1
|
Ge Y, Peng Y, Xie R, Luo Y, Li Y, Chen G. Visible Light-Mediated Late-Stage Thioetherification of Mercaptopurine Derivatives. Chemistry 2024; 30:e202401774. [PMID: 38923704 DOI: 10.1002/chem.202401774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
We disclose herein a novel and general radical approach to alkylthiopurines, encompassing 4 types of thiopurines, as well as their corresponding ribosides. This strategy is achieved through visible light-mediated late-stage functionalization of the sulfur atoms of mercaptopurines. The in situ-generated disulfide was proposed as the pivotal neutral intermediate for this transformation. We present herein a novel photo-mediated homolytic C-S bond formation for the preparation of alkylthiopurines and alkylthiopurine nucleosides. Despite the presence of reactive sites for the Minisci reaction, chemoselective S-alkylation remained the predominant pathway. This method allows for the late-stage introduction of a broad spectrum of alkyl groups onto the sulfur atom of unprotective mercaptopurine derivatives, encompassing 2-, 6-, and 8-mercaptopurine rings. Organoborons serve as efficient and eco-friendly alkylating reagents, providing advantages in terms of readily availability, stability, and reduced toxicity. Further derivatization of the thioetherified nucleosides, together with anti-tumor assays, led to the discovery of potent anti-tumor agents with an IC50 value reaching 6.1 μM (Comp. 31 for Jurkat).
Collapse
Affiliation(s)
- Yuhua Ge
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R.China
| | - Yijiang Peng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R.China
| | - Ruoqian Xie
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R.China
| | - Yang Luo
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yangyan Li
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Gang Chen
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Key Laboratory of Green and High-value Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai, 810008, P. R. China
| |
Collapse
|
2
|
Gonçalves JM, Gonçalves JND, Sousa LF, Rodrigues LR, Correia-de-Sá P, Coutinho PJG, Castanheira EMS, Oliveira R, Dias AM. 2,4,5-Triaminopyrimidines as blue fluorescent probes for cell viability monitoring: synthesis, photophysical properties, and microscopy applications. Org Biomol Chem 2024; 22:2252-2263. [PMID: 38390694 DOI: 10.1039/d4ob00092g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Monitoring cell viability is critical in cell biology, pathology, and drug discovery. Most cell viability assays are cell-destructive, time-consuming, expensive, and/or hazardous. Herein, we present a series of newly synthesized 2,4,5-triaminopyrimidine derivatives able to discriminate between live and dead cells. To our knowledge, these compounds are the first fluorescent nucleobase analogues (FNAs) with cell viability monitoring potential. These new fluorescent molecules are synthesized using highly efficient and cost-effective methods and feature unprecedented photophysical properties (longer absorption and emission wavelengths, environment-sensitive emission, and unprecedented brightness within FNAs). Using a live-dead Saccharomyces cerevisiae cell and theoretical assays, the fluorescent 2,4,5-triaminopyrimidine derivatives were found to specifically accumulate inside dead cells by interacting with dsDNA grooves, thus paving the way for the emergence of novel and safe fluorescent cell viability markers emitting in the blue region. As the majority of commercially available viability dyes emit in the green to red region of the visible spectrum, these novel markers might be useful to meet the needs of blue markers for co-staining combinations.
Collapse
Affiliation(s)
- Jorge M Gonçalves
- CQ-UM - Centre of Chemistry of University of Minho, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- CF-UM-UP - Physics Centre of Minho and Porto Universities and LaPMET (Laboratory of Physics for Materials and Emergent Technologies), Campus de Gualtar, 4710-057, Braga, Portugal
| | - João N D Gonçalves
- CQ-UM - Centre of Chemistry of University of Minho, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Luís F Sousa
- CQ-UM - Centre of Chemistry of University of Minho, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- CF-UM-UP - Physics Centre of Minho and Porto Universities and LaPMET (Laboratory of Physics for Materials and Emergent Technologies), Campus de Gualtar, 4710-057, Braga, Portugal
| | - Lígia R Rodrigues
- CEB - Centre of Biological Engineering, Department of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo J G Coutinho
- CF-UM-UP - Physics Centre of Minho and Porto Universities and LaPMET (Laboratory of Physics for Materials and Emergent Technologies), Campus de Gualtar, 4710-057, Braga, Portugal
| | - Elisabete M S Castanheira
- CF-UM-UP - Physics Centre of Minho and Porto Universities and LaPMET (Laboratory of Physics for Materials and Emergent Technologies), Campus de Gualtar, 4710-057, Braga, Portugal
| | - Rui Oliveira
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Alice M Dias
- CQ-UM - Centre of Chemistry of University of Minho, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
3
|
Zhang P, Liu Y, Li X, Siri G, Wang J, Li Z, Jian Y, Gao Z. Copper Catalyzed Three-Component Ullmann C-S Coupling in PEG for the Synthesis of 6-Aryl/alkylthio-purines. J Org Chem 2024; 89:2212-2222. [PMID: 38311847 DOI: 10.1021/acs.joc.3c02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
To tackle the environmental unfriendly issue in existing synthesis strategies for 6-substitued thiopurine derivatives, such as poor step economy, frequent use of malodorous organic sulfur starting materials, toxic organic solvents, and equivalent dosage of base, we have developed a CuI-catalyzed base-free three-component Ullmann C-S coupling synthetic strategy, featured using inorganic salt Na2S as the sulfur source and nontoxic PEG-600 as the solvent. The newly developed strategy is particularly effective for the synthesis of 6-arylthiopurines. The high catalytic efficiency in PEG-600 can be rationalized by the high soluble ability of CuI catalyst, likely due to the presence of multiple oxygen coordination sites in PEG.
Collapse
Affiliation(s)
- Panpan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119, China
| | - Yunfang Liu
- South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xulian Li
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119, China
| | - Geling Siri
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119, China
| | - Jieyuan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119, China
| | - Zhen Li
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119, China
| | - Yajun Jian
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119, China
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119, China
| |
Collapse
|
4
|
Senhorães NR, Silva BF, Sousa R, Leite BP, Gonçalves JM, Almeida Paz FA, Pereira-Wilson C, Dias AM. Synthesis of 6,8-diaminopurines via acid-induced cascade cyclization of 5-aminoimidazole precursors and preliminary anticancer evaluation. Org Biomol Chem 2024; 22:1500-1513. [PMID: 38294067 DOI: 10.1039/d3ob01985c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Inspired by the pharmacological interest generated by 6-substituted purine roscovitine for cancer treatment, 5-aminoimidazole-4-carboxamidine precursors containing a cyanamide unit were prepared by condensation of 5-amino-N-cyanoimidazole-4-carbimidoyl cyanides with a wide range of primary amines. When these amidine precursors were combined with acids, a fast cascade cyclization occurred at room temperature, affording new 6,8-diaminopurines with the N-3 and N-6 substituents changed relatively to the original positions they occupied in the amidine and imidazole moieties of precursors. The efficacy and wide scope of this method was well demonstrated by an easy and affordable synthesis of 22 6,8-diaminopurines decorated with a wide diversity of substituents at the N-3 and N-6 positions of the purine ring. Preliminary in silico and in vitro assessments of these 22 compounds were carried out and the results showed that 13 of these tested compounds not only exhibited IC50 values between 1.4 and 7.5 μM against the colorectal cancer cell line HCT116 but also showed better binding energies than known inhibitors in docking studies with different cancer-related target proteins. In addition, good harmonization observed between in silico and in vitro results strengthens and validates this preliminary evaluation, suggesting that these novel entities are good candidates for further studies as new anticancer agents.
Collapse
Affiliation(s)
- Nádia R Senhorães
- CQUM - Chemistry Centre, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Bruna F Silva
- CQUM - Chemistry Centre, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Raquel Sousa
- CQUM - Chemistry Centre, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- CEB - Centre of Biological Engineering, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Bruna P Leite
- CQUM - Chemistry Centre, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Jorge M Gonçalves
- CQUM - Chemistry Centre, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Filipe A Almeida Paz
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cristina Pereira-Wilson
- CEB - Centre of Biological Engineering, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057, Braga, Portugal
| | - Alice M Dias
- CQUM - Chemistry Centre, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
5
|
Fu Q, Xie Y, Gao F, Zhu W, Lang X, Singh R, Zhang B, Kumar S. Signal-enhanced multi-core fiber-based WaveFlex biosensor for ultra-sensitive xanthine detection. OPTICS EXPRESS 2023; 31:43178-43197. [PMID: 38178418 DOI: 10.1364/oe.503443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
In this work, we introduce a novel multimode fiber (MMF) - seven core fiber (SCF) - MMF (MCM) optical fiber biosensor, also known as the WaveFlex biosensor (plasma wave assisted fiber biosensor), based on localized surface plasmon resonance (LSPR) for qualitative detection of xanthine. Xanthine is a purine base widely distributed in human blood and tissues, and commonly used as an indicator for various disease detections. The MCM sensor incorporates a tapered optical fiber structure, fabricated using the combiner manufacturing system (CMS), and is designed with SCF and MMF. By effectively harnessing LSPR, the sensor boosts the attachment points of biomolecules on the probe surface through immobilized tungsten disulfide (WS2)-thin layers, gold nanoparticles (AuNPs), and carbon nitride quantum dots (C3N-QDs). The functionalization of xanthine oxidase (XO) on the sensing probe further enhances the sensor's specificity. The proposed WaveFlex biosensor exhibits a remarkable sensitivity of 3.2 nm/mM and a low detection limit of 96.75 µM within the linear detection range of 100 - 900 µM. Moreover, the sensor probe demonstrates excellent reusability, reproducibility, stability, and selectivity. With its sensitivity, biocompatibility, and immense potential for detecting human serum and fish products, this WaveFlex biosensor presents a promising platform for future applications.
Collapse
|
6
|
Mukhin EM, Savateev KV, Rusinov VL. Approaches to the synthesis of heterocyclic C-nucleosides. Russ Chem Bull 2023; 72:425-481. [PMID: 37073401 PMCID: PMC10092924 DOI: 10.1007/s11172-023-3810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/29/2023] [Accepted: 09/02/2023] [Indexed: 04/20/2023]
Abstract
This review is focused on the synthetic strategies to heterocyclic C-nucleosides and covers the literature from 2011 to 2021. The main attention is paid to the following three approaches: the direct C-C coupling of a carbohydrate moiety with a preformed aglycon unit, the construction of a (pseudo)sugar residue on a pre-formed aglycon, and the construction of an aglycon on a pre-formed (pseudo)sugar. In each Section, the literature data are categorized in terms of the size of aglycon from simple to complex, the advantages and drawbacks of the reviewed approaches are discussed.
Collapse
Affiliation(s)
- E. M. Mukhin
- Ural Federal University named after the First President of Russia B. N. Yeltsin, 19 ul. Mira, 620002 Ekaterinburg, Russian Federation
| | - K. V. Savateev
- Ural Federal University named after the First President of Russia B. N. Yeltsin, 19 ul. Mira, 620002 Ekaterinburg, Russian Federation
| | - V. L. Rusinov
- Ural Federal University named after the First President of Russia B. N. Yeltsin, 19 ul. Mira, 620002 Ekaterinburg, Russian Federation
| |
Collapse
|
7
|
Regioselective N-alkylation of some 2 or 6-chlorinated purine analogues. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Savateev KV, Fedotov VV, Slepukhin PA, Ulomsky E, Rusinov VL. Regiospecific way to N9-alkylated thioxanthines. NEW J CHEM 2022. [DOI: 10.1039/d2nj03002k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A regiospecific way to N9-alkylated thioxanthines as novel acyclic nucleoside analogues has been developed. This approach is based on a cleavage methodology involving the construction of a target heterocyclic scaffold...
Collapse
|
9
|
|
10
|
Access to azolopyrimidine-6,7-diamines as a valuable “building-blocks” to develop new fused heteroaromatic systems. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Musiyak VV, Nizova IA, Chulakov EN, Sadretdinova LS, Tumashov AA, Levit GL, Krasnov VP. Stereochemical aspects in the synthesis of novel N-(purin-6-yl)dipeptides as potential antimycobacterial agents. Amino Acids 2021; 53:407-415. [PMID: 33599833 PMCID: PMC7889712 DOI: 10.1007/s00726-021-02958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/06/2021] [Indexed: 11/08/2022]
Abstract
The synthesis of purine conjugates with natural amino acids is one of the promising directions in search for novel therapeutic agents, including antimycobacterial agents. The purpose of this study was to synthesize N-(purin-6-yl)dipeptides containing the terminal fragment of (S)-glutamic acid. To obtain the target compounds, two synthetic routes were tested. The first of them is based on coupling of N-(purin-6-yl)-(S)-amino acids to dimethyl (S)-glutamate in the presence of carbodiimide coupling agent followed by the removal of ester groups. However, it turned out that this coupling process was accompanied by racemization of the chiral center of N-(purin-6-yl)-α-amino acids and in all cases led to mixtures of (S,S)- and (R,S)-diastereomers (6:4). Individual (S,S)-diastereomers were obtained using an alternative approach based on the nucleophilic substitution of chlorine in 6-chloropurine or 2-amino-6-chloropurine with corresponding dipeptides as nucleophiles. The enantiomeric purity of the target compounds was confirmed by chiral HPLC. To test the assumption that racemization of the chiral center of N-(purin-6-yl)-α-amino acids occurs with the participation of nitrogen atoms of the imidazole ring via the stage of formation of a chirally labile intermediate, we obtained such structural analogs of N-(purin-6-yl)-(S)-alanine as N-(9-benzylpurin-6-yl)-(S)-alanine and N-(7-deazapurin-6-yl)-(S)-alanine. It was found that coupling of these compounds to dimethyl (S)-glutamate was also accompanied by racemization. This indicates that the imidazole fragment does not play a crucial role in this process. When testing the antimycobacterial activity of some of the obtained compounds, conjugates with moderate activity against the laboratory Mycobacterium tuberculosis H37Rv strain (MIC 3.1–6.25 μg/mL) were identified.
Collapse
Affiliation(s)
- Vera V Musiyak
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), 22/20, S. Kovalevskoy/Akademicheskaya St., Ekaterinburg, 620108, Russia
| | - Irina A Nizova
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), 22/20, S. Kovalevskoy/Akademicheskaya St., Ekaterinburg, 620108, Russia
| | - Evgeny N Chulakov
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), 22/20, S. Kovalevskoy/Akademicheskaya St., Ekaterinburg, 620108, Russia
| | - Liliya Sh Sadretdinova
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), 22/20, S. Kovalevskoy/Akademicheskaya St., Ekaterinburg, 620108, Russia
| | - Andrey A Tumashov
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), 22/20, S. Kovalevskoy/Akademicheskaya St., Ekaterinburg, 620108, Russia.,Ural Federal University, 19, Mira St., Ekaterinburg, 620002, Russia
| | - Galina L Levit
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), 22/20, S. Kovalevskoy/Akademicheskaya St., Ekaterinburg, 620108, Russia
| | - Victor P Krasnov
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), 22/20, S. Kovalevskoy/Akademicheskaya St., Ekaterinburg, 620108, Russia. .,Ural Federal University, 19, Mira St., Ekaterinburg, 620002, Russia.
| |
Collapse
|
12
|
Wang Y, Xu H, Wang H, Zheng Z, Meng Z, Xu Z, Li J, Xue M. Design, Synthesis, and Biological Activity Studies of Istradefylline Derivatives Based on Adenine as A 2A Receptor Antagonists. ACS OMEGA 2021; 6:4386-4394. [PMID: 33644551 PMCID: PMC7906590 DOI: 10.1021/acsomega.0c05741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/21/2021] [Indexed: 05/25/2023]
Abstract
Due to its double bond, istradefylline rapidly isomerizes to Z-istradefylline when exposed to normal daylight in dilute solution. To solve the poor photostability of the istradefylline solution, a series of istradefylline derivatives (in total 17 compounds, including II-1 and II-2 series) were designed and synthesized, and their biological activity in inhibiting cAMP was evaluated. The IC50 values of compounds II-1-3, II-2-1, II-2-2, II-2-3, II-2-4, and II-2-6 were 7.71, 6.52, 6.16, 7.23, 7.96, and 9.68 μg/mL, respectively, which had the same order of activity as that of istradefylline (IC50 value was 1.94 μg/mL). The preliminary structure-activity relationship suggested that the 6-amino in adenine played an important role in binding an A2A receptor. The results of photostability experiments showed that the photostability of the target compounds of II-1 and II-2 series was improved when compared with that of istradefylline.
Collapse
Affiliation(s)
- Yiyun Wang
- School
of Chemistry and Chemical Engineering, Beijing
Institute of Technology, Courtyard 8, Liangxiang Campus, Fangshan District, 102488 Beijing, P. R. China
- Shandong
Xinhua Pharmaceutical Co., Ltd., No. 1 Lutai Avenue, 255086 Zibo, Shandong, P. R. China
| | - Haojie Xu
- School
of Chemistry and Chemical Engineering, Beijing
Institute of Technology, Courtyard 8, Liangxiang Campus, Fangshan District, 102488 Beijing, P. R. China
- Shandong
Xinhua Pharmaceutical Co., Ltd., No. 1 Lutai Avenue, 255086 Zibo, Shandong, P. R. China
| | - Hongyi Wang
- Shandong
Xinhua Pharmaceutical Co., Ltd., No. 1 Lutai Avenue, 255086 Zibo, Shandong, P. R. China
| | - Zhonghui Zheng
- Shandong
Xinhua Pharmaceutical Co., Ltd., No. 1 Lutai Avenue, 255086 Zibo, Shandong, P. R. China
| | - Zihui Meng
- School
of Chemistry and Chemical Engineering, Beijing
Institute of Technology, Courtyard 8, Liangxiang Campus, Fangshan District, 102488 Beijing, P. R. China
| | - Zhibin Xu
- School
of Chemistry and Chemical Engineering, Beijing
Institute of Technology, Courtyard 8, Liangxiang Campus, Fangshan District, 102488 Beijing, P. R. China
| | - Jiarong Li
- School
of Chemistry and Chemical Engineering, Beijing
Institute of Technology, Courtyard 8, Liangxiang Campus, Fangshan District, 102488 Beijing, P. R. China
| | - Min Xue
- School
of Chemistry and Chemical Engineering, Beijing
Institute of Technology, Courtyard 8, Liangxiang Campus, Fangshan District, 102488 Beijing, P. R. China
| |
Collapse
|
13
|
Reddy DS, Kongot M, Kumar A. Coumarin hybrid derivatives as promising leads to treat tuberculosis: Recent developments and critical aspects of structural design to exhibit anti-tubercular activity. Tuberculosis (Edinb) 2021; 127:102050. [PMID: 33540334 DOI: 10.1016/j.tube.2020.102050] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022]
Abstract
Tuberculosis (TB) is a highly contagious airborne disease with nearly 25% of the world's population infected with it. Challenges such as multi drug resistant TB (MDR-TB), extensive drug resistant TB (XDR-TB) and in rare cases totally drug resistant TB (TDR-TB) emphasizes the critical and urgent need in developing novel TB drugs. Moreover, the prolonged and multi drug treatment regime suffers a major drawback due to high toxicity and vulnerability in TB patients. This calls for intensified research efforts in identifying novel molecular scaffolds which can combat these issues with minimal side effects. In this pursuit, researchers have screened many bio-active molecules among which coumarin have been identified as promising candidates for TB drug discovery and development. Coumarins are naturally occurring compounds known for their low toxicity and varied biological activity. The biological spectrum of coumarin has intrigued medicinal researchers to investigate coumarin scaffolds for their relevance as anti-TB drugs. In this review we focus on the recent developments of coumarin and its critical aspects of structural design required to exhibit anti-tubercular (anti-TB) activity. The information provided will help medicinal chemists to design and identify newer molecular analogs for TB treatment and also broadens the scope of exploring future generation potent yet safer coumarin based anti-TB agents.
Collapse
Affiliation(s)
- Dinesh S Reddy
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Jakkasandra Post, Bangalore, 562112, India
| | - Manasa Kongot
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Jakkasandra Post, Bangalore, 562112, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Jakkasandra Post, Bangalore, 562112, India.
| |
Collapse
|
14
|
Debnath P, Sahu G, De UC. Synthesis of functionalized pyrimidouracils by ruthenium‐catalyzed oxidative insertion of (hetero)aryl methanols into
N
‐uracil amidines. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pradip Debnath
- Department of Chemistry Maharaja Bir Bikram College Agartala India
| | - Gouranga Sahu
- Department of Chemistry Ramkrishna Mahavidyalaya Unakoti India
| | - Utpal C. De
- Department of Chemistry Tripura University Agartala India
| |
Collapse
|
15
|
Slagman S, Fessner WD. Biocatalytic routes to anti-viral agents and their synthetic intermediates. Chem Soc Rev 2021; 50:1968-2009. [DOI: 10.1039/d0cs00763c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An assessment of biocatalytic strategies for the synthesis of anti-viral agents, offering guidelines for the development of sustainable production methods for a future COVID-19 remedy.
Collapse
Affiliation(s)
- Sjoerd Slagman
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- Germany
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- Germany
| |
Collapse
|
16
|
Abstract
Abstract
Using purine as a scaffold, the methods for preparation of novel 2-aminopurine and purine derivatives substituted at position C
6 by the fragments of natural amino acids, short peptides, and N-heterocycles, including enantiopure ones, have been proposed. The methods for determination of the enantiomeric purity of the obtained chiral compounds have been developed. Conjugates exhibiting high antimycobacterial or anti-herpesvirus activity against both laboratory and multidrug-resistant strains were revealed among the obtained compounds.
Collapse
|
17
|
Sun XD, Wu HL, Chen JC, Chen AQ, Chen Y, Ouyang YZ, Ding YJ, Yu RQ. Exploration advantages of data combination and partition: First chemometric analysis of liquid chromatography–mass spectrometry data in full scan mode with quadruple fragmentor voltages. Anal Chim Acta 2020; 1110:158-168. [PMID: 32278391 DOI: 10.1016/j.aca.2020.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 11/25/2022]
|
18
|
Thiol functionalized carbon ceramic electrode modified with multi-walled carbon nanotubes and gold nanoparticles for simultaneous determination of purine derivatives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110568. [DOI: 10.1016/j.msec.2019.110568] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/03/2019] [Accepted: 12/17/2019] [Indexed: 01/07/2023]
|
19
|
Rocha A, Proença M, Carvalho MA. Synthesis of 2-(aminophenyl)adenine derivatives: a simple protocol using the classical iron powder/acetic acid reduction methodology. CAN J CHEM 2020. [DOI: 10.1139/cjc-2019-0270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
2-(Nitrophenyl)adenine derivatives were isolated from the reaction of 5-amino-4-amidino-imidazoles with nitrobenzaldehydes. The conversion of the nitro derivatives to 2-(aminophenyl)adenine derivatives was performed using iron/acetic acid as reducing agent, in 70% aqueous ethanol. The products were isolated in good yield and the isolation protocol involves simple filtration and extraction procedures. This methodology is compatible with the presence of functional groups such as amines, ethers, halofluorides, and halochlorides.
Collapse
Affiliation(s)
- A. Rocha
- Center of Chemistry, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal
- Center of Chemistry, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - M.F. Proença
- Center of Chemistry, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal
- Center of Chemistry, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - M. Alice Carvalho
- Center of Chemistry, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal
- Center of Chemistry, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal
| |
Collapse
|
20
|
Ragavan I, Vidya C, Shanavas S, Acevedo R, Anbarasan PM, Manjri A, Prakasam A, Sudhakar C, Selvankumar T. Synthesis, spectroscopic characterization and molecular docking study of ethyl 2-(4-(5, 9-dihydro-6-hydroxy-2-mercapto-4H-purin-8-ylthio) thiophen-2-yl)-2-oxoacetate molecule for the chemotherapeutic treatment of breast cancer cells. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Tber Z, Biteau NG, Agrofoglio L, Cros J, Goffinont S, Castaing B, Nicolas C, Roy V. Microwave-Assisted Suzuki-Miyaura and Sonogashira Coupling of 4-Chloro-2-(trifluoromethyl)pyrido[1,2- e
]purine Derivatives. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zahira Tber
- Institut de Chimie Organique et Analytique, UMR CNRS 7311; Université d'Orléans; Rue de Chartres - BP 6759, 45067 Orléans cedex 2 France
| | - Nicolas G. Biteau
- Institut de Chimie Organique et Analytique, UMR CNRS 7311; Université d'Orléans; Rue de Chartres - BP 6759, 45067 Orléans cedex 2 France
| | - Luigi Agrofoglio
- Institut de Chimie Organique et Analytique, UMR CNRS 7311; Université d'Orléans; Rue de Chartres - BP 6759, 45067 Orléans cedex 2 France
| | - Julien Cros
- Centre de Biophysique Moléculaire; 45072 Orléans France
| | | | | | - Cyril Nicolas
- Institut de Chimie Organique et Analytique, UMR CNRS 7311; Université d'Orléans; Rue de Chartres - BP 6759, 45067 Orléans cedex 2 France
| | - Vincent Roy
- Institut de Chimie Organique et Analytique, UMR CNRS 7311; Université d'Orléans; Rue de Chartres - BP 6759, 45067 Orléans cedex 2 France
| |
Collapse
|
22
|
Zhou DD, Zhang Q, Zhang H, Wang YZ, Yang FQ, Wang SP, Wang YT. Cupric ion functionalized polydopamine coated magnetic microspheres as solid-phase adsorbent for the extraction of purines in plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1120:95-103. [DOI: 10.1016/j.jchromb.2019.04.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 01/08/2023]
|
23
|
Musiyak VV, Nizova IA, Matveeva TV, Levit GL, Krasnov VP, Charushin VN. Synthesis of New Purine Derivatives Containing α- and ω-Amino Acid Fragments. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019060046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Šišuļins A, Bucevičius J, Tseng YT, Novosjolova I, Traskovskis K, Bizdēna Ē, Chang HT, Tumkevičius S, Turks M. Synthesis and fluorescent properties of N(9)-alkylated 2-amino-6-triazolylpurines and 7-deazapurines. Beilstein J Org Chem 2019; 15:474-489. [PMID: 30873231 PMCID: PMC6404417 DOI: 10.3762/bjoc.15.41] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
The synthesis of novel fluorescent N(9)-alkylated 2-amino-6-triazolylpurine and 7-deazapurine derivatives is described. A new C(2)-regioselectivity in the nucleophilic aromatic substitution reactions of 9-alkylated-2,6-diazidopurines and 7-deazapurines with secondary amines has been disclosed. The obtained intermediates, 9-alkylated-2-amino-6-azido-(7-deaza)purines, were transformed into the title compounds by CuAAC reaction. The designed compounds belong to the push-pull systems and possess promising fluorescence properties with quantum yields in the range from 28% to 60% in acetonitrile solution. Due to electron-withdrawing properties of purine and 7-deazapurine heterocycles, which were additionally extended by triazole moieties, the compounds with electron-donating groups showed intramolecular charge transfer character (ICT/TICT) of the excited states which was proved by solvatochromic dynamics and supported by DFT calculations. In the 7-deazapurine series this led to increased fluorescence quantum yield (74%) in THF solution. The compounds exhibit low cytotoxicity and as such are useful for the cell labelling studies in the future.
Collapse
Affiliation(s)
- Andrejs Šišuļins
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia
| | - Jonas Bucevičius
- Department of Organic Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, 03225 Vilnius, Lithuania
| | - Yu-Ting Tseng
- Department of Chemistry, National Taiwan University No.1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Irina Novosjolova
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia
| | - Kaspars Traskovskis
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia
| | - Ērika Bizdēna
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University No.1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Sigitas Tumkevičius
- Department of Organic Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, 03225 Vilnius, Lithuania
| | - Māris Turks
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia
| |
Collapse
|
25
|
García-Raso A, Terrón A, López-Zafra A, García-Viada A, Barta A, Frontera A, Lorenzo J, Rodríguez-Calado S, Vázquez-López EM, Fiol JJ. Crystal structures of N6-modified-amino acid related nucleobase analogs (II): hybrid adenine-β-alanine and adenine-GABA molecules. NEW J CHEM 2019. [DOI: 10.1039/c9nj02279a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
H-Bonding networks and anion–π interactions in the crystal structures of N6-modified-amino acid adenine analogs are investigated using X-ray crystallography and DFT calculations.
Collapse
Affiliation(s)
- Angel García-Raso
- Departament de Química
- Universitat de les Illes Balears
- Crta. de Valldemossa km 7.5
- 07122 Palma (Baleares)
- Spain
| | - Angel Terrón
- Departament de Química
- Universitat de les Illes Balears
- Crta. de Valldemossa km 7.5
- 07122 Palma (Baleares)
- Spain
| | - Adela López-Zafra
- Departament de Química
- Universitat de les Illes Balears
- Crta. de Valldemossa km 7.5
- 07122 Palma (Baleares)
- Spain
| | | | - Agostina Barta
- Departament de Química
- Universitat de les Illes Balears
- Crta. de Valldemossa km 7.5
- 07122 Palma (Baleares)
- Spain
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- Crta. de Valldemossa km 7.5
- 07122 Palma (Baleares)
- Spain
| | - Julia Lorenzo
- Instituto de Biotecnología y Biomedicina
- Departamento de Bioquímica y Biologia Molecular
- Universidad Autónoma de Barcelona
- Barcelona
- Spain
| | - Sergi Rodríguez-Calado
- Instituto de Biotecnología y Biomedicina
- Departamento de Bioquímica y Biologia Molecular
- Universidad Autónoma de Barcelona
- Barcelona
- Spain
| | - Ezequiel M. Vázquez-López
- Instituto de Investigación Sanitaria Galicia Sur/Universidade de Vigo
- Departamento de Química Inorgánica
- Facultade de Química
- Edificio Ciencias Experimentais
- E-36310 Vigo
| | - Juan J. Fiol
- Departament de Química
- Universitat de les Illes Balears
- Crta. de Valldemossa km 7.5
- 07122 Palma (Baleares)
- Spain
| |
Collapse
|
26
|
Leitão MPS, Herrera F, Petronilho A. N-Heterocyclic Carbenes Derived from Guanosine: Synthesis and Evidences of Their Antiproliferative Activity. ACS OMEGA 2018; 3:15653-15656. [PMID: 30556009 PMCID: PMC6288774 DOI: 10.1021/acsomega.8b02387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Palladium(II) and platinum(II) complexes bearing N-heterocyclic carbenes derived from guanosine are synthesized via oxidative addition, followed by protonation in the presence of acid. Cytotoxicity of the compounds is evaluated in several cell lines. Compounds 2a, 2b, and 3a are selective for glioblastoma U251 cells and are nontoxic toward healthy human embryonic kidney (HEK293) cells.
Collapse
|
27
|
Sciú ML, Sebastián-Pérez V, Martinez-Gonzalez L, Benitez R, Perez DI, Pérez C, Campillo NE, Martinez A, Moyano EL. Computer-aided molecular design of pyrazolotriazines targeting glycogen synthase kinase 3. J Enzyme Inhib Med Chem 2018; 34:87-96. [PMID: 30362380 PMCID: PMC6211276 DOI: 10.1080/14756366.2018.1530223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Numerous studies have highlighted the implications of the glycogen synthase kinase 3 (GSK-3) in several processes associated with Alzheimer's disease (AD). Therefore, GSK-3 has become a crucial therapeutic target for the treatment of this neurodegenerative disorder. Hereby, we report the design and multistep synthesis of ethyl 4-oxo-pyrazolo[4,3-d][1-3]triazine-7-carboxylates and their biological evaluation as GSK-3 inhibitors. Molecular modelling studies allow us to develop this new scaffold optimising the chemical structure. Potential binding mode determination in the enzyme and the analysis of the key features in the catalytic site are also described. Furthermore, the ability of pyrazolotriazinones to cross the blood-brain barrier (BBB) was evaluated by passive diffusion and those who showed great GSK-3 inhibition and permeation to the central nervous system (CNS) showed neuroprotective properties against tau hyperphosphorylation in a cell-based model. These new brain permeable pyrazolotriazinones may be used for key in vivo studies and may be considered as new leads for further optimisation for the treatment of AD.
Collapse
Affiliation(s)
- M Lourdes Sciú
- a Department of Chemical and Physical Biology , Centro de Investigaciones Biológicas (CIB, CSIC) Ramiro de Maeztu , Madrid , Spain.,b INFIQC- Department of Organic Chemistry, School of Chemical Sciences , National University of Córdoba , Córdoba , Argentine
| | - Victor Sebastián-Pérez
- a Department of Chemical and Physical Biology , Centro de Investigaciones Biológicas (CIB, CSIC) Ramiro de Maeztu , Madrid , Spain
| | - Loreto Martinez-Gonzalez
- a Department of Chemical and Physical Biology , Centro de Investigaciones Biológicas (CIB, CSIC) Ramiro de Maeztu , Madrid , Spain
| | - Rocio Benitez
- a Department of Chemical and Physical Biology , Centro de Investigaciones Biológicas (CIB, CSIC) Ramiro de Maeztu , Madrid , Spain
| | - Daniel I Perez
- a Department of Chemical and Physical Biology , Centro de Investigaciones Biológicas (CIB, CSIC) Ramiro de Maeztu , Madrid , Spain
| | | | - Nuria E Campillo
- a Department of Chemical and Physical Biology , Centro de Investigaciones Biológicas (CIB, CSIC) Ramiro de Maeztu , Madrid , Spain
| | - Ana Martinez
- a Department of Chemical and Physical Biology , Centro de Investigaciones Biológicas (CIB, CSIC) Ramiro de Maeztu , Madrid , Spain
| | - E Laura Moyano
- b INFIQC- Department of Organic Chemistry, School of Chemical Sciences , National University of Córdoba , Córdoba , Argentine
| |
Collapse
|
28
|
Figueiredo P, Costa M, Pontes O, Baltazar F, Proença F. Adenine Derivatives: Promising Candidates for Breast Cancer Treatment. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Pedro Figueiredo
- Chemistry Department; University of Minho; Campus de Gualtar Braga Portugal
| | - Marta Costa
- Life and Health Sciences Research Institute (ICVS); University of Minho; Campus de Gualtar Braga Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Olívia Pontes
- Life and Health Sciences Research Institute (ICVS); University of Minho; Campus de Gualtar Braga Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS); University of Minho; Campus de Gualtar Braga Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Fernanda Proença
- Chemistry Department; University of Minho; Campus de Gualtar Braga Portugal
| |
Collapse
|
29
|
Singh G, Sharma G, Kalra P, Sanchita, Verma V, Ferretti V. Synthesis and structural characterization of first adenine containing organosilicon nucleobase for the recognition of Cu 2+ ion. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Gruzdev DA, Musiyak VV, Levit GL, Krasnov VP, Charushin VN. Purine derivatives with antituberculosis activity. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The review summarizes the data published over the last 10 – 15 years concerning the key groups of purine derivatives with antituberculosis activity. The structures of purines containing heteroatoms (S, O, N), fragments of heterocycles, amino acids and peptides, in the 6-position, as well as of purine nucleosides are presented. The possible targets for the action of such compounds and structure – activity relationship are discussed. Particular attention is paid to the most active compounds, which are of considerable interest as a basis for the development of efficient antituberculosis drugs.
The bibliography includes 99 references.
Collapse
|
31
|
Zuo F, Zhang H, Xie J, Chen S, Yuan R. A sensitive ratiometric electrochemiluminescence biosensor for hypoxanthine detection by in situ generation and consumption of coreactants. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
García PA, Valles E, Díez D, Castro MÁ. Marine Alkylpurines: A Promising Group of Bioactive Marine Natural Products. Mar Drugs 2018; 16:md16010006. [PMID: 29301246 PMCID: PMC5793054 DOI: 10.3390/md16010006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 11/16/2022] Open
Abstract
Marine secondary metabolites with a purine motif in their structure are presented in this review. The alkylpurines are grouped according to the size of the alkyl substituents and their location on the purine ring. Aspects related to the marine source, chemical structure and biological properties are considered together with synthetic approaches towards the natural products and bioactive analogues. This review contributes to studies of structure–activity relationships for these metabolites and highlights the potential of the sea as a source of new lead compounds in diverse therapeutic fields.
Collapse
Affiliation(s)
- Pablo A García
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section, Pharmacy Faculty, CIETUS, IBSAL, University of Salamanca, E-37007 Salamanca, Spain.
| | - Elena Valles
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section, Pharmacy Faculty, CIETUS, IBSAL, University of Salamanca, E-37007 Salamanca, Spain.
| | - David Díez
- Department of Organic Chemistry, Faculty of Chemical Sciences, University of Salamanca, E-37008 Salamanca, Spain.
| | - María-Ángeles Castro
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section, Pharmacy Faculty, CIETUS, IBSAL, University of Salamanca, E-37007 Salamanca, Spain.
| |
Collapse
|
33
|
Wamberg MC, Pedersen PL, Löffler PMG, Albertsen AN, Maurer SE, Nielsen KA, Monnard PA. Synthesis of Lipophilic Guanine N-9 Derivatives: Membrane Anchoring of Nucleobases Tailored to Fatty Acid Vesicles. Bioconjug Chem 2017; 28:1893-1905. [PMID: 28587449 DOI: 10.1021/acs.bioconjchem.7b00228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Covalent or noncovalent surface functionalization of soft-matter structures is an important tool for tailoring their function and stability. Functionalized surfaces and nanoparticles have found numerous applications in drug delivery and diagnostics, and new functionalization chemistry is continuously being developed in the discipline of bottom-up systems chemistry. The association of polar functional molecules, e.g., molecular recognition agents, with soft-matter structures can be achieved by derivatization with alkyl chains, allowing noncovalent anchoring into amphiphilic membranes. We report the synthesis of five new guanine-N9 derivatives bearing alkyl chains with different attachment chemistries, exploiting a synthesis pathway that allows a flexible choice of hydrophobic anchor moiety. In this study, these guanine derivatives were functionalized with C10 chains for insertion into decanoic acid bilayer structures, in which both alkyl chain length and attachment chemistry determined their interaction with the membrane. Incubation of these guanine conjugates, as solids, with a decanoic acid vesicle suspension, showed that ether- and triazole-linked C10 anchors yielded an increased partitioning of the guanine derivative into the membranous phase compared to directly N-9-linked saturated alkyl anchors. Decanoic acid vesicle membranes could be loaded with up to 5.5 mol % guanine derivative, a 6-fold increase over previous limits. Thus, anchor chemistries exhibiting favorable interactions with a bilayer's hydrophilic surface can significantly increase the degree of structure functionalization.
Collapse
Affiliation(s)
- Michael C Wamberg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| | - Pernille L Pedersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| | - Philipp M G Löffler
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| | - Anders N Albertsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| | - Sarah E Maurer
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| | - Kent A Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| | - Pierre-Alain Monnard
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
34
|
Synthesis of a new class of bisheterocycles via the Heck reaction of eudesmane type methylene lactones with 8-bromoxanthines. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
Plíhalová L, Vylíčilová H, Doležal K, Zahajská L, Zatloukal M, Strnad M. Synthesis of aromatic cytokinins for plant biotechnology. N Biotechnol 2016; 33:614-624. [DOI: 10.1016/j.nbt.2015.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/11/2015] [Accepted: 11/27/2015] [Indexed: 11/25/2022]
|
36
|
Collier GS, Brown LA, Boone ES, Long BK, Kilbey SM. Synthesis of Main Chain Purine-Based Copolymers and Effects of Monomer Design on Thermal and Optical Properties. ACS Macro Lett 2016; 5:682-687. [PMID: 35614655 DOI: 10.1021/acsmacrolett.6b00275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to incorporate diverse monomeric building blocks enables the development of advanced polymeric materials possessing a wide range of properties that suits them for myriad applications. Herein, that synthetic toolbox is expanded through the first report of purine-based copolymers in which purines are incorporated directly into the polymer main chain. Stille cross-coupling of dibromopurine monomers with benzodithiophene (BDT) comonomers is used to generate these "poly(purine)s", and variations in the substitution pattern of the purine monomer and BDT side-chains provides insight into the role of monomer design on their resultant thermal and photophysical properties. Specifically, thermal analyses show that poly(purine)s exhibit high thermal stability and high glass transition temperatures depending on the BDT side-chain substituents and substitution pattern of the purine-derived comonomer. Furthermore, optical properties measured via UV-vis and fluorescence spectroscopies show dependence on monomer substitution pattern. These findings demonstrate the viability of synthesizing poly(purine)s via metal-catalyzed cross-coupling reactions and highlight the potential to tailor poly(purine) properties via simple alterations of comonomers.
Collapse
Affiliation(s)
- Graham S. Collier
- Departments of †Chemistry and ‡Chemical and Biomolecular
Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Lauren A. Brown
- Departments of †Chemistry and ‡Chemical and Biomolecular
Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Evan S. Boone
- Departments of †Chemistry and ‡Chemical and Biomolecular
Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Brian K. Long
- Departments of †Chemistry and ‡Chemical and Biomolecular
Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - S. Michael Kilbey
- Departments of †Chemistry and ‡Chemical and Biomolecular
Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
37
|
Bharate SB, Singh B, Kachler S, Oliveira A, Kumar V, Bharate SS, Vishwakarma RA, Klotz KN, Gutiérrez de Terán H. Discovery of 7-(Prolinol-N-yl)-2-phenylamino-thiazolo[5,4-d]pyrimidines as Novel Non-Nucleoside Partial Agonists for the A2A Adenosine Receptor: Prediction from Molecular Modeling. J Med Chem 2016; 59:5922-8. [PMID: 27227326 DOI: 10.1021/acs.jmedchem.6b00552] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe the identification of 7-(prolinol-N-yl)-2-phenylamino-thiazolo[5,4-d]pyrimidines as a novel chemotype of non-nucleoside partial agonists for the A2A adenosine receptor (A2AAR). Molecular-modeling indicated that the (S)-2-hydroxymethylene-pyrrolidine could mimic the interactions of agonists' ribose, suggesting that this class of compounds could have agonistic properties. This was confirmed by functional assays on the A2AAR, where their efficacy could be associated with the presence of the 2-hydroxymethylene moiety. Additionally, the best compound displays promising affinity, selectivity profile, and physicochemical properties.
Collapse
Affiliation(s)
| | | | - Sonja Kachler
- Institut für Pharmakologie und Toxikologie, Julius-Maximilians-Universität Würzburg , Versbacher Strasse 9, D-97078 Würzburg, Germany
| | - Ana Oliveira
- Department of Cell and Molecular Biology, Uppsala University , Box 596, SE-751 24 Uppsala, Sweden
| | | | | | | | - Karl-Norbert Klotz
- Institut für Pharmakologie und Toxikologie, Julius-Maximilians-Universität Würzburg , Versbacher Strasse 9, D-97078 Würzburg, Germany
| | - Hugo Gutiérrez de Terán
- Department of Cell and Molecular Biology, Uppsala University , Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
38
|
Gomes LR, Low JN, Magalhães e Silva D, Cagide F, Borges F. Crystal structures of five 6-mercaptopurine derivatives. Acta Crystallogr E Crystallogr Commun 2016; 72:307-13. [PMID: 27006794 PMCID: PMC4778836 DOI: 10.1107/s2056989016001833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 01/30/2016] [Indexed: 11/23/2022]
Abstract
The crystal structures of five 6-mercaptopurine derivatives, viz. 2-[(9-acetyl-9H-purin-6-yl)sulfan-yl]-1-(3-meth-oxy-phen-yl)ethan-1-one (1), C16H14N4O3S, 2-[(9-acetyl-9H-purin-6-yl)sulfan-yl]-1-(4-meth-oxy-phen-yl)ethan-1-one (2), C16H14N4O3S, 2-[(9-acetyl-9H-purin-6-yl)sulfan-yl]-1-(4-chloro-phen-yl)ethan-1-one (3), C15H11ClN4O2S, 2-[(9-acetyl-9H-purin-6-yl)sulfan-yl]-1-(4-bromo-phen-yl)ethan-1-one (4), C15H11BrN4O2S, and 1-(3-meth-oxy-phen-yl)-2-[(9H-purin-6-yl)sulfan-yl]ethan-1-one (5), C14H12N4O2S. Compounds (2), (3) and (4) are isomorphous and accordingly their mol-ecular and supra-molecular structures are similar. An analysis of the dihedral angles between the purine and exocyclic phenyl rings show that the mol-ecules of (1) and (5) are essentially planar but that in the case of the three isomorphous compounds (2), (3) and (4), these rings are twisted by a dihedral angle of approximately 38°. With the exception of (1) all mol-ecules are linked by weak C-H⋯O hydrogen bonds in their crystals. There is π-π stacking in all compounds. A Cambridge Structural Database search revealed the existence of 11 deposited compounds containing the 1-phenyl-2-sulfanyl-ethanone scaffold; of these, only eight have a cyclic ring as substituent, the majority of these being heterocycles.
Collapse
Affiliation(s)
- Lígia R. Gomes
- FP–ENAS–Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150 Porto, Portugal
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007, Porto, Portugal
| | - John Nicolson Low
- Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland
| | - Diogo Magalhães e Silva
- CIQ/Departamento de Quιmica e Bioquιmica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Fernando Cagide
- CIQ/Departamento de Quιmica e Bioquιmica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Fernanda Borges
- CIQ/Departamento de Quιmica e Bioquιmica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| |
Collapse
|
39
|
Sunagar MG, Gaonkar S, Sunagar SG, Deshapande N, Belavagi NS, Khazi IAM. Synthesis of novel N-9 substituted 6-(4-(4-propoxyphenyl)piperazin-1-yl)-9H-purine derivatives as inducers of apoptosis in MCF-7 breast cancer cells. RSC Adv 2016. [DOI: 10.1039/c5ra23242b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of N-9 substituted 6-(4-(4-propoxyphenyl)piperazin-1-yl)-9H-purine derivatives (PP05–PP21) were prepared and evaluated for their anticancer activity against a panel of human cancer cell lines.
Collapse
Affiliation(s)
| | - Supreet Gaonkar
- Department of Chemistry
- Karnatak University
- Dharwad 580003
- India
| | - Santosh G. Sunagar
- Bio-X Institutes
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | | | | | | |
Collapse
|
40
|
|
41
|
Efficient functionalization of 2-amino-6-chloropurine derivatives at C-8 via 8-lithiated species. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.09.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
42
|
Novosjolova I, Bizdēna Ē, Turks M. Synthesis of Novel 2- And 6-Alkyl/Arylthiopurine Derivatives. PHOSPHORUS SULFUR 2015. [DOI: 10.1080/10426507.2014.989435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Irina Novosjolova
- Faculty of Material Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Ērika Bizdēna
- Faculty of Material Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Māris Turks
- Faculty of Material Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| |
Collapse
|
43
|
Christmann M, Hu J, Kitamura M, Stoltz B. Tetrahedron reports on organic chemistry. Tetrahedron 2015. [DOI: 10.1016/s0040-4020(15)00744-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Novosjolova I, Bizdēna Ē, Turks M. Synthesis and Applications of Azolylpurine and Azolylpurine Nucleoside Derivatives. European J Org Chem 2015. [DOI: 10.1002/ejoc.201403527] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Du H, He Q, Chen N, Xu J, Chen F, Liu G. Proton NMR investigations on 6-alkylamino-2-alkylthioadenosine derivatives. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:218-222. [PMID: 25279994 DOI: 10.1002/mrc.4151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/26/2014] [Accepted: 08/29/2014] [Indexed: 06/03/2023]
Affiliation(s)
- Hongguang Du
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Science, Beijing University of Chemical Technology, Beijing, 100029, China
| | | | | | | | | | | |
Collapse
|
46
|
Prieur V, Heindler N, Rubio-Martínez J, Guillaumet G, Pujol MD. One-pot synthesis of 4-aminated pyrrolo[2,3-d]pyrimidines from alkynylpyrimidines under metal-catalyst-free conditions. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Abdoli M, Mirjafary Z, Saeidian H, Kakanejadifard A. New developments in direct functionalization of C–H and N–H bonds of purine bases via metal catalyzed cross-coupling reactions. RSC Adv 2015. [DOI: 10.1039/c5ra04406e] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
This review provides a concise overview on the cross-coupling reactions in direct functionalization of purine bases in recent years.
Collapse
Affiliation(s)
- Morteza Abdoli
- Department of Chemistry
- Lorestan University
- Khorramabad
- Iran
| | - Zohreh Mirjafary
- Department of Chemistry
- Tehran Science and Research Branch
- Islamic Azad University
- Tehran
- Iran
| | - Hamid Saeidian
- Department of Science
- Payame Noor University (PNU)
- Tehran
- Iran
| | | |
Collapse
|
48
|
Lim FPL, Dolzhenko AV. 1,3,5-Triazine-based analogues of purine: From isosteres to privileged scaffolds in medicinal chemistry. Eur J Med Chem 2014; 85:371-90. [DOI: 10.1016/j.ejmech.2014.07.112] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/11/2014] [Accepted: 07/31/2014] [Indexed: 12/12/2022]
|
49
|
Voynikov Y, Valcheva V, Momekov G, Peikov P, Stavrakov G. Theophylline-7-acetic acid derivatives with amino acids as anti-tuberculosis agents. Bioorg Med Chem Lett 2014; 24:3043-5. [DOI: 10.1016/j.bmcl.2014.05.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/07/2014] [Accepted: 05/11/2014] [Indexed: 11/24/2022]
|
50
|
Bliman D, Pettersson M, Bood M, Grøtli M. 8-Bromination of 2,6,9-trisubstituted purines with pyridinium tribromide. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.03.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|