1
|
Bober B, Żmudzki P, Chrapusta-Srebrny E. Occurrence of protease inhibitors in freshwater cyanobacterium Woronichinia naegeliana (Unger) Elenkin. JOURNAL OF PHYCOLOGY 2024. [PMID: 39578677 DOI: 10.1111/jpy.13527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/15/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Cyanobacteria are known for producing a wide array of secondary metabolites, including non-ribosomally synthesized oligopeptides, whose functions remain to be determined. Woronichinia naegeliana, a common component of freshwater blooms, represents an under-explored resource of bioactive oligopeptides. Among these oligopeptides are cyanopeptolin 1081 and anabaenopeptin 899, which have been shown to have adverse effects on zooplankton. The absolute amino acid configuration of these peptides appears typical relative to other cyanopeptolins and anabaenopeptins. To understand their toxic mechanisms, enzyme assays were conducted. The inhibitory activity of cyanopeptolin 1081 and anabaenopeptin 899 was tested against proteases such as chymotrypsin, trypsin, elastase, thrombin, and carboxypeptidase A, resulting in different activities against these enzymes. Cyanopeptolin 1081 inhibited both chymotrypsin and elastase, while anabaenopeptin 899 inhibited carboxypeptidase A but failed to inhibit the other tested enzymes at a concentration of 37 μM. The inhibitory concentration values determined here highlight that these compounds are among the most potent enzyme inhibitors in freshwater-derived cyanopeptides.
Collapse
Affiliation(s)
- Beata Bober
- Department of Microbiology, Institute of Quality Sciences and Product Management, Cracow University of Economics, Krakow, Poland
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Medical College, Jagiellonian University, Krakow, Poland
| | | |
Collapse
|
2
|
Konkel R, Cegłowska M, Szubert K, Wieczerzak E, Iliakopoulou S, Kaloudis T, Mazur-Marzec H. Structural Diversity and Biological Activity of Cyanopeptolins Produced by Nostoc edaphicum CCNP1411. Mar Drugs 2023; 21:508. [PMID: 37888443 PMCID: PMC10608790 DOI: 10.3390/md21100508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/28/2023] Open
Abstract
Cyanopeptolins (CPs) are one of the most commonly occurring class of cyanobacterial nonribosomal peptides. For the majority of these compounds, protease inhibition has been reported. In the current work, the structural diversity of cyanopeptolins produced by Nostoc edaphicum CCNP1411 was explored. As a result, 93 CPs, including 79 new variants, were detected and structurally characterized based on their mass fragmentation spectra. CPs isolated in higher amounts were additionally characterized by NMR. To the best of our knowledge, this is the highest number of cyanopeptides found in one strain. The biological assays performed with the 34 isolated CPs confirmed the significance of the amino acid located between Thr and the unique 3-amino-6-hydroxy-2-piperidone (Ahp) on the activity of the compounds against serine protease and HeLa cancer cells.
Collapse
Affiliation(s)
- Robert Konkel
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, PL-81378 Gdynia, Poland; (R.K.); (K.S.)
| | - Marta Cegłowska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81712 Sopot, Poland;
| | - Karolina Szubert
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, PL-81378 Gdynia, Poland; (R.K.); (K.S.)
| | - Ewa Wieczerzak
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80308 Gdańsk, Poland;
| | - Sofia Iliakopoulou
- Department of Sustainable Agriculture, University of Patras, GR-30131 Agrinio, Greece;
| | - Triantafyllos Kaloudis
- Institute of Nanoscience & Nanotechnology, NCSR Demokritos, GR-15310 Agia Paraskevi, Greece;
- Laboratory of Organic Micropollutants, Water Quality Control Department, EYDAP SA, Menidi, GR-13674 Athens, Greece
| | - Hanna Mazur-Marzec
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, PL-81378 Gdynia, Poland; (R.K.); (K.S.)
| |
Collapse
|
3
|
Favas R, Morone J, Martins R, Vasconcelos V, Lopes G. Cyanobacteria and microalgae bioactive compounds in skin-ageing: potential to restore extracellular matrix filling and overcome hyperpigmentation. J Enzyme Inhib Med Chem 2021; 36:1829-1838. [PMID: 34353202 PMCID: PMC8354154 DOI: 10.1080/14756366.2021.1960830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
As the largest organ in human body, skin acts as a physicochemical barrier, offering protection against harmful environmental stressors, such as chemicals, pathogens, temperature and radiation. Nonetheless, skins prominence goes further, with a significant psychosocial role in an increasingly ageing population. Prompted by consumers’ concern regarding skincare, cosmetic industry has been developing new formulas capable of lessening the most visible signs of ageing, including reduction in skin density and elasticity, wrinkling and hyperpigmentation. Allied to skincare is the rising importance set on natural products, sustainably obtained from less environmental impacting methods. Cyanobacteria and microalgae are adding importance in this field, given their ability to biosynthesize secondary metabolites with anti-ageing potential. In this review, we present an overview on the potential of cyanobacteria and microalgae compounds to overcome skin-ageing, essentially by exploring their effects on the metalloproteinases collagenase, elastase, gelatinase and hyaluronidase, and in other enzymes involved in the pigmentation process.
Collapse
Affiliation(s)
- Rita Favas
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Matosinhos, Portugal.,FCUP, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Janaína Morone
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Matosinhos, Portugal.,FCUP, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Rosário Martins
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Matosinhos, Portugal.,Health and Environment Research Centre, School of Health, Polytechnic Institute of Porto, Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Matosinhos, Portugal.,FCUP, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Graciliana Lopes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Matosinhos, Portugal
| |
Collapse
|
4
|
Köcher S, Resch S, Kessenbrock T, Schrapp L, Ehrmann M, Kaiser M. From dolastatin 13 to cyanopeptolins, micropeptins, and lyngbyastatins: the chemical biology of Ahp-cyclodepsipeptides. Nat Prod Rep 2021; 37:163-174. [PMID: 31451830 DOI: 10.1039/c9np00033j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 1989 up to 2019 Ahp-cyclodepsipeptides (also known as Ahp-containing cyclodepsipeptides, cyanopeptolins, micropeptins, microginines, and lyngbyastatins, and by many other names) are a family of non-ribosomal peptide synthesis (NRPS)-derived natural products with potent serine protease inhibitory properties. Here, we review their isolation and structural elucidation from natural sources as well as studies of their biosynthesis, molecular mode of action, and use in drug discovery efforts. Accordingly, this summary aims to provide a comprehensive overview of the current state-of-the-art Ahp-cyclodepsipeptide research.
Collapse
Affiliation(s)
- Steffen Köcher
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| | - Sarah Resch
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| | - Till Kessenbrock
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| | - Lukas Schrapp
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| | - Michael Ehrmann
- Microbiology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Markus Kaiser
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| |
Collapse
|
5
|
Ahmad S, Saleem M, Riaz N, Lee YS, Diri R, Noor A, Almasri D, Bagalagel A, Elsebai MF. The Natural Polypeptides as Significant Elastase Inhibitors. Front Pharmacol 2020; 11:688. [PMID: 32581778 PMCID: PMC7291377 DOI: 10.3389/fphar.2020.00688] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Human neutrophil elastase (HNE) is a major cause of the destruction of tissues in cases of several different chronic andinflammatory diseases. Overexpression of the elastase enzyme plays a significant role in the pathogenesis of various diseases including chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome, rheumatoid arthritis, the rare disease cyclic hematopoiesis (or cyclic neutropenia), infections, sepsis, cystic fibrosis, myocardial ischemia/reperfusion injury and asthma, inflammation, and atherosclerosis. Human neutrophil elastase is secreted by human neutrophils due to different stimuli. Medicine-based inhibition of the over-activation of neutrophils or production and activity of elastase have been suggested to mend inflammatory diseases. Although the development of new elastase inhibitors is an essential strategy for treating the different inflammatory diseases, it has been a challenge to specifically target the activity of elastase because of its overlapping functions with those of other serine proteases. This review article highlights the reported natural polypeptides as potential inhibitors of elastase enzyme. The mechanism of action, structural features, and activity of the polypeptides have also been correlated wherever they were available.
Collapse
Affiliation(s)
- Shabir Ahmad
- Department of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.,Department of Chemistry, Post-Graduate College, Bahawalpur, Pakistan
| | - Muhammad Saleem
- Department of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Naheed Riaz
- Department of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yong Sup Lee
- Department of Life and Nanopharmaceutical Sciences & Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Reem Diri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Noor
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Diena Almasri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa Bagalagel
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Fahmi Elsebai
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Cyanopeptolins with Trypsin and Chymotrypsin Inhibitory Activity from the Cyanobacterium Nostoc edaphicum CCNP1411. Mar Drugs 2018; 16:md16070220. [PMID: 29949853 PMCID: PMC6070996 DOI: 10.3390/md16070220] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022] Open
Abstract
Cyanopeptolins (CPs) are one of the most frequently occurring cyanobacterial peptides, many of which are inhibitors of serine proteases. Some CP variants are also acutely toxic to aquatic organisms, especially small crustaceans. In this study, thirteen CPs, including twelve new variants, were detected in the cyanobacterium Nostoc edaphicum CCNP1411 isolated from the Gulf of Gdańsk (southern Baltic Sea). Structural elucidation was performed by tandem mass spectrometry with verification by NMR for CP962 and CP985. Trypsin and chymotrypsin inhibition assays confirmed the significance of the residue adjacent to 3-amino-6-hydroxy-2-piperidone (Ahp) for the activity of the peptides. Arginine-containing CPs (CPs-Arg²) inhibited trypsin at low IC50 values (0.24⁻0.26 µM) and showed mild activity against chymotrypsin (IC50 3.1⁻3.8 µM), while tyrosine-containing CPs (CPs-Tyr²) were selectively and potently active against chymotrypsin (IC50 0.26 µM). No degradation of the peptides was observed during the enzyme assays. Neither of the CPs were active against thrombin, elastase or protein phosphatase 1. Two CPs (CP962 and CP985) had no cytotoxic effects on MCF-7 breast cancer cells. Strong and selective activity of the new cyanopeptolin variants makes them potential candidates for the development of drugs against metabolic disorders and other diseases.
Collapse
|
7
|
Issac M, Aknin M, Gauvin-Bialecki A, De Voogd N, Ledoux A, Frederich M, Kashman Y, Carmeli S. Cyclotheonellazoles A-C, Potent Protease Inhibitors from the Marine Sponge Theonella aff. swinhoei. JOURNAL OF NATURAL PRODUCTS 2017; 80:1110-1116. [PMID: 28207261 DOI: 10.1021/acs.jnatprod.7b00028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The extract of a sample of the sponge Theonella aff. swinhoei collected in Madagascar exhibited promising in vitro antiplasmodial activity. The antiplasmodial activity was ascribed in part to the known metabolite swinholide A. Further investigation of the extract afforded three unusual cyclic peptides, cyclotheonellazoles A-C (1-3), which contain six nonproteinogenic amino acids out of the eight acid units that compose these natural products. Among these acids the most novel were 4-propenoyl-2-tyrosylthiazole and 3-amino-4-methyl-2-oxohexanoic acid. The structure of the compounds was elucidated by interpretation of the 1D and 2D NMR data, HRESIMS, and advanced Merfay's techniques. The new compounds were found to be nanomolar inhibitors of chymotrypsin and sub-nanomolar inhibitors of elastase, but did not present antiplasmodial activity.
Collapse
Affiliation(s)
- Michal Issac
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University , Ramat Aviv, Tel-Aviv 69978, Israel
| | - Maurice Aknin
- Laboratoire de Chimie des Substances Naturelles et des Aliments, Faculté des Sciences et Technologies, Université de La Réunion , 15 Avenue René Cassin, CS 92 003, 97 744, Saint-Denis, Cedex 9, France
| | - Anne Gauvin-Bialecki
- Laboratoire de Chimie des Substances Naturelles et des Aliments, Faculté des Sciences et Technologies, Université de La Réunion , 15 Avenue René Cassin, CS 92 003, 97 744, Saint-Denis, Cedex 9, France
| | - Nicole De Voogd
- Naturalis Biodiversity Center , P.O. Box 9517, 2300 RA, Leiden, The Netherlands
| | - Alisson Ledoux
- Laboratory of Pharmacognosy, Department of Pharmacy, CIRM, University of Liège , B36, 4000 Liège, Belgium
| | - Michel Frederich
- Laboratory of Pharmacognosy, Department of Pharmacy, CIRM, University of Liège , B36, 4000 Liège, Belgium
| | - Yoel Kashman
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University , Ramat Aviv, Tel-Aviv 69978, Israel
| | - Shmuel Carmeli
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University , Ramat Aviv, Tel-Aviv 69978, Israel
| |
Collapse
|
8
|
Determination of FVIIa-sTF Inhibitors in Toxic Microcystis Cyanobacteria by LC-MS Technique. Mar Drugs 2015; 14:7. [PMID: 26729138 PMCID: PMC4728504 DOI: 10.3390/md14010007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 11/29/2022] Open
Abstract
The blood coagulation cascade involves the human coagulation factors thrombin and an activated factor VII (fVIIa). Thrombin and fVIIa are vitamin-K-dependent clotting factors associated with bleeding, bleeding complications and disorders. Thrombin and fVIIa cause excessive bleeding when treated with vitamin-K antagonists. In this research, we explored different strains of toxic Microcystis aeruginosa and cyanobacteria blooms for the probable fVIIa-soluble Tissue Factor (fVIIa-sTF) inhibitors. The algal cells were subjected to acidification, and reverse phase (ODS) chromatography-solid phase extraction eluted by water to 100% MeOH with 20%-MeOH increments except for M. aeruginosa NIES-89, from the National Institute for Environmental Studies (NIES), which was eluted with 5%-MeOH increments as an isolation procedure to separate aeruginosins 89A and B from co-eluting microcystins. The 40%–80% MeOH fractions of the cyanobacterial extract are active against fVIIa-sTF. The fVIIa-sTF active fractions from cultured cyanobacteria and cyanobacteria blooms were subjected to liquid chromatography-mass spectrometry (LC-MS). The 60% MeOH fraction of M. aeruginosa K139 exhibited an m/z 603 [M + H]+ attributed to aeruginosin K139, and the 40% MeOH fraction of M. aeruginosa NIES-89 displayed ions with m/z 617 [M − SO3 + H]+ and m/z [M + H]+ 717, which attributed to aeruginosin 89. Aeruginosins 102A/B and 298A/B were also observed from other toxic strains of M. aeruginosa with positive fVIIa-sTF inhibitory activity. The active fractions contained cyanobacterial peptides of the aeruginosin class as fVIIa-sTF inhibitors detected by LC-MS.
Collapse
|
9
|
Elkobi-Peer S, Carmeli S. New prenylated aeruginosin, microphycin, anabaenopeptin and micropeptin analogues from a Microcystis bloom material collected in Kibbutz Kfar Blum, Israel. Mar Drugs 2015; 13:2347-75. [PMID: 25884445 PMCID: PMC4413215 DOI: 10.3390/md13042347] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 11/25/2022] Open
Abstract
Thirteen new and eighteen known natural products were isolated from a bloom material of an assembly of various Microcystis spp. collected in November, 2008, from a commercial fishpond near Kibbutz Kfar Blum, the Jordan Valley, Israel. The new natural products included the prenylated aeruginosin KB676 (1), microphycin KB921 (2), anabaenopeptins KB906 (3) and KB899 (4) and micropeptins KB928 (5), KB956 (6), KB970A (7), KB970B (8), KB984 (9), KB970C (10), KB1048 (11), KB992 (12) and KB1046 (13). Their structures were elucidated primarily by interpretation of their 1D and 2D nuclear magnetic resonance spectra and high-resolution mass spectrometry. Marfey's and chiral-phase high performance liquid chromatography methods were used to determine the absolute configurations of their chiral centers. Aeruginosin KB676 (1) contains the rare (2S,3aS,6S,7aS)-Choi and is the first prenylated aeruginosin derivative described in the literature. Compounds 1 and 5-11 inhibited trypsin with sub-μM IC50s, while Compounds 11-13 inhibited chymotrypsin with sub-μM IC50s. The structures and biological activities of the new natural products and our procedures of dereplication are described.
Collapse
Affiliation(s)
- Shira Elkobi-Peer
- Raymond and Beverly Sackler Faculty of Exact Sciences, Raymond and Beverly Sackler School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| | - Shmuel Carmeli
- Raymond and Beverly Sackler Faculty of Exact Sciences, Raymond and Beverly Sackler School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| |
Collapse
|
10
|
Thorskov Bladt T, Kalifa-Aviv S, Ostenfeld Larsen T, Carmeli S. Micropeptins from Microcystis sp. collected in Kabul Reservoir, Israel. Tetrahedron 2014. [DOI: 10.1016/j.tet.2013.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Schwarzenberger A, Sadler T, Von Elert E. Effect of nutrient limitation of cyanobacteria on protease inhibitor production and fitness of Daphnia magna. J Exp Biol 2013; 216:3649-55. [DOI: 10.1242/jeb.088849] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Herbivore-plant interactions have been well studied in both terrestrial and aquatic ecosystems as they are crucial for the trophic transfer of energy and matter. In nutrient-rich freshwater ecosystems, the interaction between primary producers and herbivores is to a large extent represented by Daphnia and cyanobacteria. The occurrence of cyanobacterial blooms in lakes and ponds has, at least partly, been attributed to cyanotoxins, which negatively affect the major grazer of planktonic cyanobacteria, i.e. Daphnia. Among these cyanotoxins are the wide-spread protease inhibitors. These inhibitors have been shown (both in vitro and in situ) to inhibit the most important group of digestive proteases in the gut of Daphnia, i.e. trypsins and chymotrypsins, and to reduce Daphnia growth. In this study we grew cultures of the cyanobacterium Microcystis aeruginosa strain BM25 on nutrient replete, N-depleted or P-depleted medium. We identified three different micropeptins to be the cause for the inhibitory activity of BM25 against chymotrypsins. The micropeptin content depended on nutrient availability: Whereas N-limitation led to a lower concentration of micropeptins per biomass, P-limitation resulted in a higher production of these chymotrypsin inhibitors. The altered micropeptin content of BM25 was accompanied by changed effects on the fitness of Daphnia: A higher content of micropeptins led to lower IC50 values for Daphnia gut proteases and vice-versa. Following expectations, the lower content of micropeptins in the N-depleted BM25 caused higher somatic growth of Daphnia. Therefore, protease inhibitors can be regarded as a nutrient-dependent defence against grazers. Interestingly, although the P-limitation of the cyanobacterium led to a higher micropeptin content, high growth of D. magna was observed when they were fed with P-depleted BM25. This might be due to reduced digestibility of P-depleted cells with putatively thick mucilaginous sheaths. These findings indicate that both the grazer and the cyanobacterium benefit from P-reduction in light of digestibility and growth inhibition, which is an interesting starting point for further studies.
Collapse
|
12
|
Nagarajan M, Maruthanayagam V, Sundararaman M. SAR analysis and bioactive potentials of freshwater and terrestrial cyanobacterial compounds: a review. J Appl Toxicol 2012; 33:313-49. [PMID: 23172644 DOI: 10.1002/jat.2833] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 08/29/2012] [Accepted: 09/11/2012] [Indexed: 11/07/2022]
Abstract
Freshwater and terrestrial cyanobacteria resemble the marine forms in producing divergent chemicals such as linear, cyclic and azole containing peptides, alkaloids, cyclophanes, terpenes, lactones, etc. These metabolites have wider biomedical potentials in targeting proteases, cancers, parasites, pathogens and other cyanobacteria and algae (allelopathy). Among the various families of non-marine cyanobacterial peptides reported, many of them are acting as serine protease inhibitors. While the micropeptin family has a preference for chymotrypsin inhibition rather than other serine proteases, the aeruginosin family targets trypsin and thrombin. In addition, cyanobacterial compounds such as scytonemide A, lyngbyazothrins C and D and cylindrocyclophanes were found to inhibit 20S proteosome. Apart from proteases, metabolites blocking the other targets of cancer pathways may exhibit cytotoxic effect. Colon and rectum, breast, lung and prostate are the worst affecting cancers in humans and are deduced to be inhibited by both peptidic and non-peptidic compounds. Moreover, the growth of infections causing parasites such as Plasmodium, Leishmania and Trypanosoma are well controlled by peptides: aerucyclamides A-D, tychonamides and alkaloids: nostocarboline and calothrixins. Likewise, varieties of cyanobacterial compounds tend to inhibit serious infectious disease causing bacterial, fungal and viral agents. Interestingly, portoamides, spiroidesin, nostocyclamide and kasumigamide are the allelopathic peptides determined to suppress the growth of toxic cyanobacteria and nuisance algae. Thus cyanobacterial compounds have a broad bioactive spectrum; the analysis of SAR studies will not only assist to find out the mode of action but also reveal bioactive key components. Thereby, developing the drugs bearing these bioactive skeletons to treat various illnesses is wide open.
Collapse
Affiliation(s)
- M Nagarajan
- Department of Marine Biotechnology, School of Marine Sciences, Bharathidasan University, Tiruchirappalli-, 620 024, Tamil Nadu, India
| | | | | |
Collapse
|
13
|
New aeruginazoles, a group of thiazole-containing cyclic peptides from Microcystis aeruginosa blooms. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.12.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Lifshits M, Zafrir-Ilan E, Raveh A, Carmeli S. Protease inhibitors from three fishpond water blooms of Microcystis spp. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.04.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|