1
|
Overlingė D, Toruńska-Sitarz A, Cegłowska M, Szubert K, Mazur-Marzec H. Phylogenetic and molecular characteristics of two Aphanizomenon strains from the Curonian Lagoon, Southeastern Baltic Sea and their biological activities. Sci Rep 2024; 14:24686. [PMID: 39433845 PMCID: PMC11493949 DOI: 10.1038/s41598-024-76064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024] Open
Abstract
Polyphasic approach has become a generally accepted method for the classification of cyanobacteria. In this study, we present a detailed characterisation of two strains, KUCC C1 and KUCC C2, isolated from the Curonian Lagoon and classified to the Aphanizomenon genus. Despite phylogenetic similarity, the strains differ with respect to morphology, ultrastructure characteristics, and the metabolite profile. In the KUCC C1 extract, three unknown peptides and eight anabaenopeptins were detected, while KUCC C2 produced one unknown peptide and one aeruginosin. In both strains, a total of eleven pigments were detected. The production of myxoxantophyll, chlorophyll-a, chlorophylide-a, and zeaxanthin was higher in KUCC C2 than in KUCC C1. Extracts from both strains of Aphanizomenon also had different effects in antibacterial, anticancer and enzyme inhibition assays. Comprehensive analyses of Aphanizomenon strains performed in this study showed significant diversity between the isolates from the same bloom sample. These differences should be considered when exploring the ecological significance and biotechnological potential of a given population.
Collapse
Affiliation(s)
- Donata Overlingė
- Marine Research Institute, Klaipėda University, Universiteto av. 17, LT-92294, Klaipeda, Lithuania.
| | - Anna Toruńska-Sitarz
- Departament of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Marta Cegłowska
- Department of Marine Chemistry and Biochemistry, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland
| | - Karolina Szubert
- Departament of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Hanna Mazur-Marzec
- Departament of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
| |
Collapse
|
2
|
Hagar M, Andersen RJ, Ryan KS. Prephenate decarboxylase: An unexplored branchpoint to unusual natural products. Cell Chem Biol 2024; 31:1610-1626. [PMID: 39059391 DOI: 10.1016/j.chembiol.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Prephenate decarboxylases are a small family of enzymes which initiate a specialized divergence from the shikimate pathway, where prephenate (2) is decarboxylated without aromatization. In addition to effecting a challenging chemical transformation, prephenate decarboxylases have been implicated in the production of rare specialized metabolites, sometimes directly constructing bioactive warheads. Many of the biosynthetic steps to natural products derived from prephenate decarboxylases remain elusive. Here, we review prephenate decarboxylase research thus far and highlight natural products that may be derived from biosynthetic pathways involving prephenate decarboxylases. We also highlight commonly encountered challenges in the structure elucidation of these natural products. Prephenate decarboxylases are a gateway into understudied biosynthetic pathways which present a high potential for the discovery of novel and bioactive natural products, as well as new biosynthetic enzymes.
Collapse
Affiliation(s)
- Mostafa Hagar
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Raymond J Andersen
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada; Department of Earth, Ocean, and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine S Ryan
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
3
|
D'Agostino PM. Highlights of biosynthetic enzymes and natural products from symbiotic cyanobacteria. Nat Prod Rep 2023; 40:1701-1717. [PMID: 37233731 DOI: 10.1039/d3np00011g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Covering: up to 2023Cyanobacteria have long been known for their intriguing repertoire of natural product scaffolds, which are often distinct from other phyla. Cyanobacteria are ecologically significant organisms that form a myriad of different symbioses including with sponges and ascidians in the marine environment or with plants and fungi, in the form of lichens, in terrestrial environments. Whilst there have been several high-profile discoveries of symbiotic cyanobacterial natural products, genomic data is scarce and discovery efforts have remained limited. However, the rise of (meta-)genomic sequencing has improved these efforts, emphasized by a steep increase in publications in recent years. This highlight focuses on selected examples of symbiotic cyanobacterial-derived natural products and their biosyntheses to link chemistry with corresponding biosynthetic logic. Further highlighted are remaining gaps in knowledge for the formation of characteristic structural motifs. It is anticipated that the continued rise of (meta-)genomic next-generation sequencing of symbiontic cyanobacterial systems will lead to many exciting discoveries in the future.
Collapse
Affiliation(s)
- Paul M D'Agostino
- Technical University of Dresden, Chair of Technical Biochemistry, Bergstraβe 66, 01069 Dresden, Germany.
| |
Collapse
|
4
|
Konkel R, Cegłowska M, Szubert K, Wieczerzak E, Iliakopoulou S, Kaloudis T, Mazur-Marzec H. Structural Diversity and Biological Activity of Cyanopeptolins Produced by Nostoc edaphicum CCNP1411. Mar Drugs 2023; 21:508. [PMID: 37888443 PMCID: PMC10608790 DOI: 10.3390/md21100508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/28/2023] Open
Abstract
Cyanopeptolins (CPs) are one of the most commonly occurring class of cyanobacterial nonribosomal peptides. For the majority of these compounds, protease inhibition has been reported. In the current work, the structural diversity of cyanopeptolins produced by Nostoc edaphicum CCNP1411 was explored. As a result, 93 CPs, including 79 new variants, were detected and structurally characterized based on their mass fragmentation spectra. CPs isolated in higher amounts were additionally characterized by NMR. To the best of our knowledge, this is the highest number of cyanopeptides found in one strain. The biological assays performed with the 34 isolated CPs confirmed the significance of the amino acid located between Thr and the unique 3-amino-6-hydroxy-2-piperidone (Ahp) on the activity of the compounds against serine protease and HeLa cancer cells.
Collapse
Affiliation(s)
- Robert Konkel
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, PL-81378 Gdynia, Poland; (R.K.); (K.S.)
| | - Marta Cegłowska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81712 Sopot, Poland;
| | - Karolina Szubert
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, PL-81378 Gdynia, Poland; (R.K.); (K.S.)
| | - Ewa Wieczerzak
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80308 Gdańsk, Poland;
| | - Sofia Iliakopoulou
- Department of Sustainable Agriculture, University of Patras, GR-30131 Agrinio, Greece;
| | - Triantafyllos Kaloudis
- Institute of Nanoscience & Nanotechnology, NCSR Demokritos, GR-15310 Agia Paraskevi, Greece;
- Laboratory of Organic Micropollutants, Water Quality Control Department, EYDAP SA, Menidi, GR-13674 Athens, Greece
| | - Hanna Mazur-Marzec
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, PL-81378 Gdynia, Poland; (R.K.); (K.S.)
| |
Collapse
|
5
|
Orel VB, Zubarev AA, Bidusenko IA, Ushakov IA, Vitkovskaya NM. Quantum-Chemical Study of the Assembly Mechanism of 1-Pyrrolines from N-Benzylaldimines and Arylacetylenes in KO tBu/DMSO Superbasic Medium. J Org Chem 2023. [PMID: 37220072 DOI: 10.1021/acs.joc.3c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
By using a quantum-chemical approach, B2PLYP-D2/6-311+G**//B3LYP/6-31+G*, we have carried out a detailed study of the assembly of 1-pyrrolines from N-benzyl-1-phenylmethanimine and phenylacetylene in the superbasic medium KOtBu/dimethyl sulfoxide (DMSO). In this way, we have considered, both theoretically and experimentally, the mechanisms of the assembly through a concerted and stepwise nucleophilic cycloaddition and have addressed the side processes accompanying the assembly. It is found that the assembly via the concerted cycloaddition is kinetically more favorable than that via the stepwise cycloaddition. At the same time, the reaction of C-vinylation of aldimine with phenylacetylene occurs with a similar activation energy as the concerted cycloaddition and leads to the formation of 2-aza-1,4-pentadiene. The anion of 2-aza-1,4-pentadiene is an intermediate for the side processes leading to the formation of triarylpyridines and 1,3-diarylpropan-1-ones. Triarylpyridines are formed through the concerted cycloaddition of the next phenylacetylene molecule to 2-aza-1,4-pentadiene, while 1,3-diarylpropan-1-ones are formed as a result of the hydrolysis of 2-aza-1,4-pentadienes. It is found out that the mild conditions for the assembly of 1-pyrrolines (60 °C, 15 min) relate to the formation of complexes in the KOtBu/DMSO superbasic medium, where the anion is readily accessible for the nucleophilic attack by the phenylacetylene molecule.
Collapse
Affiliation(s)
- Vladimir B Orel
- Laboratory of Quantum-Chemical Modeling of Molecular Systems, Irkutsk State University, 1 K. Marx Street, 664003 Irkutsk, Russia
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia
| | - Andrey A Zubarev
- Laboratory of Quantum-Chemical Modeling of Molecular Systems, Irkutsk State University, 1 K. Marx Street, 664003 Irkutsk, Russia
| | - Ivan A Bidusenko
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia
| | - Igor A Ushakov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia
| | - Nadezhda M Vitkovskaya
- Laboratory of Quantum-Chemical Modeling of Molecular Systems, Irkutsk State University, 1 K. Marx Street, 664003 Irkutsk, Russia
| |
Collapse
|
6
|
Schneider YKH, Liaimer A, Isaksson J, Wilhelmsen OSB, Andersen JH, Hansen KØ, Hansen EH. Four new suomilides isolated from the cyanobacterium Nostoc sp. KVJ20 and proposal of their biosynthetic origin. Front Microbiol 2023; 14:1130018. [PMID: 37152725 PMCID: PMC10157211 DOI: 10.3389/fmicb.2023.1130018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/24/2023] [Indexed: 05/09/2023] Open
Abstract
The suomilide and the banyasides are highly modified and functionalized non-ribosomal peptides produced by cyanobacteria of the order Nostocales. These compound classes share several substructures, including a complex azabicyclononane core, which was previously assumed to be derived from the amino acid tyrosine. In our study we were able to isolate and determine the structures of four suomilides, named suomilide B - E (1-4). The compounds differ from the previously isolated suomilide A by the functionalization of the glycosyl group. Compounds 1-4 were assayed for anti-proliferative, anti-biofilm and anti-bacterial activities, but no significant activity was detected. The sequenced genome of the producer organism Nostoc sp. KVJ20 enabled us to propose a biosynthetic gene cluster for suomilides. Our findings indicated that the azabicyclononane core of the suomilides is derived from prephenate and is most likely incorporated by a proline specific non-ribosomal peptide synthetase-unit.
Collapse
Affiliation(s)
- Yannik K.-H. Schneider
- Marbio, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, Tromsø, Norway
- *Correspondence: Yannik K.-H. Schneider,
| | - Anton Liaimer
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Johan Isaksson
- Department of Chemistry, Faculty of Natural Sciences, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Oda S. B. Wilhelmsen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Jeanette H. Andersen
- Marbio, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Kine Ø. Hansen
- Marbio, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Espen H. Hansen
- Marbio, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
7
|
Voronina JK, Zorina-Tikhonova EN, Blinou DO, Zvereva OV, Peshkova EY, Smolobochkin AV, Eremenko IL. Synthesis and Structure of Complex Salts with 3-Arylidene-1-pyrrolinium Cations. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s107032842270018x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Tu S, Qi Z, Li W, Zhang S, Zhang Z, Wei J, Yang L, Wei S, Du X, Yi D. Chemodivergent photocatalytic access to 1-pyrrolines and 1-tetralones involving switchable C(sp3)–H functionalization. Front Chem 2022; 10:1058596. [PMID: 36385998 PMCID: PMC9641198 DOI: 10.3389/fchem.2022.1058596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
A chemodivergent photocatalytic approach to 1-pyrrolines and 1-tetralones from alkyl bromides and vinyl azides has been developed through chemoselectively controllable intermolecular [3 + 2] and [4 + 2] cyclization. This photoredox-neutral two-component protocol involves intermolecular radical addition and switchable distal C(sp3)–H functionalization enabled by iminyl radical-mediated 1,5-hydrogen atom transfer. Meanwhile, chemoselectivity between C(sp3)–N bond formation and C(sp3)–C(sp2) bond formation is precisely switched by photocatalysts (Ru(bpy)3(PF6)2 vs. fac-Ir(ppy)3) and additives (base vs. acid).
Collapse
Affiliation(s)
- Shijing Tu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhongyu Qi
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Weicai Li
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shiqi Zhang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, China
- *Correspondence: Shiqi Zhang, ; Xi Du, ; Dong Yi,
| | - Zhijie Zhang
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jun Wei
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Lin Yang
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Siping Wei
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xi Du
- Department of Chemistry, School of Basic Medical Science, Southwest Medical University, Luzhou, China
- *Correspondence: Shiqi Zhang, ; Xi Du, ; Dong Yi,
| | - Dong Yi
- Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
- *Correspondence: Shiqi Zhang, ; Xi Du, ; Dong Yi,
| |
Collapse
|
9
|
Konkel R, Grabski M, Cegłowska M, Wieczerzak E, Węgrzyn G, Mazur-Marzec H. Anabaenopeptins from Nostoc edaphicum CCNP1411. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12346. [PMID: 36231642 PMCID: PMC9564503 DOI: 10.3390/ijerph191912346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacteria of the Nostoc genus belong to the most prolific sources of bioactive metabolites. In our previous study on Nostoc edaphicum strain CCNP1411, the occurrence of cyanopeptolins and nostocyclopeptides was documented. In the current work, the production of anabaenopeptins (APs) by the strain was studied using genetic and chemical methods. Compatibility between the analysis of the apt gene cluster and the structure of the identified APs was found. Three of the APs, including two new variants, were isolated as pure compounds and tested against four serine proteases and carboxypeptidase A (CPA). The in vitro enzymatic assays showed a typical activity of this class of cyanopeptides, i.e., the most pronounced effects were observed in the case of CPA. The activity of the detected compounds against important metabolic enzymes confirms the pharmaceutical potential of anabaenopeptins.
Collapse
Affiliation(s)
- Robert Konkel
- Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, M. J. Piłsudskiego 46, PL-81378 Gdynia, Poland
| | - Michał Grabski
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, PL-80308 Gdańsk, Poland
| | - Marta Cegłowska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81712 Sopot, Poland
| | - Ewa Wieczerzak
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80308 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, PL-80308 Gdańsk, Poland
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, M. J. Piłsudskiego 46, PL-81378 Gdynia, Poland
| |
Collapse
|
10
|
Heinilä LMP, Jokela J, Ahmed MN, Wahlsten M, Kumar S, Hrouzek P, Permi P, Koistinen H, Fewer DP, Sivonen K. Discovery of varlaxins, new aeruginosin-type inhibitors of human trypsins. Org Biomol Chem 2022; 20:2681-2692. [PMID: 35293909 DOI: 10.1039/d1ob02454j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low-molecular weight natural products display vast structural diversity and have played a key role in the development of novel therapeutics. Here we report the discovery of novel members of the aeruginosin family of natural products, which we named varlaxins. The chemical structures of varlaxins 1046A and 1022A were determined using a combination of mass spectrometry, analysis of one- and two-dimensional NMR spectra, and HPLC analysis of Marfey's derivatives. These analyses revealed that varlaxins 1046A and 1022A are composed of the following moieties: 2-O-methylglyceric acid 3-O-sulfate, isoleucine, 2-carboxy-6-hydroxyoctahydroindole (Choi), and a terminal arginine derivative. Varlaxins 1046A and 1022A differ in the cyclization of this arginine moiety. Interestingly, an unusual α-D-glucopyranose moiety derivatized with two 4-hydroxyphenylacetic acid residues was bound to Choi, a structure not previously reported for other members of the aeruginosin family. We sequenced the complete genome of Nostoc sp. UHCC 0870 and identified the putative 36 kb varlaxin biosynthetic gene cluster. Bioinformatics analysis confirmed that varlaxins belong to the aeruginosin family of natural products. Varlaxins 1046A and 1022A strongly inhibited the three human trypsin isoenzymes with IC50 of 0.62-3.6 nM and 97-230 nM, respectively, including a prometastatic trypsin-3, which is a therapeutically relevant target in several types of cancer. These results substantially broaden the genetic and chemical diversity of the aeruginosin family and provide evidence that the aeruginosin family is a source of strong inhibitors of human serine proteases.
Collapse
Affiliation(s)
- L M P Heinilä
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - J Jokela
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - M N Ahmed
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland. .,Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - M Wahlsten
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - S Kumar
- Laboratory of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - P Hrouzek
- Laboratory of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - P Permi
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland.,Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - H Koistinen
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - D P Fewer
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - K Sivonen
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
11
|
Ahmed MN, Wahlsten M, Jokela J, Nees M, Stenman UH, Alvarenga DO, Strandin T, Sivonen K, Poso A, Permi P, Metsä-Ketelä M, Koistinen H, Fewer DP. Potent Inhibitor of Human Trypsins from the Aeruginosin Family of Natural Products. ACS Chem Biol 2021; 16:2537-2546. [PMID: 34661384 PMCID: PMC8609519 DOI: 10.1021/acschembio.1c00611] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Serine proteases
regulate many physiological processes and play
a key role in a variety of cancers. Aeruginosins are a family of natural
products produced by cyanobacteria that exhibit pronounced structural
diversity and potent serine protease inhibition. Here, we sequenced
the complete genome of Nodularia sphaerocarpa UHCC 0038 and identified the 43.7 kb suomilide biosynthetic gene
cluster. Bioinformatic analysis demonstrated that suomilide belongs
to the aeruginosin family of natural products. We identified 103 complete
aeruginosin biosynthetic gene clusters from 12 cyanobacterial genera
and showed that they encode an unexpected chemical diversity. Surprisingly,
purified suomilide inhibited human trypsin-2 and -3, with IC50 values of 4.7 and 11.5 nM, respectively, while trypsin-1 was inhibited
with an IC50 of 104 nM. Molecular dynamics simulations
suggested that suomilide has a long residence time when bound to trypsins.
This was confirmed experimentally for trypsin-1 and -3 (residence
times of 1.5 and 57 min, respectively). Suomilide also inhibited the
invasion of aggressive and metastatic PC-3M prostate cancer cells
without affecting cell proliferation. The potent inhibition of trypsin-3,
together with a long residence time and the ability to inhibit prostate
cancer cell invasion, makes suomilide an attractive drug lead for
targeting cancers that overexpress trypsin-3. These results substantially
broaden the genetic and chemical diversity of the aeruginosin family
and suggest that aeruginosins may be a source of selective inhibitors
of human serine proteases.
Collapse
Affiliation(s)
- Muhammad N. Ahmed
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, Biocenter 1, P.O. Box 56, Helsinki FIN-00014, Finland
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, P.O. Box 63, Helsinki FIN-00014, Finland
| | - Matti Wahlsten
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, Biocenter 1, P.O. Box 56, Helsinki FIN-00014, Finland
| | - Jouni Jokela
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, Biocenter 1, P.O. Box 56, Helsinki FIN-00014, Finland
| | - Matthias Nees
- Department of Biochemistry and Molecular Biology, Medical University in Lublin, ul. Chodzki 1, Lublin 20-093, Poland
- Institute of Biomedicine and Western Cancer Centre FICAN West, University of Turku, Turku 20101, Finland
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, P.O. Box 63, Helsinki FIN-00014, Finland
| | - Danillo O. Alvarenga
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, Biocenter 1, P.O. Box 56, Helsinki FIN-00014, Finland
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Tomas Strandin
- Department of Virology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, P.O. Box 21, Helsinki FIN-00014, Finland
| | - Kaarina Sivonen
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, Biocenter 1, P.O. Box 56, Helsinki FIN-00014, Finland
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, Kuopio FIN-70211, Finland
- Dept. of Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Strasse 14, Tübingen DE-72076, Germany
| | - Perttu Permi
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014, Finland
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box
35, Jyväskylä FI-40014, Finland
| | - Mikko Metsä-Ketelä
- Department of Biochemistry, University of Turku, Turku FIN-20014, Finland
| | - Hannu Koistinen
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, P.O. Box 63, Helsinki FIN-00014, Finland
| | - David P. Fewer
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, Biocenter 1, P.O. Box 56, Helsinki FIN-00014, Finland
| |
Collapse
|
12
|
Phytoplankton of the Curonian Lagoon as a New Interesting Source for Bioactive Natural Products. Special Impact on Cyanobacterial Metabolites. Biomolecules 2021; 11:biom11081139. [PMID: 34439804 PMCID: PMC8395022 DOI: 10.3390/biom11081139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
The bioprospecting of marine and brackish water systems has increased during the last decades. In this respect, microalgae, including cyanobacteria, and their metabolites are one of the most widely explored resources. Most of the bioactive compounds are isolated from ex situ cultures of microorganisms; however, analysis of field samples could also supply valuable information about the metabolic and biotechnological potential of microalgae communities. In this work, the activity of phytoplankton samples from the Curonian Lagoon was studied. The samples were active against antibiotic resistant clinical and environmental bacterial strains as well as against serine proteases and T47D human breast adenocarcinoma cells. No significant effect was found on Daphnia magna. In addition, using LC-MS/MS, we documented the diversity of metabolites present in field samples. A list of 117 detected cyanopeptides was presented. Cyanopeptolins constituted the largest class of cyanopeptides. As complex bloom samples were analyzed, no link between the observed activity and a specific sample component can be established. However, the results of the study showed a biotechnological potential of natural products from the Curonian Lagoon.
Collapse
|
13
|
Heinilä LMP, Fewer DP, Jokela JK, Wahlsten M, Ouyang X, Permi P, Jortikka A, Sivonen K. The structure and biosynthesis of heinamides A1-A3 and B1-B5, antifungal members of the laxaphycin lipopeptide family. Org Biomol Chem 2021; 19:5577-5588. [PMID: 34085692 DOI: 10.1039/d1ob00772f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Laxaphycins are a family of cyclic lipopeptides with synergistic antifungal and antiproliferative activities. They are produced by multiple cyanobacterial genera and comprise two sets of structurally unrelated 11- and 12-residue macrocyclic lipopeptides. Here, we report the discovery of new antifungal laxaphycins from Nostoc sp. UHCC 0702, which we name heinamides, through antimicrobial bioactivity screening. We characterized the chemical structures of eight heinamide structural variants A1-A3 and B1-B5. These variants contain the rare non-proteinogenic amino acids 3-hydroxy-4-methylproline, 4-hydroxyproline, 3-hydroxy-d-leucine, dehydrobutyrine, 5-hydroxyl β-amino octanoic acid, and O-carbamoyl-homoserine. We obtained an 8.6-Mb complete genome sequence from Nostoc sp. UHCC 0702 and identified the 93 kb heinamide biosynthetic gene cluster. The structurally distinct heinamides A1-A3 and B1-B5 variants are synthesized using an unusual branching biosynthetic pathway. The heinamide biosynthetic pathway also encodes several enzymes that supply non-proteinogenic amino acids to the heinamide synthetase. Through heterologous expression, we showed that (2S,4R)-4-hydroxy-l-proline is supplied through the action of a novel enzyme LxaN, which hydroxylates l-proline. 11- and 12-residue heinamides have the characteristic synergistic activity of laxaphycins against Aspergillus flavus FBCC 2467. Structural and genetic information of heinamides may prove useful in future discovery of natural products and drug development.
Collapse
Affiliation(s)
| | - David Peter Fewer
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Jouni Kalevi Jokela
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Matti Wahlsten
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Xiaodan Ouyang
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Perttu Permi
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland and Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Anna Jortikka
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Kaarina Sivonen
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
14
|
Bidusenko IA, Schmidt EY, Ushakov IA, Vashchenko AV, Trofimov BA. Base-Catalyzed [3 + 2] Cycloaddition of N-Benzyl Ketimines to Arylacetylenes Followed by Oxidation: A One-Pot Access to Polyarylated 2 H-Pyrroles via Intermediate Pyrrolines. Org Lett 2021; 23:4121-4126. [PMID: 34018747 DOI: 10.1021/acs.orglett.1c01009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Benzyl ketimines undergo [3 + 2] cycloaddition with arylacetylenes in the KOBut/DMSO solution to 2,3,5-triarylpyrrolines, which are oxidized (chloranil, DDQ) in situ to 2,3,5-triaryl-2H-pyrroles in 53-71% yields. The intermediate 1-pyrrolines can be isolated in 31-91% yields and separately oxidized to the corresponding 2H-pyrroles.
Collapse
Affiliation(s)
- Ivan A Bidusenko
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia
| | - Elena Yu Schmidt
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia
| | - Igor A Ushakov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia
| | - Alexander V Vashchenko
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia
| | - Boris A Trofimov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia
| |
Collapse
|
15
|
Pappas D, Panou M, Adamakis IDS, Gkelis S, Panteris E. Beyond Microcystins: Cyanobacterial Extracts Induce Cytoskeletal Alterations in Rice Root Cells. Int J Mol Sci 2020; 21:ijms21249649. [PMID: 33348912 PMCID: PMC7766381 DOI: 10.3390/ijms21249649] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Microcystins (MCs) are cyanobacterial toxins and potent inhibitors of protein phosphatases 1 (PP1) and 2A (PP2A), which are involved in plant cytoskeleton (microtubules and F-actin) organization. Therefore, studies on the toxicity of cyanobacterial products on plant cells have so far been focused on MCs. In this study, we investigated the effects of extracts from 16 (4 MC-producing and 12 non-MC-producing) cyanobacterial strains from several habitats, on various enzymes (PP1, trypsin, elastase), on the plant cytoskeleton and H2O2 levels in Oryza sativa (rice) root cells. Seedling roots were treated for various time periods (1, 12, and 24 h) with aqueous cyanobacterial extracts and underwent either immunostaining for α-tubulin or staining of F-actin with fluorescent phalloidin. 2,7-dichlorofluorescein diacetate (DCF-DA) staining was performed for H2O2 imaging. The enzyme assays confirmed the bioactivity of the extracts of not only MC-rich (MC+), but also MC-devoid (MC−) extracts, which induced major time-dependent alterations on both components of the plant cytoskeleton. These findings suggest that a broad spectrum of bioactive cyanobacterial compounds, apart from MCs or other known cyanotoxins (such as cylindrospermopsin), can affect plants by disrupting the cytoskeleton.
Collapse
Affiliation(s)
- Dimitris Pappas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.P.); (S.G.)
- Correspondence: (D.P.); (E.P.); Tel.: +30-2310-998908 (E.P.)
| | - Manthos Panou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.P.); (S.G.)
| | | | - Spyros Gkelis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.P.); (S.G.)
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.P.); (S.G.)
- Correspondence: (D.P.); (E.P.); Tel.: +30-2310-998908 (E.P.)
| |
Collapse
|
16
|
|
17
|
Riba M, Kiss-Szikszai A, Gonda S, Parizsa P, Deák B, Török P, Valkó O, Felföldi T, Vasas G. Chemotyping of terrestrial Nostoc-like isolates from alkali grassland areas by non-targeted peptide analysis. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Cyanopeptolins with Trypsin and Chymotrypsin Inhibitory Activity from the Cyanobacterium Nostoc edaphicum CCNP1411. Mar Drugs 2018; 16:md16070220. [PMID: 29949853 PMCID: PMC6070996 DOI: 10.3390/md16070220] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022] Open
Abstract
Cyanopeptolins (CPs) are one of the most frequently occurring cyanobacterial peptides, many of which are inhibitors of serine proteases. Some CP variants are also acutely toxic to aquatic organisms, especially small crustaceans. In this study, thirteen CPs, including twelve new variants, were detected in the cyanobacterium Nostoc edaphicum CCNP1411 isolated from the Gulf of Gdańsk (southern Baltic Sea). Structural elucidation was performed by tandem mass spectrometry with verification by NMR for CP962 and CP985. Trypsin and chymotrypsin inhibition assays confirmed the significance of the residue adjacent to 3-amino-6-hydroxy-2-piperidone (Ahp) for the activity of the peptides. Arginine-containing CPs (CPs-Arg²) inhibited trypsin at low IC50 values (0.24⁻0.26 µM) and showed mild activity against chymotrypsin (IC50 3.1⁻3.8 µM), while tyrosine-containing CPs (CPs-Tyr²) were selectively and potently active against chymotrypsin (IC50 0.26 µM). No degradation of the peptides was observed during the enzyme assays. Neither of the CPs were active against thrombin, elastase or protein phosphatase 1. Two CPs (CP962 and CP985) had no cytotoxic effects on MCF-7 breast cancer cells. Strong and selective activity of the new cyanopeptolin variants makes them potential candidates for the development of drugs against metabolic disorders and other diseases.
Collapse
|
19
|
Liaimer A, Jensen JB, Dittmann E. A Genetic and Chemical Perspective on Symbiotic Recruitment of Cyanobacteria of the Genus Nostoc into the Host Plant Blasia pusilla L. Front Microbiol 2016; 7:1693. [PMID: 27847500 PMCID: PMC5088731 DOI: 10.3389/fmicb.2016.01693] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/10/2016] [Indexed: 12/04/2022] Open
Abstract
Liverwort Blasia pusilla L. recruits soil nitrogen-fixing cyanobacteria of genus Nostoc as symbiotic partners. In this work we compared Nostoc community composition inside the plants and in the soil around them from two distant locations in Northern Norway. STRR fingerprinting and 16S rDNA phylogeny reconstruction showed a remarkable local diversity among isolates assigned to several Nostoc clades. An extensive web of negative allelopathic interactions was recorded at an agricultural site, but not at the undisturbed natural site. The cell extracts of the cyanobacteria did not show antimicrobial activities, but four isolates were shown to be cytotoxic to human cells. The secondary metabolite profiles of the isolates were mapped by MALDI-TOF MS, and the most prominent ions were further analyzed by Q-TOF for MS/MS aided identification. Symbiotic isolates produced a great variety of small peptide-like substances, most of which lack any record in the databases. Among identified compounds we found microcystin and nodularin variants toxic to eukaryotic cells. Microcystin producing chemotypes were dominating as symbiotic recruits but not in the free-living community. In addition, we were able to identify several novel aeruginosins and banyaside-like compounds, as well as nostocyclopeptides and nosperin.
Collapse
Affiliation(s)
- Anton Liaimer
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of NorwayTromsø, Norway
| | - John B. Jensen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of NorwayTromsø, Norway
| | - Elke Dittmann
- Department of Microbiology, Institute for Biochemistry and Biology, University of PotsdamPotsdam, Germany
| |
Collapse
|
20
|
Häggqvist K, Toruńska-Sitarz A, Błaszczyk A, Mazur-Marzec H, Meriluoto J. Morphologic, Phylogenetic and Chemical Characterization of a Brackish Colonial Picocyanobacterium (Coelosphaeriaceae) with Bioactive Properties. Toxins (Basel) 2016; 8:108. [PMID: 27077885 PMCID: PMC4848634 DOI: 10.3390/toxins8040108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/21/2016] [Accepted: 03/31/2016] [Indexed: 11/24/2022] Open
Abstract
Despite their cosmopolitan distribution, knowledge on cyanobacteria in the family Coelosphaeriaceae is limited. In this study, a single species culture of a coelosphaeran cyanobacterium isolated from a brackish rock pool in the Baltic Sea was established. The strain was characterized by morphological features, partial 16S rRNA sequence and nonribosomal oligopeptide profile. The bioactivity of fractionated extracts against several serine proteases, as well as protein-serine/threonine phosphatases was studied. Phylogenetic analyses of the strain suggested a close relationship with Snowella litoralis, but its morphology resembled Woronichinia compacta. The controversial morphologic and phylogenetic results demonstrated remaining uncertainties regarding species division in this cyanobacteria family. Chemical analyses of the strain indicated production of nonribosomal oligopeptides. In fractionated extracts, masses and ion fragmentation spectra of seven possible anabaenopeptins were identified. Additionally, fragmentation spectra of cyanopeptolin-like peptides were collected in several of the fractions. The nonribosomal oligopeptide profile adds another potential identification criterion in future inter- and intraspecies comparisons of coelosphaeran cyanobacteria. The fractionated extracts showed significant activity against carboxypeptidase A and trypsin. Inhibition of these important metabolic enzymes might have impacts at the ecosystem level in aquatic habitats with high cyanobacteria densities.
Collapse
Affiliation(s)
- Kerstin Häggqvist
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, Åbo 20520, Finland.
| | - Anna Toruńska-Sitarz
- Department of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, Gdynia 81-378, Poland.
| | - Agata Błaszczyk
- Department of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, Gdynia 81-378, Poland.
| | - Hanna Mazur-Marzec
- Department of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, Gdynia 81-378, Poland.
| | - Jussi Meriluoto
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, Åbo 20520, Finland.
| |
Collapse
|
21
|
Elshahawi SI, Shaaban KA, Kharel MK, Thorson JS. A comprehensive review of glycosylated bacterial natural products. Chem Soc Rev 2015; 44:7591-697. [PMID: 25735878 PMCID: PMC4560691 DOI: 10.1039/c4cs00426d] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A systematic analysis of all naturally-occurring glycosylated bacterial secondary metabolites reported in the scientific literature up through early 2013 is presented. This comprehensive analysis of 15 940 bacterial natural products revealed 3426 glycosides containing 344 distinct appended carbohydrates and highlights a range of unique opportunities for future biosynthetic study and glycodiversification efforts.
Collapse
Affiliation(s)
- Sherif I Elshahawi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA. and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Khaled A Shaaban
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA. and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Madan K Kharel
- School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Jon S Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA. and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
22
|
Armaly AM, DePorre YC, Groso EJ, Riehl PS, Schindler CS. Discovery of Novel Synthetic Methodologies and Reagents during Natural Product Synthesis in the Post-Palytoxin Era. Chem Rev 2015; 115:9232-76. [DOI: 10.1021/acs.chemrev.5b00034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ahlam M. Armaly
- Department of Chemistry, University of Michigan, 930 North
University Avenue, Ann Arbor, Michigan 48109, United States
| | - Yvonne C. DePorre
- Department of Chemistry, University of Michigan, 930 North
University Avenue, Ann Arbor, Michigan 48109, United States
| | - Emilia J. Groso
- Department of Chemistry, University of Michigan, 930 North
University Avenue, Ann Arbor, Michigan 48109, United States
| | - Paul S. Riehl
- Department of Chemistry, University of Michigan, 930 North
University Avenue, Ann Arbor, Michigan 48109, United States
| | - Corinna S. Schindler
- Department of Chemistry, University of Michigan, 930 North
University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
23
|
Gao X, Ren Q, Choi S, Xu Z, Ye T. Total synthesis of the putative structure of the proposed Banyasin A. Front Chem 2015; 3:19. [PMID: 25853121 PMCID: PMC4362330 DOI: 10.3389/fchem.2015.00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/02/2015] [Indexed: 11/13/2022] Open
Abstract
The first total synthesis of four possible isomers of a molecule possessing the configuration proposed for Banyasin A is described. The structure synthesized appears to be different from that of the natural product.
Collapse
Affiliation(s)
- Xuguang Gao
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolShenzhen, China
| | - Qi Ren
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolShenzhen, China
| | - Sun Choi
- National Leading Research Laboratory of Molecular Modeling and Drug Design, College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans UniversitySeoul, South Korea
| | - Zhengshuang Xu
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolShenzhen, China
| | - Tao Ye
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolShenzhen, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic UniversityHong Kong, China
| |
Collapse
|
24
|
Grundler V, Gademann K. Direct arginine modification in native peptides and application to chemical probe development. ACS Med Chem Lett 2014; 5:1290-5. [PMID: 25516786 DOI: 10.1021/ml5003508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/27/2014] [Indexed: 01/31/2023] Open
Abstract
An efficient method for the direct labeling of the Arg guanidinium group in native peptides is reported. This straightforward procedure allows modifying the arginine moiety in peptides with various reporter groups, such as fluorophores, biotin, etc., under mild conditions in an operationally simple procedure. The scope of this method tolerates various functionalized amino acids such as His, Ser, Trp, Tyr, Glu, etc., while the only limitations uncovered so far are restricted to cysteine and free amine residues. The utility of this late-stage diversification method was demonstrated in direct labeling of leuprolide, a clinically used drug, for distribution monitoring in Daphnia, and in labeling of microcystin, a cyanobacterial toxin.
Collapse
Affiliation(s)
- Verena Grundler
- Department of Chemistry, University of Basel, St. Johanns-Ring
19, 4056 Basel, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Basel, St. Johanns-Ring
19, 4056 Basel, Switzerland
| |
Collapse
|
25
|
Liu L, Jokela J, Wahlsten M, Nowruzi B, Permi P, Zhang YZ, Xhaard H, Fewer DP, Sivonen K. Nostosins, Trypsin Inhibitors Isolated from the Terrestrial Cyanobacterium Nostoc sp. Strain FSN. JOURNAL OF NATURAL PRODUCTS 2014; 77:1784-1790. [PMID: 25069058 DOI: 10.1021/np500106w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Two new trypsin inhibitors, nostosin A (1) and B (2), were isolated from a hydrophilic extract of Nostoc sp. strain FSN, which was collected from a paddy field in the Golestan Province of Iran. Nostosins A (1) and B (2) are composed of three subunits, 2-hydroxy-4-(4-hydroxyphenyl)butanoic acid (Hhpba), L-Ile, and L-argininal (1) or argininol (2). Nostosins A (1) and B (2) exhibited IC50 values of 0.35 and 55 μM against porcine trypsin, respectively, suggesting that the argininal aldehyde group plays a crucial role in the efficient inhibition of trypsin. Molecular docking of nostosin A (1) (449 Da), leupeptin (426 Da, IC50 0.5 μM), and spumigin E (610 Da, IC50 < 0.1 μM) with trypsin suggested prominent binding similarity between nostosin A (1) and leupeptin but only partial binding similarity with spumigin E. The number of hydrogen bonds between ligands and trypsin increased according to the length and size of the ligand molecule, and the docking affinity values followed the measured IC50 values. Nostosin A (1) is the first highly potent three-subunit trypsin inhibitor with potency comparable to the known commercial trypsin inhibitor leupeptin. These findings expand the known diversity of short-chain linear peptide protease inhibitors produced by cyanobacteria.
Collapse
Affiliation(s)
- Liwei Liu
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| | - Jouni Jokela
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| | - Matti Wahlsten
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| | - Bahareh Nowruzi
- Department of Biology, Faculty of Science, Tarbiat Moallem University , 49 Dr. Mofatteh Avenue, P.O. Box 158153587, 15614, Tehran, Iran
| | - Perttu Permi
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki , P.O. Box 65, 00014, Helsinki, Finland
| | - Yue Zhou Zhang
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| | - Henri Xhaard
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| | - David P Fewer
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| | - Kaarina Sivonen
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| |
Collapse
|
26
|
Diethelm S, Schindler CS, Carreira EM. Access to the Aeruginosin Serine Protease Inhibitors through the Nucleophilic Opening of an Oxabicyclo[2.2.1]heptane: Total Synthesis of Microcin SF608. Chemistry 2014; 20:6071-80. [DOI: 10.1002/chem.201400046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Indexed: 11/11/2022]
|
27
|
Kapuścik A, Hrouzek P, Kuzma M, Bártová S, Novák P, Jokela J, Pflüger M, Eger A, Hundsberger H, Kopecký J. Novel Aeruginosin-865 from Nostoc sp. as a potent anti-inflammatory agent. Chembiochem 2013; 14:2329-37. [PMID: 24123716 DOI: 10.1002/cbic.201300246] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Indexed: 01/13/2023]
Abstract
Aeruginosin-865 (Aer-865), isolated from terrestrial cyanobacterium Nostoc sp. Lukešová 30/93, is the first aeruginosin-type peptide containing both a fatty acid and a carbohydrate moiety, and is the first aeruginosin to be found in the genus Nostoc. Mass spectrometry, chemical and spectroscopic analysis as well as one- and two-dimensional NMR and chiral HPLC analysis of Marfey derivatives were applied to determine the peptidic sequence: D-Hpla, D-Leu, 5-OH-Choi, Agma, with hexanoic and mannopyranosyl uronic acid moieties linked to Choi. We used an AlphaLISA assay to measure the levels of proinflammatory mediators IL-8 and ICAM-1 in hTNF-α-stimulated HLMVECs. Aer-865 showed significant reduction of both: with EC50 values of (3.5±1.5) μg mL(-1) ((4.0±1.7) μM) and (50.0±13.4) μg mL(-1) ((57.8±15.5) μM), respectively. Confocal laser scanning microscopy revealed that the anti-inflammatory effect of Aer-865 was directly associated with inhibition of NF-κB translocation to the nucleus. Moreover, Aer-865 did not show any cytotoxic effect.
Collapse
Affiliation(s)
- Aleksandra Kapuścik
- Department of Phototrophic Microorganisms-ALGATECH, Institute of Microbiology, Academy of Science of the Czech Republic, Opatovický mlýn, 379 81 Třeboň (Czech Republic)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Elkobi-Peer S, Faigenbaum R, Carmeli S. Bromine- and chlorine-containing aeruginosins from Microcystis aeruginosa bloom material collected in Kibbutz Geva, Israel. JOURNAL OF NATURAL PRODUCTS 2012; 75:2144-2151. [PMID: 23153007 DOI: 10.1021/np3005612] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Five new natural products, aeruginosins GE686 (1), GE766 (2), GE730 (3), GE810 (4), and GE642 (5), were isolated along with four known aeruginosins, 98C, 101, KY642, and DA688, from bloom material of the cyanobacterium Microcystis aeruginosa collected from a fish pond in Kibbutz Geva, Israel, in August 2007. Their structures were elucidated by a combination of various spectroscopic techniques, primarily NMR and MS, while the absolute configurations of the stereogenic centers were determined by Marfey's and chiral-phase HPLC methods. Two of the new aeruginosins, aeruginosins GE686 (1) and GE766 (2), contain the unprecedented d-m-Br-m'-Cl-p-hydroxyphenyllactic acid derivative. The structures and biological activities of the five new metabolites are described.
Collapse
Affiliation(s)
- Shira Elkobi-Peer
- Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel
| | | | | |
Collapse
|
29
|
Nagarajan M, Maruthanayagam V, Sundararaman M. SAR analysis and bioactive potentials of freshwater and terrestrial cyanobacterial compounds: a review. J Appl Toxicol 2012; 33:313-49. [PMID: 23172644 DOI: 10.1002/jat.2833] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 08/29/2012] [Accepted: 09/11/2012] [Indexed: 11/07/2022]
Abstract
Freshwater and terrestrial cyanobacteria resemble the marine forms in producing divergent chemicals such as linear, cyclic and azole containing peptides, alkaloids, cyclophanes, terpenes, lactones, etc. These metabolites have wider biomedical potentials in targeting proteases, cancers, parasites, pathogens and other cyanobacteria and algae (allelopathy). Among the various families of non-marine cyanobacterial peptides reported, many of them are acting as serine protease inhibitors. While the micropeptin family has a preference for chymotrypsin inhibition rather than other serine proteases, the aeruginosin family targets trypsin and thrombin. In addition, cyanobacterial compounds such as scytonemide A, lyngbyazothrins C and D and cylindrocyclophanes were found to inhibit 20S proteosome. Apart from proteases, metabolites blocking the other targets of cancer pathways may exhibit cytotoxic effect. Colon and rectum, breast, lung and prostate are the worst affecting cancers in humans and are deduced to be inhibited by both peptidic and non-peptidic compounds. Moreover, the growth of infections causing parasites such as Plasmodium, Leishmania and Trypanosoma are well controlled by peptides: aerucyclamides A-D, tychonamides and alkaloids: nostocarboline and calothrixins. Likewise, varieties of cyanobacterial compounds tend to inhibit serious infectious disease causing bacterial, fungal and viral agents. Interestingly, portoamides, spiroidesin, nostocyclamide and kasumigamide are the allelopathic peptides determined to suppress the growth of toxic cyanobacteria and nuisance algae. Thus cyanobacterial compounds have a broad bioactive spectrum; the analysis of SAR studies will not only assist to find out the mode of action but also reveal bioactive key components. Thereby, developing the drugs bearing these bioactive skeletons to treat various illnesses is wide open.
Collapse
Affiliation(s)
- M Nagarajan
- Department of Marine Biotechnology, School of Marine Sciences, Bharathidasan University, Tiruchirappalli-, 620 024, Tamil Nadu, India
| | | | | |
Collapse
|
30
|
Wang YF, Toh KK, Ng EPJ, Chiba S. Mn(III)-Mediated Formal [3+3]-Annulation of Vinyl Azides and Cyclopropanols: A Divergent Synthesis of Azaheterocycles. J Am Chem Soc 2011; 133:6411-21. [DOI: 10.1021/ja200879w] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yi-Feng Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Kah Kah Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Eileen Pei Jian Ng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Shunsuke Chiba
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
31
|
Schindler CS, Bertschi L, Carreira EM. Total Synthesis of Nominal Banyaside B: Structural Revision of the Glycosylation Site. Angew Chem Int Ed Engl 2010; 49:9229-32. [DOI: 10.1002/anie.201004047] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Schindler CS, Bertschi L, Carreira EM. Total Synthesis of Nominal Banyaside B: Structural Revision of the Glycosylation Site. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201004047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Asghari S, Qandalee M. Three-Component, One-Pot Synthesis of New Functionalized Pyrrolines. SYNTHETIC COMMUN 2010. [DOI: 10.1080/00397910903219583] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sakineh Asghari
- a Department of Chemistry , Mazandaran University , Babolsar, Iran
| | | |
Collapse
|
34
|
Hirose T, Sunazuka T, Ōmura S. Recent development of two chitinase inhibitors, Argifin and Argadin, produced by soil microorganisms. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:85-102. [PMID: 20154467 PMCID: PMC3417560 DOI: 10.2183/pjab.86.85] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Chitin, the second most abundant polysaccharide in nature, occurs in fungi, some algae and many invertebrates, including insects. Thus, chitin synthesis and degradation could represent specific targets for fungicides and insecticides. Chitinases hydrolyze chitin into oligomers of N-acetyl-D-glucosamine at key points in the life cycles of organisms, consequently, chitinase inhibitors have become subject of increasing interest. This review covers the development of two chitinase inhibitors of natural origin, Argifin and Argadin, isolated from the cultured broth of microorganisms in our laboratory. In particular, the practical total synthesis of these natural products, the synthesis of lead compounds via computer-aided rational molecular design, and discovery methods that generate only highly-active compounds using a kinetic target(chitinase)-guided synthesis approach (termed in situ click chemistry) are described.
Collapse
Affiliation(s)
- Tomoyasu Hirose
- The Kitasato Institute, Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Toshiaki Sunazuka
- The Kitasato Institute, Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
- Correspondence should be addressed: T. Sunazuka and S. Ōmura, The Kitasato Institute and Kitasato Institute for Life Science and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan (e-mail: and )
| | - Satoshi Ōmura
- The Kitasato Institute, Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
- Correspondence should be addressed: T. Sunazuka and S. Ōmura, The Kitasato Institute and Kitasato Institute for Life Science and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan (e-mail: and )
| |
Collapse
|
35
|
Schindler C, Diethelm S, Carreira E. Nucleophilic Opening of Oxabicyclic Ring Systems. Angew Chem Int Ed Engl 2009; 48:6296-9. [DOI: 10.1002/anie.200902046] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Schindler C, Diethelm S, Carreira E. Nucleophilic Opening of Oxabicyclic Ring Systems. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200902046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Argifin; efficient solid phase total synthesis and evalution of analogues of acyclic peptide. Bioorg Med Chem 2009; 17:2751-8. [DOI: 10.1016/j.bmc.2009.02.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 02/17/2009] [Accepted: 02/19/2009] [Indexed: 11/20/2022]
|
38
|
Schindler CS, Carreira EM. Rapid formation of complexity in the total synthesis of natural products enabled by oxabicyclo[2.2.1]heptene building blocks. Chem Soc Rev 2009; 38:3222-41. [DOI: 10.1039/b915448p] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Schindler CS, Stephenson CRJ, Carreira EM. Enantioselective synthesis of the core of banyaside, suomilide, and spumigin HKVV. Angew Chem Int Ed Engl 2008; 47:8852-5. [PMID: 18855958 DOI: 10.1002/anie.200803655] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Corinna S Schindler
- Laboratorium für Organische Chemie, ETH Zürich, HCI H335, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | | | | |
Collapse
|
40
|
Schindler C, Stephenson C, Carreira E. Enantioselective Synthesis of the Core of Banyaside, Suomilide, and Spumigin HKVV. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200803655] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Grach-Pogrebinsky O, Carmeli S. Three novel anabaenopeptins from the cyanobacterium Anabaena sp. Tetrahedron 2008. [DOI: 10.1016/j.tet.2008.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Gesner-Apter S, Carmeli S. Three novel metabolites from a bloom of the cyanobacterium Microcystis sp. Tetrahedron 2008. [DOI: 10.1016/j.tet.2008.05.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Occurrence of Cyanobacterial Harmful Algal Blooms Workgroup Report. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 619:45-103. [DOI: 10.1007/978-0-387-75865-7_3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Ersmark K, Del Valle J, Hanessian S. Aeruginosine: Chemie und Biologie der Serinprotease-Inhibitoren. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200605219] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Ersmark K, Del Valle J, Hanessian S. Chemistry and Biology of the Aeruginosin Family of Serine Protease Inhibitors. Angew Chem Int Ed Engl 2008; 47:1202-23. [DOI: 10.1002/anie.200605219] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
46
|
Berlinck RGS, Burtoloso ACB, Kossuga MH. The chemistry and biology of organic guanidine derivatives. Nat Prod Rep 2008; 25:919-54. [DOI: 10.1039/b507874c] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Plaza A, Gustchina E, Baker HL, Kelly M, Bewley CA. Mirabamides A-D, depsipeptides from the sponge Siliquariaspongia mirabilis that inhibit HIV-1 fusion. JOURNAL OF NATURAL PRODUCTS 2007; 70:1753-1760. [PMID: 17963357 DOI: 10.1021/np070306k] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Four new cyclic depsipeptides termed mirabamides A-D (1-4) have been isolated from the marine sponge Siliquariaspongia mirabilis and shown to potently inhibit HIV-1 fusion. Their structures were elucidated by NMR and ESIMS, and absolute stereochemistry of the amino acids was determined using advanced Marfey's methods and NMR. Mirabamides contain two new entities, including 4-chlorohomoproline in 1-3 and an unusual glycosylated amino acid, beta-methoxytyrosine 4'-O-alpha-L-rhamnopyranoside (in 1, 2, and 4), along with a rare N-terminal aliphatic hydroxy acid. These elements proved to be useful for anti-HIV structure-activity relationship studies. Mirabamide A inhibited HIV-1 in neutralization and fusion assays with IC50 values between 40 and 140 nM, as did mirabamides C and D (IC50 values between 140 nM and 1.3 microM for 3 and 190 nM and 3.9 microM for 4), indicating that these peptides can act at the early stages of HIV-1 entry. The potent activity of depsipeptides containing the glycosylated beta-OMe Tyr unit demonstrates that beta-OMe Tyr itself is not critical for activity. Mirabamides A-C inhibited the growth of B. subtilis and C. albicans at 1-5 microg/disk in disk diffusion assays.
Collapse
Affiliation(s)
- Alberto Plaza
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0820, USA
| | | | | | | | | |
Collapse
|
48
|
Ishida K, Christiansen G, Yoshida WY, Kurmayer R, Welker M, Valls N, Bonjoch J, Hertweck C, Börner T, Hemscheidt T, Dittmann E. Biosynthesis and structure of aeruginoside 126A and 126B, cyanobacterial peptide glycosides bearing a 2-carboxy-6-hydroxyoctahydroindole moiety. ACTA ACUST UNITED AC 2007; 14:565-576. [PMID: 17524987 PMCID: PMC4020616 DOI: 10.1016/j.chembiol.2007.04.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 12/15/2022]
Abstract
Aeruginosins represent a group of peptide metabolites isolated from various cyanobacterial genera and from marine sponges that potently inhibit different types of serine proteases. Members of this family are characterized by the presence of a 2-carboxy-6-hydroxyoctahydroindole (Choi) moiety. We have identified and fully sequenced a NRPS gene cluster in the genome of the cyanobacterium Planktothrix agardhii CYA126/8. Insertional mutagenesis of a NRPS component led to the discovery and structural elucidation of two glycopeptides that were designated aeruginoside 126A and aeruginoside 126B. One variant of the aglycone contains a 1-amino-2-(N-amidino-Delta(3)-pyrrolinyl)ethyl moiety at the C terminus, the other bears an agmatine residue. In silico analyses of the aeruginoside biosynthetic genes aerA-aerI as well as additional mutagenesis and feeding studies allowed the prediction of enzymatic steps leading to the formation of aeruginosides and the unusual Choi moiety.
Collapse
Affiliation(s)
- Keishi Ishida
- Humboldt University Berlin, Institute of Biology, 10115 Berlin, Germany
- Leibniz-Institute for Natural Product Research and Infection Biology (HKI) Dept. of Biomolecular Chemistry , 07745 Jena, Germany
| | - Guntram Christiansen
- Humboldt University Berlin, Institute of Biology, 10115 Berlin, Germany
- University of Hawaii at Manoa, Department of Chemistry, Honolulu, Hawaii 96822, USA
| | - Wesley Y. Yoshida
- University of Hawaii at Manoa, Department of Chemistry, Honolulu, Hawaii 96822, USA
| | - Rainer Kurmayer
- Austrian Academy of Science, Institute for Limnology, 5310 Mondsee, Austria
| | - Martin Welker
- Technical University Berlin, Institute of Chemistry, 10587 Berlin, Germany
| | - Nativitat Valls
- University of Barcelona, Faculty of Pharmacy, 08028-Barcelona, Spain
| | - Josep Bonjoch
- University of Barcelona, Faculty of Pharmacy, 08028-Barcelona, Spain
| | - Christian Hertweck
- Leibniz-Institute for Natural Product Research and Infection Biology (HKI) Dept. of Biomolecular Chemistry , 07745 Jena, Germany
| | - Thomas Börner
- Humboldt University Berlin, Institute of Biology, 10115 Berlin, Germany
| | - Thomas Hemscheidt
- University of Hawaii at Manoa, Department of Chemistry, Honolulu, Hawaii 96822, USA
- Cancer Research Center of Hawaii, Honolulu, Hawaii 96813, USA
| | - Elke Dittmann
- Humboldt University Berlin, Institute of Biology, 10115 Berlin, Germany
- Contact: Prof. Dr. Elke Dittmann Tel.: 49-30-20938144 Fax: 49-30-20938141
| |
Collapse
|
49
|
Baker DD, Chu M, Oza U, Rajgarhia V. The value of natural products to future pharmaceutical discovery. Nat Prod Rep 2007; 24:1225-44. [PMID: 18033577 DOI: 10.1039/b602241n] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Natural products have provided considerable value to the pharmaceutical industry over the past half century. In particular, the therapeutic areas of infectious diseases and oncology have benefited from numerous drug classes derived from natural product sources. Unfortunately, pharmaceutical companies have significantly decreased activities in natural product discovery during the past several years. Biotechnology companies working in the fields of combinatorial biosynthesis, genetic engineering and metagenomic approaches to identify novel natural product lead molecules have had limited success. Despite what appears to be a slow death of natural product discovery research, many new and interesting molecules with biological activity have been published in the past few years. If natural product materials continue to be tested for desirable therapeutic activities, we believe that significant progress in identifying new antibiotics, oncology therapeutics and other useful medicines will be made.
Collapse
Affiliation(s)
- Dwight D Baker
- Cubist Pharmaceuticals, Inc., 65 Hayden Avenue, Lexington, Massachusetts 02421, USA.
| | | | | | | |
Collapse
|
50
|
Van Wagoner RM, Drummond AK, Wright JLC. Biogenetic Diversity of Cyanobacterial Metabolites. ADVANCES IN APPLIED MICROBIOLOGY 2007; 61:89-217. [PMID: 17448789 DOI: 10.1016/s0065-2164(06)61004-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ryan M Van Wagoner
- Center for Marine Science, University of North Carolina at Wilmington, Wilmington, NC 28409, USA
| | | | | |
Collapse
|