-21-14600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Buil M, Esteruelas MA, Oñate E, Picazo NR. Dissimilarity in the Chemical Behavior of Osmaoxazolium Salts and Osmaoxazoles: Two Different Aromatic Metalladiheterocycles. Organometallics 2021; 40:4150-4162. [PMID: 35264819 PMCID: PMC8895684 DOI: 10.1021/acs.organomet.1c00621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 12/15/2022]
Abstract
The preparation of aromatic hydride-osmaoxazolium and hydride-oxazole compounds is reported and their reactivity toward phenylacetylene investigated. Complex [OsH(OH)(≡CPh)(IPr)(PiPr3)]OTf (1; IPr = 1,3-bis(2,6-diisopropylphenyl)imidazolylidene, OTf = CF3SO3) reacts with acetonitrile and benzonitrile to give [OsH{κ2-C,O-[C(Ph)NHC(R)O]}(NCR)(IPr)(PiPr3)]OTf (R = Me (2), Ph (3)) via amidate intermediates, which are generated by addition of the hydroxide ligand to the nitrile. In agreement with this, the addition of 2-phenylacetamide to acetonitrile solutions of 1 gives [OsH{κ2-C,O-[C(Ph)NHC(CH2Ph)O]}(NCCH3)(IPr)(PiPr3)]OTf (4). The deprotonation of the osmaoxazolium ring of 2 and 4 leads to the oxazole derivatives OsH{κ2-C,O-[C(Ph)NC(R)O]}(IPr)(PiPr3) (R = Me (5), CH2Ph (6)). Complexes 2 and 4 add their Os-H and Os-C bonds to the C-C triple bond of phenylacetylene to afford [Os{η3-C 3 ,κ1-O-[CH2C(Ph)C(Ph)NHC(R)O]}(NCCH3)2(IPr)]OTf (R = Me (7), CH2Ph (8)), bearing a tridentate amide-N-functionalized allyl ligand, while complexes 5 and 6 undergo a vicarious nucleophilic substitution of the hydride at the metal center with the alkyne, via the compressed dihydride adduct intermediates OsH2(C≡CPh){κ2-C,O-[C(Ph)NC(R)O]}(IPr)(PiPr3) (R = Me (9), CH2Ph (10)), which reductively eliminate H2 to yield the acetylide-osmaoxazoles Os(C≡CPh){κ2-C,O-[C(Ph)NC(R)O]}(IPr)(PiPr3) (R = Me (11), CH2Ph (12)).
Collapse
Affiliation(s)
- María
L. Buil
- Departamento de Química Inorgánica,
Instituto de Síntesis Química y Catálisis Homogénea
(ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Miguel A. Esteruelas
- Departamento de Química Inorgánica,
Instituto de Síntesis Química y Catálisis Homogénea
(ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica,
Instituto de Síntesis Química y Catálisis Homogénea
(ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Nieves R. Picazo
- Departamento de Química Inorgánica,
Instituto de Síntesis Química y Catálisis Homogénea
(ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
26
|
Xie W, Sun S, Xu J. Experimental evidence on the formation of highly strained 6,7‐dihydroazeto[2,1‐b]oxazol‐3‐iums as reactive intermediates. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wenlai Xie
- Beijing University of Chemical Technology College of Chemistry 15 Northern 3rd Ring Road EastChaoyang District 100029 Beijing CHINA
| | - Simin Sun
- Beijing University of Chemical Technology College of Chemistry 15 Northern 3rd Ring Road EastChaoyang District 100029 Beijing CHINA
| | - Jiaxi Xu
- Beijing University of Chemical Technology College of Chemistry 15 Northern 3rd Ring Road East 100029 Beijing CHINA
| |
Collapse
|
27
|
Hoseinpour M, Mohebat R, Nateghi MR, Kalantari Fotooh F. H 3PW 12O 40 catalyzed new and multicomponent one-pot synthesis of 6-benzo[ a]phenazin-5-ol derivatives of highly functionalized oxazoles via Robinson-Gabriel-type reaction. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1974476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Razieh Mohebat
- Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran
| | | | | |
Collapse
|
28
|
Horký F, Císařová I, Štěpnička P. Stable Pd(0) Complexes with Ferrocene Bisphosphanes Bearing Phosphatrioxaadamantyl Substituents Efficiently Catalyze Selective C‐H Arylation of Benzoxazoles by Aryl Chlorides. ChemCatChem 2021. [DOI: 10.1002/cctc.202101013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Filip Horký
- Department of Inorganic Chemistry Faculty of Science Charles University Hlavova 2030 128 40 Prague Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry Faculty of Science Charles University Hlavova 2030 128 40 Prague Czech Republic
| | - Petr Štěpnička
- Department of Inorganic Chemistry Faculty of Science Charles University Hlavova 2030 128 40 Prague Czech Republic
| |
Collapse
|
29
|
Qiao X, Zhao YD, Rao M, Bu ZW, Zhang G, Xiong HY. Delivering 2-Aryl Benzoxazoles through Metal-Free and Redox-Neutral De-CF 3 Process. J Org Chem 2021; 86:13548-13558. [PMID: 34529441 DOI: 10.1021/acs.joc.1c01619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An unexpected cleavage of the Csp3-CF3 bond of CF3-hydrobenzoxazoles has been disclosed, affording a range of 2-aryl benzoxazoles under metal-free and redox-neutral conditions. This transformation has demonstrated broad substrate scope and good compatibility of functional groups. 2-Aryl benzothiazole and 2-aryl benzoimidazole could be smoothly assembled in the same manner. On the basis of preliminary mechanistic studies, base initiated and aromatization driven β-carbon elimination was considered to be the key step for the formation of 2. This reaction offers an alternative, facile, and sustainable route to access important 2-aryl benzoxazole motifs.
Collapse
Affiliation(s)
- Xinxin Qiao
- Institute of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China
| | - Yong-De Zhao
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, PR China
| | - Mingru Rao
- Institute of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China
| | - Zhan-Wei Bu
- Institute of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China
| | - Guangwu Zhang
- Institute of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China
| | - Heng-Ying Xiong
- Institute of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China
| |
Collapse
|
30
|
Minh Le T, Szakonyi Z. Enantiomeric Isopulegol as the Chiral Pool in the Total Synthesis of Bioactive Agents. CHEM REC 2021; 22:e202100194. [PMID: 34553822 DOI: 10.1002/tcr.202100194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/05/2021] [Indexed: 11/12/2022]
Abstract
Isopulegol, a pool of abundant chiral terpene, has long served as the starting material for the total synthesis of isopulegol-based drugs. As an inexpensive and versatile starting material, this compound continues to serve modern synthetic chemistry. This review highlights the total syntheses of terpenoids in the period from 1980 to 2020 in which with isopulegol applied as a building block.
Collapse
Affiliation(s)
- Tam Minh Le
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellent Center, Eötvös utca 6, H-6720, Szeged, Hungary.,Stereochemistry Research Group of the Hungarian Academy Science, Eötvös utca 6, H-6720, Szeged, Hungary
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellent Center, Eötvös utca 6, H-6720, Szeged, Hungary.,Interdisciplinary Centre of Natural Products, University of Szeged, Eötvös utca 6, H-6720, Szeged, Hungary
| |
Collapse
|
31
|
Liu B, Xu X, Tong H, Zhu Z, Tang W, Zhang Y, Tang C. Synthesis and Antiproliferative Evaluation of Novel 5-Aryl Substituted Oxazolo[4,5-b]pyridin-2-amine Derivatives. ORG PREP PROCED INT 2021. [DOI: 10.1080/00304948.2021.1968756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Bin Liu
- Collaborative Innovation Center of Green Manufacturing Technology for Traditional Chinese Medicine in Shaanxi Province, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang, Shaanxi 712046, P. R. China
| | - Xiaona Xu
- School of Pharmaceutical & Chemical Engineering, Xianyang Vocational Technical College, Xianyang, Shaanxi 712000, P. R. China
| | - Hongjuan Tong
- Collaborative Innovation Center of Green Manufacturing Technology for Traditional Chinese Medicine in Shaanxi Province, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang, Shaanxi 712046, P. R. China
| | - Zhoujing Zhu
- Collaborative Innovation Center of Green Manufacturing Technology for Traditional Chinese Medicine in Shaanxi Province, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang, Shaanxi 712046, P. R. China
| | - Wenqiang Tang
- Collaborative Innovation Center of Green Manufacturing Technology for Traditional Chinese Medicine in Shaanxi Province, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang, Shaanxi 712046, P. R. China
| | - Yanmin Zhang
- Collaborative Innovation Center of Green Manufacturing Technology for Traditional Chinese Medicine in Shaanxi Province, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang, Shaanxi 712046, P. R. China
| | - Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, P. R. China
| |
Collapse
|
32
|
Morita N, Tamura O. Strategic Use of Difference of Valence of Gold Catalysts: Development of Cyclization Reactions Oriented toward Synthetic Diversity Using Propargylic Alcohols. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Tashiro H, Terada M, Nakamura I. Consecutive O-S/N-S Bond Cleavage in Gold-Catalyzed Rearrangement Reactions of Alkynyl N-Sulfinylimines. Angew Chem Int Ed Engl 2021; 60:12248-12252. [PMID: 33590966 DOI: 10.1002/anie.202100207] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 12/16/2022]
Abstract
Gold-catalyzed reactions of alkynyl N-sulfinylimines were used to produce the corresponding 2H-azirines possessing sulfenyl and acyl groups at the 3-position of the azirine ring in good to excellent yields. These reactions involved internal transfer of the sulfinyl oxygen atom to form a thiooxime intermediate tethered to an α-oxo gold carbene moiety. Subsequent insertion of the carbene into the N-S bond resulted in ring construction.
Collapse
Affiliation(s)
- Hiroki Tashiro
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Itaru Nakamura
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
34
|
Tashiro H, Terada M, Nakamura I. Consecutive O−S/N−S Bond Cleavage in Gold‐Catalyzed Rearrangement Reactions of Alkynyl
N
‐Sulfinylimines. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hiroki Tashiro
- Department of Chemistry Graduate School of Science Tohoku University 6-3 Aramaki Aza Aoba, Aoba-ku Sendai 980-8578 Japan
| | - Masahiro Terada
- Department of Chemistry Graduate School of Science Tohoku University 6-3 Aramaki Aza Aoba, Aoba-ku Sendai 980-8578 Japan
| | - Itaru Nakamura
- Research and Analytical Center for Giant Molecules Graduate School of Science Tohoku University 6-3 Aramaki Aza Aoba, Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
35
|
Piou T, Slutskyy Y, Kevin NJ, Sun Z, Xiao D, Kong J. Direct Arylation of Azoles Enabled by Pd/Cu Dual Catalysis. Org Lett 2021; 23:1996-2001. [PMID: 33667104 DOI: 10.1021/acs.orglett.1c00100] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A practical approach toward the synthesis of 2-arylazoles via direct arylation is described. The transformation relies on a Pd/Cu cocatalyst system that operates with low catalyst loadings. The reaction conditions were found to be tolerant of a wide range of functional groups and nitrogen-containing heterocycles commonly employed in a drug discovery setting.
Collapse
Affiliation(s)
- Tiffany Piou
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yuriy Slutskyy
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Nancy J Kevin
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Zhongxiang Sun
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Dong Xiao
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Jongrock Kong
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
36
|
Kajol K, Ramesh C. Sequential One‐pot Method for the Synthesis of 4‐(Hydroxymethyl)oxazoles and their Application in Phosphonates Synthesis. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Km Kajol
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension Sitapur Road, P.O. Box 173 Lucknow 226031 India
| | - Chintakunta Ramesh
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension Sitapur Road, P.O. Box 173 Lucknow 226031 India
- Academy of Scientific and Innovative Research New Delhi 110001 India
| |
Collapse
|
37
|
Wu D, Lu Y, Hao W, Tu S, Jiang B. Synthesis of Fully Substituted Oxazoles via an NFSI/KF‐Mediated Double Bond Cleavage‐Rearrangement Cascade. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dan Wu
- School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Yi Lu
- School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Wen‐Juan Hao
- School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Shu‐Jiang Tu
- School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Bo Jiang
- School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 P. R. China
| |
Collapse
|
38
|
Shiroudi A, Abdel-Rahman MA, El-Nahas AM, Altarawneh M. Atmospheric chemistry of oxazole: the mechanism and kinetic studies of the oxidation reaction initiated by OH radicals. NEW J CHEM 2021. [DOI: 10.1039/d0nj05797e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidation of oxazole by OH˙ radicals studied by DFT methods coupled with reaction kinetics calculations using TST and RRKM theories.
Collapse
Affiliation(s)
- Abolfazl Shiroudi
- Young Researchers and Elite Club
- East Tehran Branch
- Islamic Azad University
- Tehran
- Iran
| | | | - Ahmed M. El-Nahas
- Chemistry Department
- Faculty of Science
- Menoufia University
- Shebin El-Kom 32512
- Egypt
| | - Mohammednoor Altarawneh
- Chemical and Petroleum Engineering Department
- United Arab Emirates University (UAEU)
- Al-Ain 15551
- United Arab Emirates
| |
Collapse
|
39
|
Wang XY, Zhang QB, Jin XL, Wu LZ, Liu Q. Preparation of Oxazole Acetals from
N
‐Propargylamides Enabled by Visible‐Light‐Promoted Selenium‐π‐Acid Catalysis. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Xue Yang Wang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 P. R. China
| | - Qing Bao Zhang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 P. R. China
| | - Xiao Ling Jin
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 P. R. China
| | - Li Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
40
|
Keivanloo A, Abbaspour S, Sepehri S, Bakherad M. Synthesis, Antibacterial Activity and Molecular Docking Study of a Series of 1,3-Oxazole-Quinoxaline Amine Hybrids. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1833052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ali Keivanloo
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| | - Sima Abbaspour
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| | - Saghi Sepehri
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Bakherad
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
41
|
Efimov IV, Kulikova LN, Zhilyaev DI, Voskressensky LG. Recent Advances in the Chemistry of Isocyanides with Activated Methylene Group. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000890] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ilya V. Efimov
- Research Center: Molecular Design and Synthesis of Innovative Compounds for Medicine Peoples' Friendship University of Russia (RUDN University) Miklukho‐Maklaya st, 6 117198 Moscow Russia
| | - Larisa N. Kulikova
- Research Center: Molecular Design and Synthesis of Innovative Compounds for Medicine Peoples' Friendship University of Russia (RUDN University) Miklukho‐Maklaya st, 6 117198 Moscow Russia
| | - Dmitry I. Zhilyaev
- Research Center: Molecular Design and Synthesis of Innovative Compounds for Medicine Peoples' Friendship University of Russia (RUDN University) Miklukho‐Maklaya st, 6 117198 Moscow Russia
| | - Leonid G. Voskressensky
- Research Center: Molecular Design and Synthesis of Innovative Compounds for Medicine Peoples' Friendship University of Russia (RUDN University) Miklukho‐Maklaya st, 6 117198 Moscow Russia
| |
Collapse
|
42
|
Wollnitzke P, Essig S, Gölz JP, von Schwarzenberg K, Menche D. Total Synthesis of Ajudazol A by a Modular Oxazole Diversification Strategy. Org Lett 2020; 22:6344-6348. [DOI: 10.1021/acs.orglett.0c02188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Philipp Wollnitzke
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
| | - Sebastian Essig
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
| | - Jan Philipp Gölz
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
| | - Karin von Schwarzenberg
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-University of Munich, Butenandtstrasse 5-13, D-83177 Munich, Germany
| | - Dirk Menche
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
| |
Collapse
|
43
|
Azzali E, Girardini M, Annunziato G, Pavone M, Vacondio F, Mori G, Pasca MR, Costantino G, Pieroni M. 2-Aminooxazole as a Novel Privileged Scaffold in Antitubercular Medicinal Chemistry. ACS Med Chem Lett 2020; 11:1435-1441. [PMID: 32676151 DOI: 10.1021/acsmedchemlett.0c00173] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
To obtain effective eradication of numerous infectious diseases such as tuberculosis, it is important to supply the medicinal chemistry arsenal with novel chemical agents. Isosterism and bioisosterism are widely known concepts in the field of early drug discovery, and in several cases, rational isosteric replacements have contributed to improved efficacy and physicochemical characteristics throughout the hit-to-lead optimization process. However, sometimes the synthesis of isosteres might not be as straightforward as that of the parent compounds, and therefore, novel synthetic strategies must be elaborated. In this regard, we herein report the evaluation of a series of N-substituted 4-phenyl-2-aminooxazoles that, despite being isosteres of a widely used nucleus such as the 2-aminothiazole, have been only seldom explored. After elaboration of a convenient synthetic strategy, a small set of 2-aminothiazoles and their 2-aminooxazole counterparts were compared with regard to antitubercular activity and physicochemical characteristics.
Collapse
Affiliation(s)
| | | | | | | | - Federica Vacondio
- Centro Interdipartimentale “Biopharmanet-tec”, University of Parma, 43124 Parma, Italy
| | - Giorgia Mori
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Maria Rosalia Pasca
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Gabriele Costantino
- Centro Interdipartimentale “Biopharmanet-tec”, University of Parma, 43124 Parma, Italy
- Centro Interdipartimentale Misure (CIM) “G. Casnati”, University of Parma, 43124 Parma, Italy
| | - Marco Pieroni
- Centro Interdipartimentale “Biopharmanet-tec”, University of Parma, 43124 Parma, Italy
| |
Collapse
|
44
|
Krishna R, Sridhar G, Jayaprakash HV. Synthesis and Anticancer Activity of Novel 1,2,3-Triazole Ring
Incorporated 1,2,4-Oxadiazole-1,3-Oxazole Derivatives. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220050242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
45
|
Song GT, Qu CH, Chen JH, Xu ZG, Zhou CH, Chen ZZ. Synthesis of monofluorooxazoles with quaternary C-F centers through photoredox-catalyzed radical addition of methylene-2-oxazolines. Org Biomol Chem 2020; 18:2223-2226. [PMID: 32162639 DOI: 10.1039/d0ob00267d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel photoredox-catalyzed radical addition of methylene-2-oxazolines has been developed under visible light irradiation to synthesize monofluorooxazoles with a quaternary carbon center using 2-bromo-2-fluoro-3-oxo-3-phenylpropionates as radical source. This method with a simple protocol, scalability and high yield offers a facile path to get diverse monofluorinated oxazoles with quaternary C-F centers, which are a class of highly valuable motifs and synthons.
Collapse
Affiliation(s)
- Gui-Ting Song
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China. and Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chuan-Hua Qu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Jin-Hong Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhong-Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| |
Collapse
|
46
|
Aguirre-Rentería SA, Carrizales-Castillo JJJ, Del Rayo Camacho Corona M, Hernández-Fernández E, Garza-González E, Rivas-Galindo VM, Arredondo-Espinoza E, Avalos-Alanís FG. Synthesis and in vitro evaluation of antimycobacterial and cytotoxic activity of new α,β-unsaturated amide, oxazoline and oxazole derivatives from l-serine. Bioorg Med Chem Lett 2020; 30:127074. [PMID: 32151467 DOI: 10.1016/j.bmcl.2020.127074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/22/2020] [Accepted: 02/29/2020] [Indexed: 01/03/2023]
Abstract
The synthesis of 19 compounds derived from l-serine and analogs of p-substituted cinnamic acid is reported. Oxazolines 9 and oxazoles 10 have high antitubercular activity with Minimum Inhibitory Concentration (MIC) of 0.7812-25.0 µg/mL (3.21-100.3 µM), against two strains of Mycobacterium tuberculosis sensitive to first-line drugs Isoniazid (INH), Rifampicin (RIF), Ethambutol (EMB), Pyrazinamide (PZE) (H37Rv) and a clinical isolate resistant to INH, RIF and EMB (G122). The cytotoxic evaluation shows that oxazoles have low activity, finding viability>96% against the VERO cell line. The results show these compounds could be considered as future alternatives for antitubercular treatment.
Collapse
Affiliation(s)
- Saúl A Aguirre-Rentería
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba s/n, Ciudad Universitaria, 66455 San Nicolás de los Garza, Nuevo León, Mexico
| | - Juan J J Carrizales-Castillo
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba s/n, Ciudad Universitaria, 66455 San Nicolás de los Garza, Nuevo León, Mexico
| | - María Del Rayo Camacho Corona
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba s/n, Ciudad Universitaria, 66455 San Nicolás de los Garza, Nuevo León, Mexico
| | - Eugenio Hernández-Fernández
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba s/n, Ciudad Universitaria, 66455 San Nicolás de los Garza, Nuevo León, Mexico
| | - Elvira Garza-González
- Universidad Autónoma de Nuevo León, Servicio de Gastroenterología Hospital Universitario Dr. José Eleuterio González, Av. Gonzalitos y Madero S/N, Col. Mitras Centro, CP 64460 Monterrey, Nuevo León, Mexico
| | - Verónica M Rivas-Galindo
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Av. Madero S/N, Col. Mitras Centro, CP 64460 Monterrey, Nuevo León, Mexico
| | - Eder Arredondo-Espinoza
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba s/n, Ciudad Universitaria, 66455 San Nicolás de los Garza, Nuevo León, Mexico.
| | - Francisco G Avalos-Alanís
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba s/n, Ciudad Universitaria, 66455 San Nicolás de los Garza, Nuevo León, Mexico.
| |
Collapse
|
47
|
Kotha S, Rao Cheekatla S. Design and Synthesis of Pentacycloundecane Cage Compound Containing Oxazole Moiety. HETEROCYCLES 2020. [DOI: 10.3987/com-20-14288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
48
|
Debnath S, Das T, Gayen S, Ghosh T, Maiti DK. Iodine-Catalyzed Functionalization of Primary Aliphatic Amines to Oxazoles, 1,4-Oxazines, and Oxazinones. ACS OMEGA 2019; 4:20410-20422. [PMID: 31815245 PMCID: PMC6894181 DOI: 10.1021/acsomega.9b03501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 05/10/2023]
Abstract
Unprecedented I2-catalyzed α,α-C(sp3)-H, decarboxylative α-C(sp3)-H, lactonized α-C(sp3)-H, and α,β-C(sp3)-H functionalized 5- and 6-annulation as well as α-C(sp3)-H activated 6-lactonization of primary aliphatic amines are devised under aerobic conditions. The metal-free sustainable strategy was employed for the diverse construction of valuable five-and six-membered polycyclic N,O-heteroaromatics such as oxazoles, 1,4-oxazines, and oxazin-2-one with a rapid reaction rate and high yield. The viability of this mild nonmetallic catalysis is successfully verified through syntheses of labile chiral heterocyclic analogues. In contrast to the common practice, this method is not limited to use of prefunctionalized amines, directing groups (DGs) and/or transient DGs, metal catalysts, and traditional oxidants. The possible mechanistic pathway of the annulation reaction is investigated by control experiments and ESI-MS data collected for a reaction mixture of the ongoing reaction. The synthesized new compounds are potent organic nanobuilding blocks to achieve valuable organic nanomaterials of different sizes, shapes, and dimensions, which are under investigation for the discovery of high-tech devices of innovative organic nanoelectronics and photophysical properties.
Collapse
Affiliation(s)
- Sudipto Debnath
- Department
of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Tuluma Das
- Department
of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Subrata Gayen
- Department
of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Tapas Ghosh
- Department
of Applied Sciences, Maulana Abul Kalam
Azad University of Technology, Haringhata 741249, West Bengal, India
| | - Dilip K. Maiti
- Department
of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
- E-mail:
| |
Collapse
|
49
|
Synthesis of oxazolines and oxazoles by the reaction of propynals with tosylmethyl isocyanide. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Song GT, Qu CH, Meng JP, Xu ZG, Zhou CH, Chen ZZ. Photoredox catalytic cascade radical addition/aromatization of methylene-2-oxazolines: Mild access to C(sp)-difluoro-oxazole derivatives. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|