1
|
Alemán J, Humbrías-Martín J, Del Río-Rodríguez R, Aguilar-Galindo F, Díaz-Tendero S, Fernández-Salas JA. Bicarbonate-binding catalysis for the enantioselective desymmetrization of keto sulfonium salts. Nat Commun 2024; 15:4727. [PMID: 38830865 PMCID: PMC11148132 DOI: 10.1038/s41467-024-48832-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Herein, an enantioselective desymmetrization of cyclic keto sulfonium salts through enantioselective deprotonation/ring opening process by anion-binding catalysis is presented. We report a squaramide/HCO3- complex as catalytic active species which is able to stereo-differentiate two enantiomeric protons, triggering the ring opening event taking advantage of the great tendency of sulfonium salts to act as leaving groups. Thus, this desymmetrization methodology give rise to β-methylsulfenylated sulfa-Michael addition type products with excellent yields and very good enantioselectivities. The bifunctional organocatalyst has been demonstrated to be capable of activating simultaneously the base and the keto sulfonium salt by DFT calculations and experimental proofs.
Collapse
Affiliation(s)
- José Alemán
- Departamento de Química Orgánica (módulo 1), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, Spain.
- Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid, Madrid, Spain.
| | - Jorge Humbrías-Martín
- Departamento de Química Orgánica (módulo 1), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Roberto Del Río-Rodríguez
- Departamento de Química Orgánica (módulo 1), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Fernando Aguilar-Galindo
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Sergio Díaz-Tendero
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose A Fernández-Salas
- Departamento de Química Orgánica (módulo 1), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
2
|
Luo F, Dong H, Ren W, Wang Y. Organocatalytic Asymmetric Synthesis of Tetrahydroquinolines from ortho-Aminophenyl para-Quinone Methides. Org Lett 2022; 24:7727-7731. [PMID: 36250632 DOI: 10.1021/acs.orglett.2c02874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The asymmetric catalytic [4 + 2] cycloannulation of ortho-aminophenyl p-QMs with different types of alkenes for the construction of tetrahydroquinolines containing three contiguous stereogenic centers was developed. This is the first example of catalytic asymmetric cycloannulation of ortho-aminophenyl p-QMs. This reaction exhibits excellent functional group tolerance. Excellent yields, exclusive diastereoselectivities, and high enantioselectivities were obtained in this efficient organocatalytic reaction.
Collapse
Affiliation(s)
- Fengbiao Luo
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Hao Dong
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Weiwu Ren
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| | - Yang Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| |
Collapse
|
3
|
Kurihara T, Kojima M, Yoshino T, Matsunaga S. Achiral Cp*Rh(III)/Chiral Lewis Base Cooperative Catalysis for Enantioselective Cyclization via C–H Activation. J Am Chem Soc 2022; 144:7058-7065. [DOI: 10.1021/jacs.2c01223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Takumaru Kurihara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
4
|
|
5
|
Joshi H, Singh VK. Cinchona Derivatives as Bifunctional H‐bonding Organocatalysts in Asymmetric Vinylogous Conjugate Addition Reactions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Harshit Joshi
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur-208016 Uttar Pradesh India
| | - Vinod K. Singh
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur-208016 Uttar Pradesh India
| |
Collapse
|
6
|
Ullah Z, Kim K, Venkanna A, Kim HS, Kim MI, Kim MH. Plausible Pnicogen Bonding of epi-Cinchonidine as a Chiral Scaffold in Catalysis. Front Chem 2021; 9:669515. [PMID: 34295874 PMCID: PMC8290064 DOI: 10.3389/fchem.2021.669515] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022] Open
Abstract
As a non-covalent interaction of a chiral scaffold in catalysis, pnicogen bonding of epi-cinchonidine (epi-CD), a cinchona alkaloid, was simulated to consider whether the interaction can have the potential controlling enantiotopic face like hydrogen bonding. Among five reactive functional groups in epi-CD, two stable complexes of the hydroxyl group (X-epi-CD1) at C17 and of the quinoline ring (X-epi-CD2) at N16 with pnictide family analytes [X = substituted phosphine (PX), i.e., F, Br, Cl, CF3, CN, HO, NO2, and CH3, and pnictide family analytes, i.e., PBr3, BiI3, SbI3, and AsI3] were predicted with intermolecular interaction energies, charge transfer (QMulliken and QNBO), and band gap energies of HOMO-LUMO (Eg) at the B3LYP/6-31G(d,p) level of density functional theory. It was found that the dominant site of pnicogen bonding in epi-CD is the quinoline ring (N16 atom) rather than the hydroxyl group (O36 atom). In addition, the UV-Vis spectra of the complex were calculated by time-dependent density functional theory (TD-DFT) at the B3LYP/6-31+G(d,p) level and compared with experimental measurements. Through these calculations, two intermolecular interactions (H-bond vs. pnicogen bond) of epi-CD were compared.
Collapse
Affiliation(s)
- Zakir Ullah
- Department of Pharmacy, College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, South Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kang Kim
- Department of Pharmacy, College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, South Korea
| | - Arramshetti Venkanna
- Department of Pharmacy, College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, South Korea
| | - Hye Su Kim
- Department of BioNano Technology, Gachon University, Seongnam, South Korea
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, Seongnam, South Korea
| | - Mi-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, South Korea
| |
Collapse
|
7
|
Kamanna K. Amino Acids and Peptides Organocatalysts: A Brief Overview on Its Evolution and Applications in Organic Asymmetric Synthesis. CURRENT ORGANOCATALYSIS 2021. [DOI: 10.2174/2213337207999201117093848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review highlights the application of biopolymers of natural α-amino acids and its
derived wild-type peptides employed as organocatalysts for the asymmetric synthesis of various important
compounds published by researchers across the globe. The α-amino acid with L-configuration
is available commercially in the pure form and plays a crucial role in enantioselective chiral
molecule synthesis. Out of twenty natural amino acids, only one secondary amine-containing proline
amino acid exhibited revolution in the field of organocatalysis because of its rigid structure
and the formation of an imine like transition state during the reaction, which leads to more stereoselectivity.
Hence, it is referred to as a simple enzyme in organocatalyst. Chiral enantioselective organic
molecule synthesis has been further discussed by employing oligopeptides derived from the
natural amino acids as a robust biocatalyst that replaced enzyme catalysts. The di-, tri, tetra-,
penta- and oligopeptide derived from the natural amino acids are demonstrated as a potential
organocatalyst, whose catalytic activity and mechanistic pathways are reviewed in the present paper.
Several choices of organocatalyst are developed to achieve a facile and efficient stereoselective
synthesis of many complex natural products with optically pure isomer. Subsequently, the researcher
developed green and sustainable heterogeneous catalytic system containing organocatalyst
immobilized onto solid inorganic support or porous material for accelerating reaction rate with
asymmetric one isomer product through the heterogeneous phase. Further, researchers developed
heterogeneous organocatalysts-Metal-Organic Frameworks (MOFs) that emerged as alternative
simple and facile heterogeneous catalysts for the bulk production and flow reactor for enantioselective
synthesis. This review compiled many outstanding discoveries in organocatalysts derivative of
amino acids, peptides and heterogenized-MOFs employed for many organic transformations in research
and industrial applications.
Collapse
Affiliation(s)
- Kantharaju Kamanna
- Department of Chemistry, Peptide and Medicinal Chemistry Research Laboratory, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi -591156, Karnataka, India
| |
Collapse
|
8
|
Zhang LW, Wang L, Ji N, Dai SY, He W. Asymmetric epoxidation of α,β-unsaturated ketones via an amine-thiourea dual activation catalysis. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Das S, Hu Q, Kondoh A, Terada M. Enantioselective Protonation: Hydrophosphinylation of 1,1-Vinyl Azaheterocycle N-Oxides Catalyzed by Chiral Bis(guanidino)iminophosphorane Organosuperbase. Angew Chem Int Ed Engl 2021; 60:1417-1422. [PMID: 33030798 DOI: 10.1002/anie.202012492] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Indexed: 12/30/2022]
Abstract
Enantioselective protonation by hydrophosphinylation of diarylphosphine oxides with 2-vinyl azaheterocycle N-oxide derivatives was demonstrated using chiral bis(guanidino)iminophosphorane as the higher-order organosuperbase catalyst. It was confirmed by several control experiments that a chiral weak conjugate acid of the chiral bis(guanidino)iminophosphorane, instead of achiral diarylphosphine oxides, directly functioned as the proton source to afford the corresponding product in a highly enantioselective manner in most cases. Enantioselective protonation by a weak conjugate acid generated from the higher-order organosuperbase would broaden the scope of enantioselective reaction systems because of utilization of a range of less acidic pronucleophiles. This method is highlighted by the valuable synthesis of a series of chiral P,N-ligands for chiral metal complexes through the reduction of phosphine oxide and N-oxide units of the corresponding product without loss of enantiomeric purity.
Collapse
Affiliation(s)
- Saikat Das
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Qiupeng Hu
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
10
|
Kondoh A, Terada M. Development of Molecular Transformations on the Basis of Catalytic Generation of Anionic Species by Organosuperbase. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
11
|
Das S, Hu Q, Kondoh A, Terada M. Enantioselective Protonation: Hydrophosphinylation of 1,1‐Vinyl Azaheterocycle
N
‐Oxides Catalyzed by Chiral Bis(guanidino)iminophosphorane Organosuperbase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Saikat Das
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Qiupeng Hu
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Azusa Kondoh
- Research and Analytical Center for Giant Molecules Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Masahiro Terada
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
12
|
Nagy S, Fehér Z, Kárpáti L, Bagi P, Kisszékelyi P, Koczka B, Huszthy P, Pukánszky B, Kupai J. Synthesis and Applications of Cinchona Squaramide-Modified Poly(Glycidyl Methacrylate) Microspheres as Recyclable Polymer-Grafted Enantioselective Organocatalysts. Chemistry 2020; 26:13513-13522. [PMID: 32697895 PMCID: PMC7702047 DOI: 10.1002/chem.202001993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/11/2020] [Indexed: 11/26/2022]
Abstract
This work presents the immobilization of cinchona squaramide organocatalysts on poly(glycidyl methacrylate) solid supports. Preparation of the well-defined monodisperse polymer microspheres was facilitated by comprehensive parameter optimization. By exploiting the reactive epoxy groups of the polymer support, three amino-functionalized cinchona derivatives were immobilized on this carrier. To explore the effect of the amino linker, these structurally varied precatalysts were synthesized by modifying the cinchona skeleton at different positions. The catalytic activities of the immobilized organocatalysts were tested in the Michael addition of pentane-2,4-dione and trans-β-nitrostyrene with excellent yields (up to 98 %) and enantioselectivities (up to 96 % ee). Finally, the catalysts were easily recovered five times by centrifugation without loss of activity.
Collapse
Affiliation(s)
- Sándor Nagy
- Department of Organic Chemistry & TechnologyBudapest University of Technology & EconomicsSzent Gellért tér 41111BudapestHungary
| | - Zsuzsanna Fehér
- Department of Organic Chemistry & TechnologyBudapest University of Technology & EconomicsSzent Gellért tér 41111BudapestHungary
| | - Levente Kárpáti
- Laboratory of Plastics & Rubber TechnologyBudapest University of Technology & EconomicsMűegyetem rkp. 3.Budapest1111Hungary
- Downstream HungaryPolyolefin R&D, MOL Plc.Olajmunkás utca 22443SzázhalombattaHungary
| | - Péter Bagi
- Department of Organic Chemistry & TechnologyBudapest University of Technology & EconomicsSzent Gellért tér 41111BudapestHungary
| | - Péter Kisszékelyi
- Department of Organic Chemistry & TechnologyBudapest University of Technology & EconomicsSzent Gellért tér 41111BudapestHungary
| | - Béla Koczka
- Department of Inorganic and Analytical ChemistryBudapest University of Technology & EconomicsSzent Gellért tér 41111BudapestHungary
| | - Péter Huszthy
- Department of Organic Chemistry & TechnologyBudapest University of Technology & EconomicsSzent Gellért tér 41111BudapestHungary
| | - Béla Pukánszky
- Laboratory of Plastics & Rubber TechnologyBudapest University of Technology & EconomicsMűegyetem rkp. 3.Budapest1111Hungary
| | - József Kupai
- Department of Organic Chemistry & TechnologyBudapest University of Technology & EconomicsSzent Gellért tér 41111BudapestHungary
| |
Collapse
|
13
|
Pasternak‐Suder M, Pacułt W, Baś S, Mlynarski J. Asymmetric Aldol Reaction of Pyruvate Promoted by Chiral Tertiary Amines. ChemistrySelect 2020. [DOI: 10.1002/slct.202001450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Wojciech Pacułt
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
| | - Sebastian Baś
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
| | - Jacek Mlynarski
- Institute of Organic Chemistry Polish Academy of Science Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
14
|
Abdelkawy MA, Aly EA, El‐Badawi MA, Itsuno S. Synthesis of Cinchona Urea Polymers and Their Evaluation as Catalyst in the Asymmetric Reactions. ChemistrySelect 2020. [DOI: 10.1002/slct.202001436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mahmoud A. Abdelkawy
- Department of Applied Chemistry & Life ScienceToyohashi University of Technology Toyohashi 441-8580 Japan
- Chemistry DepartmentFaculty of ScienceTanta University Tanta 31527 Egypt
| | - El‐Saied A. Aly
- Chemistry DepartmentFaculty of ScienceTanta University Tanta 31527 Egypt
| | | | - Shinichi Itsuno
- Department of Applied Chemistry & Life ScienceToyohashi University of Technology Toyohashi 441-8580 Japan
| |
Collapse
|
15
|
ADMET Polymerization of Dimeric Cinchona Squaramides for the Preparation of a Highly Enantioselective Polymeric Organocatalyst. Catalysts 2020. [DOI: 10.3390/catal10050591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Under the acyclic diene metathesis (ADMET) reaction condition, the C3-vinyl groups of cinchona alkaloids readily react with each other to form a C-C bond. A novel type of cinchona alkaloid polymers was synthesized from dimeric cinchona squaramides using the Hoveyda-Grubbs’ second-generation catalysts (HG2) by means of ADMET reaction. The chiral polymers, containing cinchona squaramide moieties in their main chains, were subsequently employed as catalysts for the enantioselective Michael reaction to give the corresponding chiral adducts in high yields with excellent enantioselectivity and diastereoselectivity. Both enantiomers from the asymmetric Michael reaction were distinctively prepared while using the polymeric catalysts, possessing pseudoenantiomeric structures. The catalysts were readily recovered from the reaction mixture and recycled several times due to the insolubility of the cinchona-based squaramide polymers.
Collapse
|
16
|
Sonsona IG, Alegre-Requena JV, Marqués-López E, Gimeno MC, Herrera RP. Asymmetric Organocatalyzed Aza-Henry Reaction of Hydrazones: Experimental and Computational Studies. Chemistry 2020; 26:5469-5478. [PMID: 32012361 DOI: 10.1002/chem.202000232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 12/13/2022]
Abstract
The first asymmetric catalyzed aza-Henry reaction of hydrazones is presented. In this process, quinine was used as the catalyst to synthesize different alkyl substituted β-nitrohydrazides with ee up to 77 %. This ee was improved up to 94 % by a further recrystallization and the opposite enantiomer can be obtained by using quinidine as the catalyst, opening exciting possibilities in fields in which the control of chirality is vital, such as the pharmaceutical industry. Additionally, experimental and ab initio studies were performed to understand the reaction mechanism. The experimental results revealed an unexpected secondary kinetic isotope effect (KIE) that is explained by the calculated reaction pathway, which shows that the protonation of the initial hydrazone and the C-C bond forming reaction occur during a concerted process. This concerted mechanism makes the catalysis conceptually different to traditional base-promoted Henry and aza-Henry reactions.
Collapse
Affiliation(s)
- Isaac G Sonsona
- Laboratorio de Organocatálisis Asimétrica, Departamento de, Química Orgánica, Instituto de Síntesis Química y, Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, No. 12., 50009, Zaragoza, Spain
| | - Juan V Alegre-Requena
- Laboratorio de Organocatálisis Asimétrica, Departamento de, Química Orgánica, Instituto de Síntesis Química y, Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, No. 12., 50009, Zaragoza, Spain
| | - Eugenia Marqués-López
- Laboratorio de Organocatálisis Asimétrica, Departamento de, Química Orgánica, Instituto de Síntesis Química y, Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, No. 12., 50009, Zaragoza, Spain
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de, Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de, Zaragoza, C/ Pedro Cerbuna, No. 12., 50009, Zaragoza, Spain
| | - Raquel P Herrera
- Laboratorio de Organocatálisis Asimétrica, Departamento de, Química Orgánica, Instituto de Síntesis Química y, Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, No. 12., 50009, Zaragoza, Spain
| |
Collapse
|
17
|
Kondoh A, Oishi M, Tezuka H, Terada M. Development of Chiral Organosuperbase Catalysts Consisting of Two Different Organobase Functionalities. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant MoleculesGraduate School of ScienceTohoku University, Aramaki, Aoba-ku Sendai 980–8578 Japan
| | - Masafumi Oishi
- Department of ChemistryGraduate School of ScienceTohoku University, Aramaki, Aoba-ku Sendai 980–8578 Japan
| | - Hikaru Tezuka
- Department of ChemistryGraduate School of ScienceTohoku University, Aramaki, Aoba-ku Sendai 980–8578 Japan
| | - Masahiro Terada
- Department of ChemistryGraduate School of ScienceTohoku University, Aramaki, Aoba-ku Sendai 980–8578 Japan
| |
Collapse
|
18
|
Kondoh A, Oishi M, Tezuka H, Terada M. Development of Chiral Organosuperbase Catalysts Consisting of Two Different Organobase Functionalities. Angew Chem Int Ed Engl 2020; 59:7472-7477. [DOI: 10.1002/anie.202001419] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant MoleculesGraduate School of ScienceTohoku University, Aramaki, Aoba-ku Sendai 980–8578 Japan
| | - Masafumi Oishi
- Department of ChemistryGraduate School of ScienceTohoku University, Aramaki, Aoba-ku Sendai 980–8578 Japan
| | - Hikaru Tezuka
- Department of ChemistryGraduate School of ScienceTohoku University, Aramaki, Aoba-ku Sendai 980–8578 Japan
| | - Masahiro Terada
- Department of ChemistryGraduate School of ScienceTohoku University, Aramaki, Aoba-ku Sendai 980–8578 Japan
| |
Collapse
|
19
|
Kondoh A, Ishikawa S, Terada M. Development of Chiral Ureates as Chiral Strong Brønsted Base Catalysts. J Am Chem Soc 2020; 142:3724-3728. [DOI: 10.1021/jacs.9b13922] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Sho Ishikawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
20
|
β-Isocupreidinate‒CaAl-layered double hydroxide composites—heterogenized catalysts for asymmetric Michael addition. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Walęcka-Kurczyk A, Walczak K, Kuźnik A, Stecko S, Październiok-Holewa A. The Synthesis of α-Aminophosphonates via Enantioselective Organocatalytic Reaction of 1-( N-Acylamino)alkylphosphonium Salts with Dimethyl Phosphite. Molecules 2020; 25:E405. [PMID: 31963713 PMCID: PMC7024258 DOI: 10.3390/molecules25020405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
α-Aminophosphonic acids are phosphorus analogues of α-amino acids. Compounds of this type find numerous applications in medicine and crop protection due to their unique biological activities. A crucial factor in these activities is the configuration of the stereoisomers. Only a few methods of stereoselective transformation of α-amino acids into their phosphorus analogues are known so far and all of them are based on asymmetric induction, thus involving the use of a chiral substrate. In contrast, we have focused our efforts on the development of an effective method for this type of transformation using a racemic mixture of starting N-protected α-amino acids and a chiral catalyst. Herein, a simple and efficient stereoselective organocatalytic α-amidoalkylation of dimethyl phosphite by 1-(N-acylamino)alkyltriphenylphosphonium salts to enantiomerically enriched α-aminophosphonates is reported. Using 5 mol% of chiral quinine- or hydroquinine-derived quaternary ammonium salts provides final products in very good yields up to 98% and with up to 92% ee. The starting phosphonium salts were easily obtained from α-amino acid derivatives by decarboxylative methoxylation and subsequent substitution with triphenylphosphonium tetrafluoroborate. The appropriate self-disproportionation of enantiomers (SDE) test for selected α-aminophosphonate derivatives via achiral flash chromatography was performed to confirm the reliability of the enantioselectivity results that were obtained.
Collapse
Affiliation(s)
- Alicja Walęcka-Kurczyk
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (A.W.-K.); (K.W.); (A.K.)
- Biotechnology Center of Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Krzysztof Walczak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (A.W.-K.); (K.W.); (A.K.)
| | - Anna Kuźnik
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (A.W.-K.); (K.W.); (A.K.)
- Biotechnology Center of Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Sebastian Stecko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland;
| | - Agnieszka Październiok-Holewa
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (A.W.-K.); (K.W.); (A.K.)
- Biotechnology Center of Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| |
Collapse
|
22
|
Nagy S, Fehér Z, Dargó G, Barabás J, Garádi Z, Mátravölgyi B, Kisszékelyi P, Dargó G, Huszthy P, Höltzl T, Balogh GT, Kupai J. Comparison of Cinchona Catalysts Containing Ethyl or Vinyl or Ethynyl Group at Their Quinuclidine Ring. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3034. [PMID: 31540532 PMCID: PMC6766286 DOI: 10.3390/ma12183034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 11/17/2022]
Abstract
Numerous cinchona organocatalysts with different substituents at their quinuclidine unit have been described and tested, but the effect of those saturation has not been examined before. This work presents the synthesis of four widely used cinchona-based organocatalyst classes (hydroxy, amino, squaramide, and thiourea) with different saturation on the quinuclidine unit (ethyl, vinyl, ethynyl) started from quinine, the most easily available cinchona derivative. Big differences were found in basicity of the quinuclidine unit by measuring the pKa values of twelve catalysts in six solvents. The effect of differences was examined by testing the catalysts in Michael addition reaction of pentane-2,4-dione to trans-β-nitrostyrene. The 1.6-1.7 pKa deviation in basicity of the quinuclidine unit did not result in significant differences in yields and enantiomeric excesses. Quantum chemical calculations confirmed that the ethyl, ethynyl, and vinyl substituents affect the acid-base properties of the cinchona-thiourea catalysts only slightly, and the most active neutral thione forms are the most stable tautomers in all cases. Due to the fact that cinchonas with differently saturated quinuclidine substituents have similar catalytic activity in asymmetric Michael addition application of quinine-based catalysts is recommended. Its vinyl group allows further modifications, for instance, recycling the catalyst by immobilization.
Collapse
Affiliation(s)
- Sándor Nagy
- Department of Organic Chemistry & Technology, Budapest University of Technology & Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary.
| | - Zsuzsanna Fehér
- Department of Organic Chemistry & Technology, Budapest University of Technology & Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary.
| | - Gergő Dargó
- Department of Organic Chemistry & Technology, Budapest University of Technology & Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary.
- Chemical Department, Chemical Works of Gedeon Richter Plc., P.O. Box 27, H-1103 Budapest, Hungary.
| | - Júlia Barabás
- Department of Inorganic & Analytical Chemistry, Budapest University of Technology & Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary.
| | - Zsófia Garádi
- Department of Inorganic & Analytical Chemistry, Budapest University of Technology & Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary.
| | - Béla Mátravölgyi
- Department of Organic Chemistry & Technology, Budapest University of Technology & Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary.
| | - Péter Kisszékelyi
- Department of Organic Chemistry & Technology, Budapest University of Technology & Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary.
| | - Gyula Dargó
- Department of Organic Chemistry & Technology, Budapest University of Technology & Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary.
| | - Péter Huszthy
- Department of Organic Chemistry & Technology, Budapest University of Technology & Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary.
| | - Tibor Höltzl
- Department of Inorganic & Analytical Chemistry, Budapest University of Technology & Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary.
- Furukawa Electric Institute of Technology, Késmárk utca 28/A, H-1158 Budapest, Hungary.
| | - György Tibor Balogh
- Chemical Department, Chemical Works of Gedeon Richter Plc., P.O. Box 27, H-1103 Budapest, Hungary.
- Department of Chemical & Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| | - József Kupai
- Department of Organic Chemistry & Technology, Budapest University of Technology & Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary.
| |
Collapse
|
23
|
Chhanda SA, Itsuno S. Design and synthesis of chiral hyperbranched polymers containing cinchona squaramide moieties and their catalytic activity in the asymmetric Michael addition reaction. J Catal 2019. [DOI: 10.1016/j.jcat.2019.07.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Zhang Z, Xie S, Cheng B, Zhai H, Li Y. Enantioselective Total Synthesis of (+)-Arboridinine. J Am Chem Soc 2019; 141:7147-7154. [DOI: 10.1021/jacs.9b02362] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Sujun Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Bin Cheng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hongbin Zhai
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Shenzhen Engineering Laboratory of Nano Drug Slow-Release, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Yun Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
25
|
Asymmetric aza-Henry reaction of fluoromethylated imines catalyzed by cinchona-derived bifunctional thiourea. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.12.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Luo J, Fang Y, Mao X, Yang M, Zhao Y, Liu Y, Chen G, Ji Y. Organocatalytic Asymmetric Cyclization Reaction of 2‐Alkynyl‐3,3‐Difluoro‐3
H
‐Indoles and 2‐Mercaptoimidazoles: Access to
gem
‐Difluorinated C2‐Spiro Indolines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801524] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jian Luo
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Yu‐Bo Fang
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Xiang‐Yu Mao
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Meng Yang
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Yu‐Lei Zhao
- School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165, Shandong People's Republic of China
| | - Yun‐Lin Liu
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Guo‐Shu Chen
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Yong‐Fei Ji
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| |
Collapse
|
27
|
Odanaka Y, Kanemitsu T, Iwasaki K, Mochizuki Y, Miyazaki M, Nagata K, Kato M, Itoh T. Asymmetric Michael addition of malonic diesters to acrylates by phase-transfer catalysis toward the construction of quaternary stereogenic α-carbons. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.11.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Lee J, Chen DYK. A Local-Desymmetrization-Based Divergent Synthesis of Quinine and Quinidine. Angew Chem Int Ed Engl 2018; 58:488-493. [PMID: 30394634 DOI: 10.1002/anie.201811530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Indexed: 12/14/2022]
Abstract
Herein we report a novel synthetic entry to the legendary quinuclidine natural products quinine and quinidine. The developed strategy is based on the use of a symmetrical and nonstereogenic precursor to access quinine and quinidine through a "local-desymmetrization" approach, in stark contrast conceptually to the preparation of stereodefined disubstituted piperidines (or their acyclic precursors) as featured in all past syntheses. The developed strategy also provided quinine and quinidine derivatives that could not be readily obtained through previous total syntheses or by modification of the naturally occurring substances.
Collapse
Affiliation(s)
- Jaehoo Lee
- Department of Chemistry, Seoul National University, Gwanak-1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - David Y-K Chen
- Department of Chemistry, Seoul National University, Gwanak-1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
29
|
Lee J, Chen DYK. A Local-Desymmetrization-Based Divergent Synthesis of Quinine and Quinidine. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jaehoo Lee
- Department of Chemistry; Seoul National University; Gwanak-1 Gwanak-ro, Gwanak-gu Seoul 08826 South Korea
| | - David Y.-K. Chen
- Department of Chemistry; Seoul National University; Gwanak-1 Gwanak-ro, Gwanak-gu Seoul 08826 South Korea
| |
Collapse
|
30
|
Li W, Wang Y, Xu D. Asymmetric synthesis of β-amino ketones by using cinchona alkaloid-based chiral phase transfer catalysts. Org Biomol Chem 2018; 16:8704-8709. [PMID: 30411772 DOI: 10.1039/c8ob02484g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly enantioselective nucleophilic addition of ketones to imines catalyzed by chiral phase-transfer catalysts (N-quaternised cinchona alkaloid ammonium salts) has been developed, and the process affords the Mannich reaction products with tertiary stereocenters in good to high yields (up to 95%) with excellent enantioselectivities (up to 97% ee).
Collapse
Affiliation(s)
- Weihua Li
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China.
| | | | | |
Collapse
|
31
|
Ullah MS, Itsuno S. Synthesis of Cinchona Alkaloid Derived Chiral Squaramide Polymers by ADMET Polymerization and Their Application to Asymmetric Catalysis. CHEM LETT 2018. [DOI: 10.1246/cl.180554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Mohammad Shahid Ullah
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Shinichi Itsuno
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| |
Collapse
|
32
|
Brandão P, Burke AJ. Recent advances in the asymmetric catalytic synthesis of chiral 3-hydroxy and 3-aminooxindoles and derivatives: Medicinally relevant compounds. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Owolabi IA, Subba Reddy U, Chennapuram M, Seki C, Okuyama Y, Kwon E, Uwai K, Tokiwa M, Takeshita M, Nakano H. A new type of amino amide organocatalyzed enantioselective crossed aldol reaction of ketones with aromatic aldehydes. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Ullah M, Itsuno S. Cinchona Squaramide-Based Chiral Polymers as Highly Efficient Catalysts in Asymmetric Michael Addition Reaction. ACS OMEGA 2018; 3:4573-4582. [PMID: 31458680 PMCID: PMC6641636 DOI: 10.1021/acsomega.8b00398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/18/2018] [Indexed: 05/03/2023]
Abstract
We have synthesized novel chiral polymers containing a cinchona-based squaramide in the main chain. We designed a novel cinchona squaramide dimer that contains two cinchona squaramide units connected by diamines. The olefinic double bonds in the cinchona squaramide dimer were used for Mizoroki-Heck (MH) polymerization with aromatic diiodides. The MH polymerization of the cinchona squaramide dimer and aromatic diiodide proceeded well to give the corresponding chiral polymers in good yields. The catalytic activity of the chiral polymers was investigated for asymmetric Michael addition reactions. The effect of the squaramide structure of the polymeric catalyst on the catalytic performance is discussed in detail. We have surveyed the influence of the chiral polymer structure on the catalytic activity and enantioselectivity of the asymmetric reaction. The asymmetric Michael addition of β-ketoesters to nitroolefins was successfully catalyzed by polymeric cinchona squaramide organocatalysts to obtain the corresponding Michael adducts in good yields with excellent enantio- and diastereoselectivities. The polymeric catalysts were insoluble in commonly used organic solvents and easily recovered from the reaction mixture and reused several times without the loss of catalytic activity.
Collapse
|
35
|
Murauer A, Ganzera M. Quantitative determination of major alkaloids in Cinchona bark by Supercritical Fluid Chromatography. J Chromatogr A 2018; 1554:117-122. [PMID: 29699870 PMCID: PMC6193530 DOI: 10.1016/j.chroma.2018.04.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/12/2018] [Accepted: 04/15/2018] [Indexed: 12/21/2022]
Abstract
Chinoline alkaloids found in Cinchona bark still play an important role in medicine, for example as antimalarial and antiarrhythmic drugs. For the first time Supercritical Fluid Chromatography has been utilized for their separation. Six respective derivatives (dihydroquinidine, dihydroquinine, quinidine, quinine, cinchonine and cinchonidine) could be resolved in less than 7 min, and three of them quantified in crude plant extracts. The optimum stationary phase showed to be an Acquity UPC2 Torus DEA 1.7 μm column, the mobile phase comprised of CO2, acetonitrile, methanol and diethylamine. Method validation confirmed that the procedure is selective, accurate (recovery rates from 97.2% to 103.7%), precise (intra-day ≤2.2%, inter-day ≤3.0%) and linear (R2 ≥ 0.999); at 275 nm the observed detection limits were always below 2.5 μg/ml. In all of the samples analyzed cinchonine dominated (1.87%-2.30%), followed by quinine and cinchonidine. Their total content ranged from 4.75% to 5.20%. These values are in good agreement with published data, so that due to unmatched speed and environmental friendly character SFC is definitely an excellent alternative for the analysis of these important natural products.
Collapse
Affiliation(s)
- Adele Murauer
- Institute of Pharmacy, Pharmacognosy, Center for Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Markus Ganzera
- Institute of Pharmacy, Pharmacognosy, Center for Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
36
|
Tong M, Wang S, Zhuang J, Qin C, Li H, Wang W. Direct Access of the Chiral Quinolinyl Core of Cinchona Alkaloids via a Brønsted Acid and Chiral Amine Co-catalyzed Chemo- and Enantioselective α-Alkylation of Quinolinylmethanols with Enals. Org Lett 2018; 20:1195-1199. [PMID: 29411985 DOI: 10.1021/acs.orglett.8b00118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A strategy for the facile construction of the chiral quinolinylmethanolic structure, a core featured in cinchona alkaloids, is reported. A new reactivity is harnessed by TfOH-promoted chemoselective activation of α-C-H over O-H bond in quinolinylmethanols. The new reactivity is successfully engineered with an iminium catalysis in a synergistic manner to create a powerful conjugate addition-cyclization cascade process for synthesis of chiral quinoline derived γ-butyrolactones in good yields and with good to excellent enantioselectivities. The method enables the first total synthesis of natural product broussonetine in three steps.
Collapse
Affiliation(s)
- Mengchao Tong
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology , 130 Mei-long Road, Shanghai 200237, China
| | - Sinan Wang
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology , 130 Mei-long Road, Shanghai 200237, China
| | - Jinchen Zhuang
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology , 130 Mei-long Road, Shanghai 200237, China
| | - Cong Qin
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology , 130 Mei-long Road, Shanghai 200237, China
| | - Hao Li
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology , 130 Mei-long Road, Shanghai 200237, China
| | - Wei Wang
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology , 130 Mei-long Road, Shanghai 200237, China.,Department of Chemistry and Chemical Biology, University of New Mexico , Albuquerque, New Mexico 87131-0001, United States
| |
Collapse
|
37
|
Cao SX, Wang JX, He ZJ. Magnetic nanoparticles supported cinchona alkaloids for asymmetric Michael addition reaction of 1,3-dicarbonyls and maleimides. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
38
|
Nagy S, Fehér Z, Kisszékelyi P, Huszthy P, Kupai J. Cinchona derivatives as sustainable and recyclable homogeneous organocatalysts for aza-Markovnikov addition. NEW J CHEM 2018. [DOI: 10.1039/c8nj01277f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aza-Markovnikov additions were achieved with up to 98% yields using cinchona based organocatalysts that were recycled by organic solvent nanofiltration.
Collapse
Affiliation(s)
- Sándor Nagy
- Department of Organic Chemistry and Technology
- Budapest University of Technology and Economics
- Budapest
- Hungary
| | - Zsuzsanna Fehér
- Department of Organic Chemistry and Technology
- Budapest University of Technology and Economics
- Budapest
- Hungary
| | - Péter Kisszékelyi
- Department of Organic Chemistry and Technology
- Budapest University of Technology and Economics
- Budapest
- Hungary
| | - Péter Huszthy
- Department of Organic Chemistry and Technology
- Budapest University of Technology and Economics
- Budapest
- Hungary
| | - József Kupai
- Department of Organic Chemistry and Technology
- Budapest University of Technology and Economics
- Budapest
- Hungary
| |
Collapse
|
39
|
Wang ZH, You Y, Chen YZ, Xu XY, Yuan WC. An asymmetric organocatalytic vinylogous Mannich reaction of 3-methyl-5-arylfuran-2(3H)-ones with N-(2-pyridinesulfonyl) imines: enantioselective synthesis of δ-amino γ,γ-disubstituted butenolides. Org Biomol Chem 2018; 16:1636-1640. [DOI: 10.1039/c7ob03117c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of δ-amino γ,γ-disubstituted butenolides were obtained with satisfactory results via an asymmetric vinylogous Mannich reaction of 3-methyl-5-arylfuran-2(3H)-ones with N-(2-pyridinesulfonyl)imines.
Collapse
Affiliation(s)
- Zhen-Hua Wang
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Yong You
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | | | - Xiao-Ying Xu
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- China
| |
Collapse
|
40
|
Evans CS, Davis LO. Recent Advances in Organocatalyzed Domino C-C Bond-Forming Reactions. Molecules 2017; 23:E33. [PMID: 29295474 PMCID: PMC5943935 DOI: 10.3390/molecules23010033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 01/16/2023] Open
Abstract
Reactions that form a C-C bond make up a foundational pillar of synthetic organic chemistry. In addition, organocatalysis has emerged as an easy, environmentally-friendly way to promote this type of bond formation. Since around 2000, organocatalysts have been used in a variety of C-C bond-forming reactions including Michael and aldol additions, Mannich-type reactions, and Diels-Alder reactions, to name a few. Many of these methodologies have been refined and further developed to include cascade and domino processes. This review will focus on recent advances in this area with an emphasis on methodologies having applications in the synthesis of biologically-significant compounds.
Collapse
Affiliation(s)
- Cleo S Evans
- Department of Chemistry and Biochemistry, Berry College, P.O. Box 495016, Mt. Berry, GA 30149, USA.
| | - Lindsey O Davis
- Department of Chemistry and Biochemistry, Berry College, P.O. Box 495016, Mt. Berry, GA 30149, USA.
| |
Collapse
|
41
|
Charpentier M, Jauch J. Metal catalysed versus organocatalysed stereoselective synthesis: The concrete case of myrtucommulones. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
42
|
Han JL, Tsai YD, Chang CH. Asymmetric Synthesis of Spirooxindole δ-Lactones with Vicinal Tertiary and Quaternary Stereocenters via Regio-, Diastereo-, and Enantioselective Organocatalytic Vinylogous Aldol-cyclization Cascade Reaction. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201701104] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jeng-Liang Han
- Department of Chemistry, Chung Yuan; Christian University; 200 Chung Pei Road, Chung Li District Taoyuan City 32023 Taiwan
| | - You-Da Tsai
- Department of Chemistry, Chung Yuan; Christian University; 200 Chung Pei Road, Chung Li District Taoyuan City 32023 Taiwan
| | - Chia-Hao Chang
- Department of Chemistry, Chung Yuan; Christian University; 200 Chung Pei Road, Chung Li District Taoyuan City 32023 Taiwan
| |
Collapse
|
43
|
Ullah MS, Itsuno S. Synthesis of cinchona alkaloid squaramide polymers as bifunctional chiral organocatalysts for the enantioselective michael addition of β-ketoesters to nitroolefins. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Zhao B, Li J, Du D. Squaramide‐Catalyzed Asymmetric Reactions. CHEM REC 2017; 17:994-1018. [DOI: 10.1002/tcr.201600140] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/27/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Bo‐Liang Zhao
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology 5 South Zhongguancun Street Beijing 100081 People's Republic of China
| | - Jun‐Hua Li
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology 5 South Zhongguancun Street Beijing 100081 People's Republic of China
| | - Da‐Ming Du
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology 5 South Zhongguancun Street Beijing 100081 People's Republic of China
| |
Collapse
|
45
|
Yang RS, Sheng H, Lexa KW, Sherer EC, Zhang LK, Xiang B, Helmy R, Mao B. Mechanistic Study of the Gas-Phase In-Source Hofmann Elimination of Doubly Quaternized Cinchona-Alkaloid Based Phase-Transfer Catalysts by (+)-Electrospray Ionization/Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:452-460. [PMID: 28101849 DOI: 10.1007/s13361-016-1583-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/04/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
An unusual in-source fragmentation pattern observed for 14 doubly quaternized cinchona alkaloid-based phase-transfer catalysts (PTC) was studied using (+)-ESI high resolution mass spectrometry. Loss of the substituted benzyl cation (R1 or R2) was found to be the major product ion [M2+ - R1+ or R2+]+ in MS spectra of all PTC compounds. A Hofmann elimination product ion [M - H]+ was also observed. Only a small amount of the doubly charged M2+ ions were observed in the MS spectra, likely due to strong Columbic repulsion between the two quaternary ammonium cations in the gas phase. The positive voltage in the MS inlet but not the ESI probe was found to induce this extensive fragmentation for all PTC diboromo-salts. Compound 1 was used as an example to illustrate the proposed in-source fragmentation mechanism. The mechanism of formation of the Hofmann elimination product ion [M - H]+ was further investigated using HRMS/MS, H/D exchange, and DFT calculations. The proposed formation of 2b as the major Hofmann elimination product ion was supported both by HRMS/MS and DFT calculations. Formation of product ion 2b through a concerted unimolecular Ei elimination pathway is proposed rather than a bimolecular E2 elimination pathway for common solution Hofmann eliminations. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Rong-Sheng Yang
- Analytical Research and Development, Merck and Co. Inc., Rahway, NJ, 07065, USA
| | - Huaming Sheng
- Analytical Research and Development, Merck and Co. Inc., Rahway, NJ, 07065, USA.
| | - Katrina W Lexa
- Process Research and Development, Merck and Co. Inc., Rahway, NJ, 07065, USA
| | - Edward C Sherer
- Structural Chemistry, Merck and Co. Inc., Rahway, NJ, 07065, USA
| | - Li-Kang Zhang
- Analytical Research and Development, Merck and Co. Inc., Rahway, NJ, 07065, USA
| | - Bangping Xiang
- Analytical Research and Development, Merck and Co. Inc., Rahway, NJ, 07065, USA
| | - Roy Helmy
- Analytical Science, Merck and Co. Inc., Rahway, NJ, 07065, USA
| | - Bing Mao
- Analytical Research and Development, Merck and Co. Inc., Rahway, NJ, 07065, USA
| |
Collapse
|
46
|
Ping XN, Wei PS, Zhu XQ, Xie JW. Catalyst-Controlled Switch in Diastereoselectivities: Enantioselective Construction of Functionalized 3,4-Dihydro-2H-thiopyrano[2,3-b]quinolines with Three Contiguous Stereocenters. J Org Chem 2017; 82:2205-2210. [DOI: 10.1021/acs.joc.6b02688] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xin-Ni Ping
- Key Laboratory of the Ministry
of Education for Advanced Catalysis Materials, Department of Chemistry
and Life Science, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Pei-Shun Wei
- Key Laboratory of the Ministry
of Education for Advanced Catalysis Materials, Department of Chemistry
and Life Science, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Xiao-Qian Zhu
- Key Laboratory of the Ministry
of Education for Advanced Catalysis Materials, Department of Chemistry
and Life Science, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Jian-Wu Xie
- Key Laboratory of the Ministry
of Education for Advanced Catalysis Materials, Department of Chemistry
and Life Science, Zhejiang Normal University, Jinhua 321004, P. R. China
| |
Collapse
|
47
|
Vasicine from Adhatoda vasica as an organocatalyst for metal-free Henry reaction and reductive heterocyclization of o-nitroacylbenzenes. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.09.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Kanemitsu T, Sato M, Yoshida M, Ozasa E, Miyazaki M, Odanaka Y, Nagata K, Itoh T. Enantioselective α-Benzoyloxylation of Malonic Diesters by Phase-Transfer Catalysis. Org Lett 2016; 18:5484-5487. [DOI: 10.1021/acs.orglett.6b02682] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takuya Kanemitsu
- School
of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Miho Sato
- School
of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Miyuki Yoshida
- School
of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Eisuke Ozasa
- School
of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Michiko Miyazaki
- School
of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Yuki Odanaka
- School
of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Kazuhiro Nagata
- School
of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Takashi Itoh
- School
of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
49
|
Govender T, Arvidsson PI, Maguire GEM, Kruger HG, Naicker T. Enantioselective Organocatalyzed Transformations of β-Ketoesters. Chem Rev 2016; 116:9375-437. [PMID: 27463615 DOI: 10.1021/acs.chemrev.6b00156] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The β-ketoester structural motif continues to intrigue chemists with its electrophilic and nucleophilic sites. Proven to be a valuable tool within organic synthesis, natural product, and medicinal chemistry, reports on chiral β-ketoester molecular skeletons display a steady increase. With the reignition of organocatalysis in the past decade, asymmetric methods available for the synthesis of this structural unit has significantly expanded, making it one of the most exploited substrates for organocatalytic transformations. This review provides comprehensive information on the plethora of organocatalysts used in stereoselective organocatalyzed construction of β-ketoester-containing compounds.
Collapse
Affiliation(s)
- Thavendran Govender
- Catalysis and Peptide Research Unit, University of KwaZulu Natal , Durban, 4001, South Africa
| | - Per I Arvidsson
- Catalysis and Peptide Research Unit, University of KwaZulu Natal , Durban, 4001, South Africa.,P. I. Arvidsson, Science for Life Laboratory, Drug Discovery and Development Platform and Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet SE-171 77 Stockholm, Sweden
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, University of KwaZulu Natal , Durban, 4001, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu Natal , Durban, 4001, South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, University of KwaZulu Natal , Durban, 4001, South Africa
| |
Collapse
|
50
|
Wang Y, Yin H, Tang X, Wu Y, Meng Q, Gao Z. A Series of Cinchona-Derived N-Oxide Phase-Transfer Catalysts: Application to the Photo-Organocatalytic Enantioselective α-Hydroxylation of β-Dicarbonyl Compounds. J Org Chem 2016; 81:7042-50. [PMID: 27336753 DOI: 10.1021/acs.joc.6b00856] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of cinchona-derived N-oxide asymmetric phase-transfer catalysts were synthesized and applied in the enantioselective photo-organocatalytic α-hydroxylation of β-keto esters and β-keto amides (23 examples) using molecular oxygen in excellent yields (up to 98%) and high enantioselectivities (up to 83% ee). These new catalysts could be recycled and reused six times for such a reaction with almost the original reactivity and enantioselectivity.
Collapse
Affiliation(s)
- Yakun Wang
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology , No. 2 Linggong Road, Dalian 116024 Liaoning Province, P. R. China
| | - Hang Yin
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology , No. 2 Linggong Road, Dalian 116024 Liaoning Province, P. R. China
| | - Xiaofei Tang
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology , No. 2 Linggong Road, Dalian 116024 Liaoning Province, P. R. China
| | - Yufeng Wu
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology , No. 2 Linggong Road, Dalian 116024 Liaoning Province, P. R. China
| | - Qingwei Meng
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology , No. 2 Linggong Road, Dalian 116024 Liaoning Province, P. R. China
| | - Zhanxian Gao
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology , No. 2 Linggong Road, Dalian 116024 Liaoning Province, P. R. China
| |
Collapse
|