1
|
Abstract
Graspetides are a class of RiPPs (ribosomally synthesized and post-translationally modified peptides) defined by the presence of ester or amide side chain-side chain linkages resulting in peptide macrocycles. The graspetide name comes from the ATP-grasp enzymes that install the side chain-side chain linkages. This review covers the early, activity-based isolation of the first graspetides, marinostatins and microviridins, as well as the key genomics-driven experiments that established graspetide as RiPPs. The mechanism and structure of graspetide-associated ATP-grasp enzymes is discussed. Genome mining methods to discover new graspetides as well as the analytical techniques used to determine the linkages in graspetides are described. Extant knowledge on the bioactivity of graspetides as protease inhibitors is reviewed. Further chemical modifications to graspetides as well graspetide engineering studies are also described. We conclude with several suggestions about future directions of graspetide research.
Collapse
Affiliation(s)
- Brian Choi
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - A. James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
2
|
Wang T, Wang X, Zhao H, Huo L, Fu C. Uncovering a Subtype of Microviridins via the Biosynthesis Study of FR901451. ACS Chem Biol 2022; 17:3489-3498. [PMID: 36373602 DOI: 10.1021/acschembio.2c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microviridins are a class of ribosomally synthesized and post-translationally modified peptides originally discovered from cyanobacteria, featured by intramolecular ω-ester and ω-amide bonds catalyzed by two ATP-grasp ligases. In this study, 104 biosynthetic gene clusters of microviridins from Bacteroidetes were bioinformatically analyzed, which unveiled unique features of precursor peptides. The analysis of core peptides revealed a microviridin-like biosynthetic gene cluster from Chitinophagia japonensis DSM13484 consisting of two potential precursors ChiA1 and ChiA2. Unexpectedly, the core peptide sequence of ChiA1 is consistent with the backbone of the elastase-inhibiting peptide FR901451, while ChiA2 is likely to be a precursor of an unknown product. However, an unusual C-terminal follower cleavage compared to the previously known microviridin pathways was observed and found to be dispensable for other modifications. To confirm the biosynthetic origin of FR901451, ATP-grasp ligases ChiC and ChiB were biochemically characterized to be responsible for the intramolecular ester and amide bond formation, respectively. In vitro reconstitution of the pathway showed the three-fold dehydrations of ChiA1 while unusual four-fold dehydrations were observed for ChiA2. Furthermore, in vivo gene coexpression facilitated the production of chitinoviridin A1 (FR901451) and two novel microviridin-class compounds chitinoviridin A2A and chitinoviridin A2B, with an extra macrolactone ring. All of these peptides showed potent inhibitory effects against elastase and chymotrypsin independently.
Collapse
Affiliation(s)
- Tingting Wang
- Workgroup Genome Mining for Secondary Metabolites, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.,Helmholtz International Lab for Anti-Infectives, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - Xiaotong Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China.,Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Haowen Zhao
- Workgroup Genome Mining for Secondary Metabolites, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.,Helmholtz International Lab for Anti-Infectives, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - Liujie Huo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China.,Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Chengzhang Fu
- Workgroup Genome Mining for Secondary Metabolites, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.,Helmholtz International Lab for Anti-Infectives, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
3
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
4
|
Kaweewan I, Nakagawa H, Kodani S. Heterologous expression of a cryptic gene cluster from Marinomonas fungiae affords a novel tricyclic peptide marinomonasin. Appl Microbiol Biotechnol 2021; 105:7241-7250. [PMID: 34480236 DOI: 10.1007/s00253-021-11545-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/01/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
The ω-ester-containing peptides (OEPs) are a group of ribosomally synthesized and post-translationally modified peptides (RiPPs). The biosynthetic gene clusters of ω-ester-containing peptides commonly include ATP-grasp ligase coding genes and are distributed over the genomes of a wide variety of bacteria. A new biosynthetic gene cluster of ω-ester-containing peptides was found in the genome sequence of the marine proteobacterium Marinomonas fungiae. Heterologous production of a new tricyclic peptide named marinomonasin was accomplished using the biosynthetic gene cluster in Escherichia coli expression host strain BL21(DE3). By ESI-MS and NMR experiments, the structure of marinomonasin was determined to be a tricyclic peptide 18 amino acids in length with one ester and two isopeptide bonds in the molecule. The bridging patterns of the three intramolecular bonds were determined by the interpretation of HMBC and NOESY data. The bridging pattern of marinomonasin was unprecedented in the ω-ester-containing peptide group. The results indicated that the ATP-grasp ligase for the production of marinomonasin was a novel enzyme possessing bifunctional activity to form one ester and two isopeptide bonds. KEY POINTS: • New tricyclic peptide marinomonasin was heterologously produced in Escherichia coli. • Marinomonasin contained one ester and two isopeptide bonds in the molecule. • The bridging pattern of intramolecular bonds was novel.
Collapse
Affiliation(s)
- Issara Kaweewan
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Hiroyuki Nakagawa
- Institute of Food Research, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan.,Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Shinya Kodani
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan. .,Shizuoka Institute for the Study of Marine Biology and Chemistry, Shizuoka University, Shizuoka, Japan. .,College of Agriculture, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
5
|
Patel KP, Silsby LM, Li G, Bruner SD. Structure-Based Engineering of Peptide Macrocyclases for the Chemoenzymatic Synthesis of Microviridins. J Org Chem 2021; 86:11212-11219. [PMID: 34263606 DOI: 10.1021/acs.joc.1c00785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microviridins are cyanobacterial tricyclic depsipeptides with unique ring architectures and function as serine protease inhibitors. In this study, we explore two strategies to probe the structure and mechanism of macrocyclases involved in microviridin biosynthesis. The results both provide approaches for in vitro chemoenzymatic synthesis and insight into the molecular interactions and function of the biosynthetic enzymes. The first strategy involves generating constitutively activated macrocyclases whereby the leader portion of the substrate peptide is covalently attached to the ATP-grasp ligases to examine leader peptide/enzyme interactions. The second strategy uses a structure-based design to create disulfide cross-linked peptide/enzyme complexes. Together, the strategies provide constitutively active enzymes and tools to study the catalysis of the macrocyclizations on synthetic core peptides.
Collapse
Affiliation(s)
- Krishna P Patel
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Lily M Silsby
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Gengnan Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Steven D Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
6
|
Uzunov B, Stefanova K, Radkova M, Descy JP, Gärtner G, Stoyneva-Gärtner M. First Report on Microcystis as a Potential Microviridin Producer in Bulgarian Waterbodies. Toxins (Basel) 2021; 13:toxins13070448. [PMID: 34203459 PMCID: PMC8310014 DOI: 10.3390/toxins13070448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/30/2022] Open
Abstract
Bulgaria, situated on the Balkan Peninsula, is rich in small and shallow, natural and man-made non-lotic waterbodies, which are threatened by blooms of Cyanoprokaryota/Cyanobacteria. Although cyanotoxins in Bulgarian surface waters are receiving increased attention, there is no information on microviridins and their producers. This paper presents results from a phytoplankton study, conducted in August 2019 in three lakes (Durankulak, Vaya, Uzungeren) and five reservoirs (Duvanli, Mandra, Poroy, Sinyata Reka, Zhrebchevo) in which a molecular-genetic analysis (PCR based on the precursor mdnA gene and subsequent translation to amino acid alignments), combined with conventional light microscopy and an HPLC analysis of marker pigments, were applied for the identification of potential microviridin producers. The results provide evidence that ten strains of the genus Microcystis, and of its most widespread species M. aeruginosa in particular, are potentially toxigenic in respect to microviridins. The mdnA sequences were obtained from all studied waterbodies and their translation to amino-acid alignments revealed the presence of five microviridin variants (types B/C, Izancya, CBJ55500.1 (Microcystis 199), and MC19, as well as a variant, which was very close to type A). This study adds to the general understanding of the microviridin occurrence, producers, and sequence diversity.
Collapse
Affiliation(s)
- Blagoy Uzunov
- Department of Botany, Faculty of Biology, Sofia University, 8 blvd. Dragan Zankov, 1164 Sofia, Bulgaria
- Correspondence: (B.U.); (M.S.-G.)
| | - Katerina Stefanova
- AgroBioInstitute, Bulgarian Agricultural Academy, 8 blvd. Dragan Zankov, 1164 Sofia, Bulgaria; (K.S.); (M.R.)
| | - Mariana Radkova
- AgroBioInstitute, Bulgarian Agricultural Academy, 8 blvd. Dragan Zankov, 1164 Sofia, Bulgaria; (K.S.); (M.R.)
| | - Jean-Pierre Descy
- Unité d’Océanographie Chimique, Université de Liège, Sart Tilman, 4000 Liège, Belgium;
| | - Georg Gärtner
- Institut für Botanik der Universität Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria;
| | - Maya Stoyneva-Gärtner
- Department of Botany, Faculty of Biology, Sofia University, 8 blvd. Dragan Zankov, 1164 Sofia, Bulgaria
- Correspondence: (B.U.); (M.S.-G.)
| |
Collapse
|
7
|
Algal Toxic Compounds and Their Aeroterrestrial, Airborne and other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review. Toxins (Basel) 2021; 13:toxins13050322. [PMID: 33946968 PMCID: PMC8145420 DOI: 10.3390/toxins13050322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
The review summarizes the available knowledge on toxins and their producers from rather disparate algal assemblages of aeroterrestrial, airborne and other versatile extreme environments (hot springs, deserts, ice, snow, caves, etc.) and on phycotoxins as contaminants of emergent concern in soil and plants. There is a growing body of evidence that algal toxins and their producers occur in all general types of extreme habitats, and cyanobacteria/cyanoprokaryotes dominate in most of them. Altogether, 55 toxigenic algal genera (47 cyanoprokaryotes) were enlisted, and our analysis showed that besides the “standard” toxins, routinely known from different waterbodies (microcystins, nodularins, anatoxins, saxitoxins, cylindrospermopsins, BMAA, etc.), they can produce some specific toxic compounds. Whether the toxic biomolecules are related with the harsh conditions on which algae have to thrive and what is their functional role may be answered by future studies. Therefore, we outline the gaps in knowledge and provide ideas for further research, considering, from one side, the health risk from phycotoxins on the background of the global warming and eutrophication and, from the other side, the current surge of interest which phycotoxins provoke due to their potential as novel compounds in medicine, pharmacy, cosmetics, bioremediation, agriculture and all aspects of biotechnological implications in human life.
Collapse
|
8
|
Unno K, Nakagawa H, Kodani S. Heterologous production of new protease inhibitory peptide marinostatin E. Biosci Biotechnol Biochem 2021; 85:97-102. [DOI: 10.1093/bbb/zbaa011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/09/2020] [Indexed: 01/30/2023]
Abstract
Abstract
Bicyclic peptides, marinostatins, are protease inhibitors derived from the marine bacterium Algicola sagamiensis. The biosynthetic gene cluster of marinostatin was previously identified, although no heterologous production was reported. In this report, the biosynthetic gene cluster of marinostatin (mstA and mstB) was cloned into the expression vector pET-41a(+). As a result of the coexpression experiment, a new analogous peptide named marinostatin E was successfully produced using Escherichia coli BL21(DE3). The structure of marinostatin E was determined by a combination of chemical treatments and tandem mass spectrometry experiments. Marinostatin E exhibited inhibitory activities against chymotrypsin and subtilisin with an IC50 of 4.0 and 39.6 μm, respectively.
Collapse
Affiliation(s)
- Kohta Unno
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Hiroyuki Nakagawa
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
- Advanced Analysis Center, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Shinya Kodani
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
9
|
Current Knowledge on Microviridin from Cyanobacteria. Mar Drugs 2021; 19:md19010017. [PMID: 33406599 PMCID: PMC7823629 DOI: 10.3390/md19010017] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Cyanobacteria are a rich source of secondary metabolites with a vast biotechnological potential. These compounds have intrigued the scientific community due their uniqueness and diversity, which is guaranteed by a rich enzymatic apparatus. The ribosomally synthesized and post-translationally modified peptides (RiPPs) are among the most promising metabolite groups derived from cyanobacteria. They are interested in numerous biological and ecological processes, many of which are entirely unknown. Microviridins are among the most recognized class of ribosomal peptides formed by cyanobacteria. These oligopeptides are potent inhibitors of protease; thus, they can be used for drug development and the control of mosquitoes. They also play a key ecological role in the defense of cyanobacteria against microcrustaceans. The purpose of this review is to systematically identify the key characteristics of microviridins, including its chemical structure and biosynthesis, as well as its biotechnological and ecological significance.
Collapse
|
10
|
Unno K, Kodani S. Heterologous expression of cryptic biosynthetic gene cluster from Streptomyces prunicolor yields novel bicyclic peptide prunipeptin. Microbiol Res 2020; 244:126669. [PMID: 33360751 DOI: 10.1016/j.micres.2020.126669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/02/2020] [Accepted: 12/06/2020] [Indexed: 11/18/2022]
Abstract
Recently, ω-ester-containing peptides (OEPs) were indicated to be a class of ribosomally synthesized and post-translationally modified peptides. Based on genome mining, new biosynthetic gene cluster of OEPs was found in the genome sequence of actinobacterium Streptomyces prunicolor. The biosynthetic gene cluster contained just two genes including precursor peptide (pruA) and ATP-grasp ligase (pruB) coding genes. Heterologous co-expression of the two genes was accomplished using expression vector pET-41a(+) in Escherichia coli. As a result, new OEP named prunipeptin was produced by this system. By site-directed mutagenesis experiment, a variant peptide prunipeptin 15HW was obtained. The bridging pattern of prunipeptin 15HW was determined by combination of chemical cleavage and MS experiments. Prunipeptin 15HW possessed bicyclic structure with an ester bond and an isopeptide bond. The ATP-grasp ligase PruB was indicated to catalyze the two different intramolecular bonds.
Collapse
Affiliation(s)
- Kohta Unno
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Shinya Kodani
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan; College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, Japan.
| |
Collapse
|
11
|
Unno K, Kaweewan I, Nakagawa H, Kodani S. Heterologous expression of a cryptic gene cluster from Grimontia marina affords a novel tricyclic peptide grimoviridin. Appl Microbiol Biotechnol 2020; 104:5293-5302. [DOI: 10.1007/s00253-020-10605-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/01/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
|
12
|
Huang IS, Zimba PV. Cyanobacterial bioactive metabolites-A review of their chemistry and biology. HARMFUL ALGAE 2019; 86:139-209. [PMID: 31358273 DOI: 10.1016/j.hal.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/14/2018] [Accepted: 11/16/2018] [Indexed: 06/10/2023]
Abstract
Cyanobacterial blooms occur when algal densities exceed baseline population concentrations. Cyanobacteria can produce a large number of secondary metabolites. Odorous metabolites affect the smell and flavor of aquatic animals, whereas bioactive metabolites cause a range of lethal and sub-lethal effects in plants, invertebrates, and vertebrates, including humans. Herein, the bioactivity, chemistry, origin, and biosynthesis of these cyanobacterial secondary metabolites were reviewed. With recent revision of cyanobacterial taxonomy by Anagnostidis and Komárek as part of the Süβwasserflora von Mitteleuropa volumes 19(1-3), names of many cyanobacteria that produce bioactive compounds have changed, thereby confusing readers. The original and new nomenclature are included in this review to clarify the origins of cyanobacterial bioactive compounds. Due to structural similarity, the 157 known bioactive classes produced by cyanobacteria have been condensed to 55 classes. This review will provide a basis for more formal procedures to adopt a logical naming system. This review is needed for efficient management of water resources to understand, identify, and manage cyanobacterial harmful algal bloom impacts.
Collapse
Affiliation(s)
- I-Shuo Huang
- Center for Coastal Studies, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Paul V Zimba
- Center for Coastal Studies, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
13
|
Huang IS, Zimba PV. Cyanobacterial bioactive metabolites-A review of their chemistry and biology. HARMFUL ALGAE 2019; 83:42-94. [PMID: 31097255 DOI: 10.1016/j.hal.2018.11.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/14/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Cyanobacterial blooms occur when algal densities exceed baseline population concentrations. Cyanobacteria can produce a large number of secondary metabolites. Odorous metabolites affect the smell and flavor of aquatic animals, whereas bioactive metabolites cause a range of lethal and sub-lethal effects in plants, invertebrates, and vertebrates, including humans. Herein, the bioactivity, chemistry, origin, and biosynthesis of these cyanobacterial secondary metabolites were reviewed. With recent revision of cyanobacterial taxonomy by Anagnostidis and Komárek as part of the Süβwasserflora von Mitteleuropa volumes 19(1-3), names of many cyanobacteria that produce bioactive compounds have changed, thereby confusing readers. The original and new nomenclature are included in this review to clarify the origins of cyanobacterial bioactive compounds. Due to structural similarity, the 157 known bioactive classes produced by cyanobacteria have been condensed to 55 classes. This review will provide a basis for more formal procedures to adopt a logical naming system. This review is needed for efficient management of water resources to understand, identify, and manage cyanobacterial harmful algal bloom impacts.
Collapse
Affiliation(s)
- I-Shuo Huang
- Center for Coastal Studies, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Paul V Zimba
- Center for Coastal Studies, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
14
|
A distributive peptide cyclase processes multiple microviridin core peptides within a single polypeptide substrate. Nat Commun 2018; 9:1780. [PMID: 29725007 PMCID: PMC5934393 DOI: 10.1038/s41467-018-04154-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 02/23/2018] [Indexed: 11/16/2022] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are an important family of natural products. Their biosynthesis follows a common scheme in which the leader peptide of a precursor peptide guides the modifications of a single core peptide. Here we describe biochemical studies of the processing of multiple core peptides within a precursor peptide, rare in RiPP biosynthesis. In a cyanobacterial microviridin pathway, an ATP-grasp ligase, AMdnC, installs up to two macrolactones on each of the three core peptides within AMdnA. The enzyme catalysis occurs in a distributive fashion and follows an unstrict N-to-C overall directionality, but a strict order in macrolactonizing each core peptide. Furthermore, AMdnC is catalytically versatile to process unnatural substrates carrying one to four core peptides, and kinetic studies provide insights into its catalytic properties. Collectively, our results reveal a distinct biosynthetic logic of RiPPs, opening up the possibility of modular production via synthetic biology approaches. Microviridins belong to the family of ribosomally synthesized and post-translationally modified peptides (RiPPs). Here, the authors discover a microviridin-synthesizing enzyme in a cyanobacterium that modifies multiple core peptides from a single substrate in a distributive and unstrictly directional manner, an unusual biosynthetic logic for RiPPs.
Collapse
|
15
|
Heravi MM, Lashaki TB, Fattahi B, Zadsirjan V. Application of asymmetric Sharpless aminohydroxylation in total synthesis of natural products and some synthetic complex bio-active molecules. RSC Adv 2018; 8:6634-6659. [PMID: 35559209 PMCID: PMC9092437 DOI: 10.1039/c7ra12625e] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/30/2018] [Indexed: 01/23/2023] Open
Abstract
This report illustrates the applications of Asymmetric Sharpless Aminohydroxylation (ASAH) in the stereoselective synthesis of vicinal amino alcohols as important intermediates in the total synthesis of complex molecules and natural products with significant biological activities. The ASHA allows the regio- syn-selective synthesis of 1,2-amino alcohols via reaction of alkenes with salts of N-halosulfonamides, -amides and -carbamates employing osmium tetroxide (OsO4) as an efficient catalyst. In this reaction, chirality is induced via the addition of dihydroquinine- and dihydroquinidine as derived chiral ligands.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University Vanak Tehran Iran
| | | | - Bahareh Fattahi
- Department of Chemistry, School of Science, Alzahra University Vanak Tehran Iran
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Science, Alzahra University Vanak Tehran Iran
| |
Collapse
|
16
|
Liu L, Jokela J, Wahlsten M, Nowruzi B, Permi P, Zhang YZ, Xhaard H, Fewer DP, Sivonen K. Nostosins, Trypsin Inhibitors Isolated from the Terrestrial Cyanobacterium Nostoc sp. Strain FSN. JOURNAL OF NATURAL PRODUCTS 2014; 77:1784-1790. [PMID: 25069058 DOI: 10.1021/np500106w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Two new trypsin inhibitors, nostosin A (1) and B (2), were isolated from a hydrophilic extract of Nostoc sp. strain FSN, which was collected from a paddy field in the Golestan Province of Iran. Nostosins A (1) and B (2) are composed of three subunits, 2-hydroxy-4-(4-hydroxyphenyl)butanoic acid (Hhpba), L-Ile, and L-argininal (1) or argininol (2). Nostosins A (1) and B (2) exhibited IC50 values of 0.35 and 55 μM against porcine trypsin, respectively, suggesting that the argininal aldehyde group plays a crucial role in the efficient inhibition of trypsin. Molecular docking of nostosin A (1) (449 Da), leupeptin (426 Da, IC50 0.5 μM), and spumigin E (610 Da, IC50 < 0.1 μM) with trypsin suggested prominent binding similarity between nostosin A (1) and leupeptin but only partial binding similarity with spumigin E. The number of hydrogen bonds between ligands and trypsin increased according to the length and size of the ligand molecule, and the docking affinity values followed the measured IC50 values. Nostosin A (1) is the first highly potent three-subunit trypsin inhibitor with potency comparable to the known commercial trypsin inhibitor leupeptin. These findings expand the known diversity of short-chain linear peptide protease inhibitors produced by cyanobacteria.
Collapse
Affiliation(s)
- Liwei Liu
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| | - Jouni Jokela
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| | - Matti Wahlsten
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| | - Bahareh Nowruzi
- Department of Biology, Faculty of Science, Tarbiat Moallem University , 49 Dr. Mofatteh Avenue, P.O. Box 158153587, 15614, Tehran, Iran
| | - Perttu Permi
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki , P.O. Box 65, 00014, Helsinki, Finland
| | - Yue Zhou Zhang
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| | - Henri Xhaard
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| | - David P Fewer
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| | - Kaarina Sivonen
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 56, 00014, Helsinki, Finland
| |
Collapse
|
17
|
Thorskov Bladt T, Kalifa-Aviv S, Ostenfeld Larsen T, Carmeli S. Micropeptins from Microcystis sp. collected in Kabul Reservoir, Israel. Tetrahedron 2014. [DOI: 10.1016/j.tet.2013.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Adiv S, Carmeli S. Protease inhibitors from Microcystis aeruginosa bloom material collected from the Dalton Reservoir, Israel. JOURNAL OF NATURAL PRODUCTS 2013; 76:2307-2315. [PMID: 24261937 DOI: 10.1021/np4006844] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nine new metabolites, aeruginosins DA495A (1), DA511 (2), DA642A (3), DA642B (4), DA688 (5), DA722 (6), and DA495B (7), microguanidine DA368 (8), and anabaenopeptin DA850 (9), were isolated along with the known micropeptins MZ924, MZ939A, and MZ1019, cyanopeptolins S and SS, microcin SF608, and aeruginazoles DA1497, DA1304, and DA1274 from bloom material of the cyanobacterium Microcystis aeruginosa collected from the Dalton reservoir, Israel, in October 2007. Their structures were elucidated by a combination of various spectroscopic techniques, primarily NMR and MS, while the absolute configurations of the asymmetric centers were determined by Marfey's and chiral-phase HPLC methods. Two of the new aeruginosins, DA511 (1) and DA495A (2), contain a new Choi isomer, (2S,3aS,6S,7aS)-Choi. The structure elucidation and biological activities of the new metabolites are described.
Collapse
Affiliation(s)
- Simi Adiv
- Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel-Aviv University , Ramat Aviv, Tel-Aviv 69978, Israel
| | | |
Collapse
|
19
|
Nagarajan M, Maruthanayagam V, Sundararaman M. SAR analysis and bioactive potentials of freshwater and terrestrial cyanobacterial compounds: a review. J Appl Toxicol 2012; 33:313-49. [PMID: 23172644 DOI: 10.1002/jat.2833] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 08/29/2012] [Accepted: 09/11/2012] [Indexed: 11/07/2022]
Abstract
Freshwater and terrestrial cyanobacteria resemble the marine forms in producing divergent chemicals such as linear, cyclic and azole containing peptides, alkaloids, cyclophanes, terpenes, lactones, etc. These metabolites have wider biomedical potentials in targeting proteases, cancers, parasites, pathogens and other cyanobacteria and algae (allelopathy). Among the various families of non-marine cyanobacterial peptides reported, many of them are acting as serine protease inhibitors. While the micropeptin family has a preference for chymotrypsin inhibition rather than other serine proteases, the aeruginosin family targets trypsin and thrombin. In addition, cyanobacterial compounds such as scytonemide A, lyngbyazothrins C and D and cylindrocyclophanes were found to inhibit 20S proteosome. Apart from proteases, metabolites blocking the other targets of cancer pathways may exhibit cytotoxic effect. Colon and rectum, breast, lung and prostate are the worst affecting cancers in humans and are deduced to be inhibited by both peptidic and non-peptidic compounds. Moreover, the growth of infections causing parasites such as Plasmodium, Leishmania and Trypanosoma are well controlled by peptides: aerucyclamides A-D, tychonamides and alkaloids: nostocarboline and calothrixins. Likewise, varieties of cyanobacterial compounds tend to inhibit serious infectious disease causing bacterial, fungal and viral agents. Interestingly, portoamides, spiroidesin, nostocyclamide and kasumigamide are the allelopathic peptides determined to suppress the growth of toxic cyanobacteria and nuisance algae. Thus cyanobacterial compounds have a broad bioactive spectrum; the analysis of SAR studies will not only assist to find out the mode of action but also reveal bioactive key components. Thereby, developing the drugs bearing these bioactive skeletons to treat various illnesses is wide open.
Collapse
Affiliation(s)
- M Nagarajan
- Department of Marine Biotechnology, School of Marine Sciences, Bharathidasan University, Tiruchirappalli-, 620 024, Tamil Nadu, India
| | | | | |
Collapse
|
20
|
Lifshits M, Carmeli S. Metabolites of Microcystis aeruginosa bloom material from Lake Kinneret, Israel. JOURNAL OF NATURAL PRODUCTS 2012; 75:209-219. [PMID: 22280481 DOI: 10.1021/np200909x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Six new metabolites, micropeptin KT1042, microguanidine KT636, aeruginosins KT608A, KT608B, and KT650, and pseudoaeruginosin KT554, were isolated along with the known micropeptins SF909 and HM978, cyanopeptolin S, anabaenopeptin F, and the two isomers of planktocyclin-S-oxide from a bloom material collected from Lake Kinneret, Israel, in March 2005. The structure elucidation and biological activity of the six new natural products isolated from this bloom material and the related aeruginosin GH553 are described.
Collapse
Affiliation(s)
- Marina Lifshits
- Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel
| | | |
Collapse
|
21
|
Perron MC, Qiu B, Boucher N, Bellemare F, Juneau P. Use of chlorophyll a fluorescence to detect the effect of microcystins on photosynthesis and photosystem II energy fluxes of green algae. Toxicon 2012; 59:567-77. [PMID: 22234271 DOI: 10.1016/j.toxicon.2011.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/09/2011] [Accepted: 12/13/2011] [Indexed: 01/09/2023]
Abstract
The phenomenon of cyanobacteria bloom occurs widely in lakes, reservoirs, ponds and slow flowing rivers. Those blooms can have important repercussions, at once on recreational and commercial activities but also on the health of animals and human beings. Indeed, many species are known to produce toxins which are released in water mainly at cellular death. The cyanotoxin most frequently encountered is the microcystin (MC), a hepatotoxin which counts more than 70 variants. The use of fast tests for the detection of this toxin is thus a necessity for the protection of the ecosystems and the human health. A promising method for their detection is a bioassay based on the chlorophyll a fluorescence of algae. Many studies have shown that algae are sensible to diverse pollutants, but were almost never used for cyanotoxins. Therefore, our goals were to evaluate the effect of microcystin on the fluorescence of different species of algae and how it can affect the flow of energy through photosystem II. To reach these objectives, we exposed four green algae (Scenedesmus obliquus CPCC5, Chlamydomonas reinhardtii CC125, Pseudokirchneriella subcapitata CPCC37 and Chlorella vulgaris CPCC111) to microcystin standards (variants MC-LF, LR, RR, YR) and to microcystin extracted from Microcystis aeruginosa (CPCC299), which is known to produce mainly MC-LR. Chlorophyll a fluorescence was measured by PEA (Plant Efficiency Analyzer) and LuminoTox. The results of our experiment showed that microcystins affect the photosynthetic efficiency and the flow of energy through photosystem II from 0.01 μg/mL, within only 15 min. From exposure to standard of microcystin, we showed that MC-LF was the most potent variant, followed by MC-YR, LR and RR. Moreover, green algae used in this study demonstrated different sensitivity to MCs, S. obliquus being the more sensitive. We finally demonstrated that LuminoTox was more sensitive to MCs than parameters measured with PEA, although the latter brings indication on the mode of action of MCs at the photosynthetic apparatus level. This is the first report showing a photosynthetic response within 15 min of exposure. Our results suggest that bioassay based on chlorophyll fluorescence can be used as a rapid and sensitive tool to detect microcystin.
Collapse
Affiliation(s)
- Marie-Claude Perron
- Department of Biological Sciences-TOXEN, Ecotoxicology of Aquatic Microorganisms Laboratory, Université du Québec à Montréal, CP8888, Succ. Centre-Ville, Montreal, Québec, H3C 3P8, Canada
| | | | | | | | | |
Collapse
|
22
|
A practical synthesis of N α-Fmoc protected L-threo-β-hydroxyaspartic acid derivatives for coupling via α- or β-carboxylic group. Amino Acids 2010; 42:285-93. [PMID: 21082204 DOI: 10.1007/s00726-010-0806-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/01/2010] [Indexed: 10/18/2022]
Abstract
A simple and practical general synthetic protocol towards orthogonally protected tHyAsp derivatives fully compatible with Fmoc solid-phase peptide synthetic methodology is reported. Our approach includes enantioresolution of commercially available D: ,L: -tHyAsp racemic mixture by co-crystallization with L: -Lys, followed by ion exchange chromatography yielding enantiomerically pure L: -tHyAsp and D: -tHyAsp, and their selective orthogonal protection. In this way N ( α )-Fmoc protected tHyAsp derivatives were prepared ready for couplings via either α- or β-carboxylic group onto the resins or the growing peptide chain. In addition, coupling of tHyAsp via β-carboxylic group onto amino resins allows preparation of peptides containing tHyAsn sequences, further increasing the synthetic utility of prepared tHyAsp derivatives.
Collapse
|
23
|
Eight novel serine proteases inhibitors from a water bloom of the cyanobacterium Microcystis sp. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.09.067] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Adiv S, Aharonv-Nadborny R, Carmeli S. Micropeptins from Microcystis aeruginosa collected in Dalton reservoir, Israel. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.06.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Exploiting the natural diversity of microviridin gene clusters for discovery of novel tricyclic depsipeptides. Appl Environ Microbiol 2010; 76:3568-74. [PMID: 20363789 DOI: 10.1128/aem.02858-09] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Microviridins are ribosomally synthesized tricyclic depsipeptides produced by different genera of cyanobacteria. The prevalence of the microviridin gene clusters and the natural diversity of microviridin precursor sequences are currently unknown. Screening of laboratory strains and field samples of the bloom-forming freshwater cyanobacterium Microcystis via PCR revealed global occurrence of the microviridin pathway and an unexpected natural variety. We could detect 15 new variants of the precursor gene mdnA encoding microviridin backbones that differ in up to 4 amino acid positions from known isoforms of the peptide. The survey not only provides insights into the versatility of the biosynthetic enzymes in a closely related group of cyanobacteria, but also facilitates the discovery and characterization of cryptic microviridin variants. This is demonstrated for microviridin L in Microcystis aeruginosa strain NIES843 and heterologously produced variants.
Collapse
|
26
|
Raveh A, Moshe S, Evron Z, Flescher E, Carmeli S. Novel thiazole and oxazole containing cyclic hexapeptides from a waterbloom of the cyanobacterium Microcystis sp. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Berlinck RGS, Burtoloso ACB, Trindade-Silva AE, Romminger S, Morais RP, Bandeira K, Mizuno CM. The chemistry and biology of organic guanidine derivatives. Nat Prod Rep 2010; 27:1871-907. [DOI: 10.1039/c0np00016g] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Philmus B, Christiansen G, Yoshida WY, Hemscheidt TK. Post-translational Modification in Microviridin Biosynthesis. Chembiochem 2008; 9:3066-73. [DOI: 10.1002/cbic.200800560] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Ziemert N, Ishida K, Liaimer A, Hertweck C, Dittmann E. Ribosomal Synthesis of Tricyclic Depsipeptides in Bloom-Forming Cyanobacteria. Angew Chem Int Ed Engl 2008; 47:7756-9. [DOI: 10.1002/anie.200802730] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Ziemert N, Ishida K, Liaimer A, Hertweck C, Dittmann E. Ribosomal Synthesis of Tricyclic Depsipeptides in Bloom-Forming Cyanobacteria. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200802730] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Sedmak B, Carmeli S, Elersek T. "Non-toxic" cyclic peptides induce lysis of cyanobacteria-an effective cell population density control mechanism in cyanobacterial blooms. MICROBIAL ECOLOGY 2008; 56:201-209. [PMID: 18008101 DOI: 10.1007/s00248-007-9336-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 10/19/2007] [Accepted: 10/21/2007] [Indexed: 05/25/2023]
Abstract
The presence of planktopeptin BL1125, anabaenopeptin B and anabaenopeptin F, two types of "non-toxic" cyclic peptide produced in bloom forming cyanobacteria, can provoke lysis of different non-axenic Microcystis aeruginosa cell lines via the induction of virus-like particles. The resulting particles are also able to infect the axenic M. aeruginosa cell line without lytic effects. Nevertheless, the presence of "non-toxic" cyclic peptides of cyanobacterial origin can induce lysis of these previously infected cells. This effect implies that a possible role of these peptides in the natural environment is the control of cyanobacterial population density. Lysogenic cyanobacteria can consequently act as hot-spots that, in the presence of cyanobacterial cyclic peptides, release numerous infectious particles. The process can be self-augmented with the simultaneous release of additional cyclic peptides from the producing lysogens, starting a forest fire effect that ends in collapse of cyanobacterial blooms.
Collapse
Affiliation(s)
- B Sedmak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology Ljubljana, Vecna pot 111, 1000, Ljubljana, Slovenia.
| | | | | |
Collapse
|
32
|
Gesner-Apter S, Carmeli S. Three novel metabolites from a bloom of the cyanobacterium Microcystis sp. Tetrahedron 2008. [DOI: 10.1016/j.tet.2008.05.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Khalaf JK, Datta A. A concise, asymmetric synthesis of (2R,3R)-3-hydroxyaspartic acid. Amino Acids 2007; 35:507-10. [PMID: 17914600 DOI: 10.1007/s00726-007-0595-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 07/23/2007] [Indexed: 10/22/2022]
Abstract
3-Hydroxyaspartic acid and its derivatives are found both in the free form and as peptide constituents in various microorganisms and fungi. Considering the biological importance of this amino acid and its potential utility as a multifunctional building block in organic syntheses, we have developed a short-step, asymmetric synthetic route to a strategically protected 3-hydroxyaspartic acid derivative in enantiopure form. The key steps in the synthesis involve, Sharpless asymmetric aminohydroxylation of commercially available trans-ethyl cinnamate, and, utilization of the phenyl group as a masked carboxylic acid synthon towards construction of the complete structural framework of the title compound.
Collapse
Affiliation(s)
- J K Khalaf
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, USA
| | | |
Collapse
|