1
|
Vichier-Guerre S, Ku TC, Pochet S, Seley-Radtke KL. An Expedient Synthesis of Flexible Nucleosides through Enzymatic Glycosylation of Proximal and Distal Fleximer Bases. Chembiochem 2020; 21:1412-1417. [PMID: 31899839 PMCID: PMC7228337 DOI: 10.1002/cbic.201900714] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Indexed: 01/24/2023]
Abstract
The structurally unique “fleximer” nucleosides were originally designed to investigate how flexibility in a nucleobase could potentially affect receptor–ligand recognition and function. Recently they have been shown to have low‐to‐sub‐micromolar levels of activity against a number of viruses, including coronaviruses, filoviruses, and flaviviruses. However, the synthesis of distal fleximers in particular has thus far been quite tedious and low yielding. As a potential solution to this issue, a series of proximal fleximer bases (flex‐bases) has been successfully coupled to both ribose and 2′‐deoxyribose sugars by using the N‐deoxyribosyltransferase II of Lactobacillus leichmannii (LlNDT) and Escherichia coli purine nucleoside phosphorylase (PNP). To explore the range of this facile approach, transglycosylation experiments on a thieno‐expanded tricyclic heterocyclic base, as well as several distal and proximal flex‐bases were performed to determine whether the corresponding fleximer nucleosides could be obtained in this fashion, thus potentially significantly shortening the route to these biologically significant compounds. The results of those studies are reported herein.
Collapse
Affiliation(s)
- Sophie Vichier-Guerre
- Unité de Chimie et Biocatalyse, Institut Pasteur, CNRS UMR3523, 28, rue du Dr Roux, 75015, Paris, France
| | - Therese C Ku
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Sylvie Pochet
- Unité de Chimie et Biocatalyse, Institut Pasteur, CNRS UMR3523, 28, rue du Dr Roux, 75015, Paris, France
| | - Katherine L Seley-Radtke
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| |
Collapse
|
2
|
Probing the Effects of Pyrimidine Functional Group Switches on Acyclic Fleximer Analogues for Antiviral Activity. Molecules 2019; 24:molecules24173184. [PMID: 31480658 PMCID: PMC6749450 DOI: 10.3390/molecules24173184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 01/29/2023] Open
Abstract
Due to their ability to inhibit viral DNA or RNA replication, nucleoside analogues have been used for decades as potent antiviral therapeutics. However, one of the major limitations of nucleoside analogues is the development of antiviral resistance. In that regard, flexible nucleoside analogues known as “fleximers” have garnered attention over the years due to their ability to survey different amino acids in enzyme binding sites, thus overcoming the potential development of antiviral resistance. Acyclic fleximers have previously demonstrated antiviral activity against numerous viruses including Middle East Respiratory Syndrome coronavirus (MERS-CoV), Ebola virus (EBOV), and, most recently, flaviviruses such as Dengue (DENV) and Yellow Fever Virus (YFV). Due to these interesting results, a Structure Activity Relationship (SAR) study was pursued in order to analyze the effect of the pyrimidine functional group and acyl protecting group on antiviral activity, cytotoxicity, and conformation. The results of those studies are presented herein.
Collapse
|
3
|
Antiviral activity spectrum of phenoxazine nucleoside derivatives. Antiviral Res 2019; 163:117-124. [PMID: 30684562 DOI: 10.1016/j.antiviral.2019.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 12/13/2022]
Abstract
The phenoxazine scaffold is widely used to stabilize nucleic acid duplexes, as a part of fluorescent probes for the study of nucleic acid structure, recognition, and metabolism, etc. Here we present the synthesis of phenoxazine-based nucleoside derivatives and their antiviral activity against a panel of structurally diverse viruses: enveloped DNA herpesviruses varicella zoster virus (VZV) and human cytomegalovirus, enveloped RNA tick-borne encephalitis virus (TBEV), and non-enveloped RNA enteroviruses. Studied compounds were effective against DNA and RNA viruses reproduction in cell culture. 3-(2'-Deoxy-β-D-ribofuranosyl)-1,3-diaza-2-oxophenoxazine proved to be a potent inhibitor of VZV replication with superior activity against wild type than thymidine kinase deficient strains (EC50 0.06 and 10 μM, respectively). This compound did not show cytotoxicity on all the studied cell lines. Several compounds showed promising activity against TBEV (EC50 0.35-0.91 μM), but the activity was accompanied by pronounced cytotoxicity. These compounds may be considered as a good starting point for further structure optimization as antiherpesviral or antiflaviviral compounds.
Collapse
|
4
|
Seley-Radtke KL, Yates MK. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold. Antiviral Res 2018; 154:66-86. [PMID: 29649496 PMCID: PMC6396324 DOI: 10.1016/j.antiviral.2018.04.004] [Citation(s) in RCA: 330] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/22/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
This is the first of two invited articles reviewing the development of nucleoside-analogue antiviral drugs, written for a target audience of virologists and other non-chemists, as well as chemists who may not be familiar with the field. Rather than providing a simple chronological account, we have examined and attempted to explain the thought processes, advances in synthetic chemistry and lessons learned from antiviral testing that led to a few molecules being moved forward to eventual approval for human therapies, while others were discarded. The present paper focuses on early, relatively simplistic changes made to the nucleoside scaffold, beginning with modifications of the nucleoside sugars of Ara-C and other arabinose-derived nucleoside analogues in the 1960's. A future paper will review more recent developments, focusing especially on more complex modifications, particularly those involving multiple changes to the nucleoside scaffold. We hope that these articles will help virologists and others outside the field of medicinal chemistry to understand why certain drugs were successfully developed, while the majority of candidate compounds encountered barriers due to low-yielding synthetic routes, toxicity or other problems that led to their abandonment.
Collapse
Affiliation(s)
- Katherine L Seley-Radtke
- 1000 Hilltop Circle, Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA.
| | - Mary K Yates
- 1000 Hilltop Circle, Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA
| |
Collapse
|
5
|
Chen Z, Ku TC, Seley-Radtke KL. Thiophene-expanded guanosine analogues of Gemcitabine. Bioorg Med Chem Lett 2015; 25:4274-6. [PMID: 26316465 PMCID: PMC4579529 DOI: 10.1016/j.bmcl.2015.07.086] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/24/2015] [Accepted: 07/27/2015] [Indexed: 12/23/2022]
Abstract
The chemotherapeutic drug Gemcitabine, 2',2'-difluoro-2'-deoxycytidine, has long been the standard of care for a number of cancers. Gemcitabine's chemotherapeutic properties stem from its 2',2'-difluoro-2'-deoxyribose sugar, which mimics the natural nucleoside, but also disrupts nucleic acid synthesis, leading to cell death. As a result, numerous analogues have been prepared to further explore the biological implications for this structural modification. In that regard, a thieno-expanded guanosine analogue was of interest due to biological activity previously observed for the tricyclic heterobase scaffold. Several analogues were prepared, including the McGuigan ProTide, however the parent nucleoside exhibited the best chemotherapeutic activity, specifically against breast cancer cell lines (89.53% growth inhibition).
Collapse
Affiliation(s)
- Zhe Chen
- University of Maryland, Baltimore County, Department of Chemistry & Biochemistry, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Therese C Ku
- University of Maryland, Baltimore County, Department of Chemistry & Biochemistry, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Katherine L Seley-Radtke
- University of Maryland, Baltimore County, Department of Chemistry & Biochemistry, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
6
|
Chen Z, Jochmans D, Ku T, Paeshuyse J, Neyts J, Seley-Radtke KL. Bicyclic and Tricyclic "Expanded" Nucleobase Analogues of Sofosbuvir: New Scaffolds for Hepatitis C Therapies. ACS Infect Dis 2015; 1:357-66. [PMID: 27624884 DOI: 10.1021/acsinfecdis.5b00029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Given the impressive success of Gilead's Sofosbuvir, many laboratories, including ours, have explored the unique 2'-sugar modification (2'-Me, 2'-F) of nucleoside analogues in the hopes of exploiting the biological activity that this unique modification has imparted to the nucleoside scaffold. In that regard, we have combined our tricyclic "expanded" purine base motif with the 2'-Me, 2'-F sugar modification. Although the synthesis of these complex molecules proved to be nontrivial, with the best results coming from a linear approach, the overall strategy resulted in highly promising biological results for several of the target compounds, including their corresponding McGuigan ProTides. Modest activity against HCV was observed with inhibitory concentrations of as low as 20 μM.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Dirk Jochmans
- Rega Institute, University of Leuven (KU Leuven), Leuven, Belgium
| | - Therese Ku
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Jan Paeshuyse
- Rega Institute, University of Leuven (KU Leuven), Leuven, Belgium
| | - Johan Neyts
- Rega Institute, University of Leuven (KU Leuven), Leuven, Belgium
| | - Katherine L. Seley-Radtke
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
7
|
Antiproliferative activities of halogenated pyrrolo[3,2-d]pyrimidines. Bioorg Med Chem 2015; 23:4354-4363. [PMID: 26122770 DOI: 10.1016/j.bmc.2015.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/04/2015] [Accepted: 06/10/2015] [Indexed: 11/20/2022]
Abstract
In vitro evaluation of the halogenated pyrrolo[3,2-d]pyrimidines identified antiproliferative activities in compounds 1 and 2 against four different cancer cell lines. Upon screening of a series of pyrrolo[3,2-d]pyrimidines, the 2,4-Cl compound 1 was found to exhibit antiproliferative activity at low micromolar concentrations. Introduction of iodine at C7 resulted in significant enhancement of potency by reducing the IC50 into sub-micromolar levels, thereby suggesting the importance of a halogen at C7. This finding was further supported by an increased antiproliferative effect for 4 as compared to 3. Cell-cycle and apoptosis studies conducted on the two potent compounds 1 and 2 showed differences in their cytotoxic mechanisms in triple negative breast cancer MDA-MB-231 cells, wherein compound 1 induced cells to accumulate at the G2/M stage with little evidence of apoptotic death. In contrast, compound 2 robustly induced apoptosis with concomitant G2/M cell cycle arrest in this cell model.
Collapse
|
8
|
Zhang L, Zhang Z, Ren T, Tian J, Wang M. New size-expanded RNA nucleobase analogs: a detailed theoretical study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 140:407-415. [PMID: 25617981 DOI: 10.1016/j.saa.2015.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 12/20/2014] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
Fluorescent nucleobase analogs have attracted much attention in recent years due to their potential applications in nucleic acids research. In this work, four new size-expanded RNA base analogs were computationally designed and their structural, electronic, and optical properties are investigated by means of DFT calculations. The results indicate that these analogs can form stable Watson-Crick base pairs with natural counterparts and they have smaller ionization potentials and HOMO-LUMO gaps than natural ones. Particularly, the electronic absorption spectra and fluorescent emission spectra are calculated. The calculated excitation maxima are greatly red-shifted compared with their parental and natural bases, allowing them to be selectively excited. In gas phase, the fluorescence from them would be expected to occur around 526, 489, 510, and 462 nm, respectively. The influences of water solution and base pairing on the relevant absorption spectra of these base analogs are also examined.
Collapse
Affiliation(s)
- Laibin Zhang
- School of Physics and Engineering, Qufu Normal University, Qufu 273165, PR China.
| | - Zhenwei Zhang
- Linyi Academy of Technology Cooperation and Application, Linyi 276001, PR China
| | - Tingqi Ren
- School of Physics and Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Jianxiang Tian
- School of Physics and Engineering, Qufu Normal University, Qufu 273165, PR China.
| | - Mei Wang
- School of Physics and Engineering, Qufu Normal University, Qufu 273165, PR China
| |
Collapse
|
9
|
Wang Y, Muratore ME, Rong Z, Echavarren AM. Formal (4+1) cycloaddition of methylenecyclopropanes with 7-aryl-1,3,5-cycloheptatrienes by triple gold(I) catalysis. Angew Chem Int Ed Engl 2014; 53:14022-6. [PMID: 24898850 PMCID: PMC4320749 DOI: 10.1002/anie.201404029] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Indexed: 01/03/2023]
Abstract
7-Aryl-1,3,5-cycloheptatrienes react intermolecularly with methylenecyclopropanes in a triple gold(I)-catalyzed reaction to form cyclopentenes. The same formal (4+1) cycloaddition occurs with cyclobutenes. Other precursors of gold(I) carbenes can also be used as the C1 component of the cycloaddition.
Collapse
Affiliation(s)
- Yahui Wang
- Institute of Chemical Research of Catalonia (ICIQ)Av. Països Catalans 16, 43007 Tarragona (Spain)
| | - Michael E Muratore
- Institute of Chemical Research of Catalonia (ICIQ)Av. Països Catalans 16, 43007 Tarragona (Spain)
| | - Zhouting Rong
- Institute of Chemical Research of Catalonia (ICIQ)Av. Països Catalans 16, 43007 Tarragona (Spain)
| | - Antonio M Echavarren
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i VirgiliC/Marcel⋅li Domingo s/n, 43007 Tarragona (Spain)
| |
Collapse
|
10
|
Temburnikar KW, Zimmermann SC, Kim NT, Ross CR, Gelbmann C, Salomon CE, Wilson GM, Balzarini J, Seley-Radtke KL. Antiproliferative activities of halogenated thieno[3,2-d]pyrimidines. Bioorg Med Chem 2014; 22:2113-22. [PMID: 24631358 PMCID: PMC4565497 DOI: 10.1016/j.bmc.2014.02.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 02/10/2014] [Accepted: 02/18/2014] [Indexed: 12/17/2022]
Abstract
The in vitro evaluation of thieno[3,2-d]pyrimidines identified halogenated compounds 1 and 2 with antiproliferative activity against three different cancer cell lines. A structure activity relationship study indicated the necessity of the chlorine at the C4-position for biological activity. The two most active compounds 1 and 2 were found to induce apoptosis in the leukemia L1210 cell line. Additionally, the compounds were screened against a variety of other microbial targets and as a result, selective activity against several fungi was also observed. The synthesis and preliminary biological results are reported herein.
Collapse
Affiliation(s)
- Kartik W Temburnikar
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Sarah C Zimmermann
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Nathaniel T Kim
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Christina R Ross
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA
| | - Christopher Gelbmann
- Center for Drug Design, University of Minnesota, 516 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Christine E Salomon
- Center for Drug Design, University of Minnesota, 516 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA
| | - Jan Balzarini
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Katherine L Seley-Radtke
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
11
|
Zhang L, Zhou L, Tian J, Li X. Hetero-ring-expansion design for purine analogs: A theoretical study on the structural, electronic, and excited-state properties. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.02.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Zhang L, Zhou L, Tian J, Li X. Structural, electronic, and photophysical properties of thieno-expanded tricyclic purine analogs: a theoretical study. Phys Chem Chem Phys 2014; 16:4338-49. [DOI: 10.1039/c3cp54505a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Wauchope OR, Johnson C, Krishnamoorthy P, Andrei G, Snoeck R, Balzarini J, Seley-Radtke KL. Synthesis and biological evaluation of a series of thieno-expanded tricyclic purine 2'-deoxy nucleoside analogues. Bioorg Med Chem 2012; 20:3009-15. [PMID: 22464686 PMCID: PMC3727052 DOI: 10.1016/j.bmc.2012.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/23/2012] [Accepted: 03/01/2012] [Indexed: 11/22/2022]
Abstract
Introducing structural diversity into the nucleoside scaffold for use as potential chemotherapeutics has long been considered an important approach to drug design. In that regard, we have designed and synthesized a number of innovative 2'-deoxy expanded nucleosides where a heteroaromatic thiophene spacer ring has been inserted in between the imidazole and pyrimidine ring systems of the natural purine scaffold. The synthetic efforts towards realizing the expanded 2'-deoxy-guanosine and -adenosine tricyclic analogues as well as the preliminary biological results are presented herein.
Collapse
Affiliation(s)
- Orrette R. Wauchope
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Cameron Johnson
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Pasupathy Krishnamoorthy
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Graciela Andrei
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Robert Snoeck
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Jan Balzarini
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Katherine L. Seley-Radtke
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| |
Collapse
|
14
|
Wauchope OR, Tomney MJ, Pepper JL, Korba BE, Seley-Radtke KL. Tricyclic 2'-C-modified nucleosides as potential anti-HCV therapeutics. Org Lett 2011; 12:4466-9. [PMID: 20845910 DOI: 10.1021/ol101482h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Promising biological activity in a number of therapeutic areas has been reported for both tricyclic nucleosides and 2'-modified nucleosides. In particular, disubstitution at the C-2' position of nucleosides has resulted in significant activity against the hepatitis C virus (HCV). Combining this with the observation that tricyclic nucleosides developed in our laboratory have been shown to inhibit the RNA-dependent RNA polymerase NS5B led to the design of a series of 2'-modified tricyclic nucleosides. Details of the synthesis, structural characterization, and preliminary biological results are reported.
Collapse
Affiliation(s)
- Orrette R Wauchope
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | | | | | | | | |
Collapse
|