1
|
Wood MD, Klosowski DW, Martin SF. Tandem vinylogous Mannich and hetero Diels-Alder reactions: Concise total synthesis of (±)-Alstoscholarisine E. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
2
|
Thorat SS, Kontham R. Strategies for the synthesis of furo-pyranones and their application in the total synthesis of related natural products. Org Chem Front 2021. [DOI: 10.1039/d0qo01421d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The furo-pyranone framework is widely present in the molecular structure of various biologically potent natural products and un-natural small molecules, and it represents a valuable target in synthetic organic chemistry and medicinal chemistry.
Collapse
Affiliation(s)
- Sagar S. Thorat
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Ravindar Kontham
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
3
|
Wood MD, Klosowski DW, Martin SF. Stereoselective Total Synthesis of (±)-Alstoscholarisine E. Org Lett 2019; 22:786-790. [DOI: 10.1021/acs.orglett.9b04093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Michael D. Wood
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Daniel W. Klosowski
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Stephen F. Martin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Shelke YG, Yashmeen A, Gholap AVA, Gharpure SJ, Kapdi AR. Homogeneous Catalysis: A Powerful Technology for the Modification of Important Biomolecules. Chem Asian J 2018; 13:2991-3013. [PMID: 30063286 DOI: 10.1002/asia.201801020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/29/2018] [Indexed: 12/17/2022]
Abstract
Homogeneous catalysis plays an important and ubiquitous role in the synthesis of simple and complex molecules, including drug compounds, natural products, and agrochemicals. In recent years, the wide-reaching importance of homogeneous catalysis has made it an indispensable tool for the modification of biomolecules, such as carbohydrates (sugars), amino acids, peptides, nucleosides, nucleotides, and steroids. Such a synthetic strategy offers several advantages, which have led to the development of new molecules of biological relevance at a rapid rate relative to the number of available synthetic methods. Given the powerful nature of homogeneous catalysis in effecting these synthetic transformations, this Focus Review has been compiled to highlight these important developments.
Collapse
Affiliation(s)
- Yogesh G Shelke
- Department of Chemistry, Indian Institute of Technology, Bombay, Main Gate Road, Powai, Mumbai, 400076, India
| | - Afsana Yashmeen
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| | - Aniket V A Gholap
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| | - Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology, Bombay, Main Gate Road, Powai, Mumbai, 400076, India
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| |
Collapse
|
5
|
Affiliation(s)
- You Yang
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Biao Yu
- State
Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
6
|
Bokor É, Kun S, Goyard D, Tóth M, Praly JP, Vidal S, Somsák L. C-Glycopyranosyl Arenes and Hetarenes: Synthetic Methods and Bioactivity Focused on Antidiabetic Potential. Chem Rev 2017; 117:1687-1764. [PMID: 28121130 DOI: 10.1021/acs.chemrev.6b00475] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This Review summarizes close to 500 primary publications and surveys published since 2000 about the syntheses and diverse bioactivities of C-glycopyranosyl (het)arenes. A classification of the preparative routes to these synthetic targets according to methodologies and compound categories is provided. Several of these compounds, regardless of their natural or synthetic origin, display antidiabetic properties due to enzyme inhibition (glycogen phosphorylase, protein tyrosine phosphatase 1B) or by inhibiting renal sodium-dependent glucose cotransporter 2 (SGLT2). The latter class of synthetic inhibitors, very recently approved as antihyperglycemic drugs, opens new perspectives in the pharmacological treatment of type 2 diabetes. Various compounds with the C-glycopyranosyl (het)arene motif were subjected to biological studies displaying among others antioxidant, antiviral, antibiotic, antiadhesive, cytotoxic, and glycoenzyme inhibitory effects.
Collapse
Affiliation(s)
- Éva Bokor
- Department of Organic Chemistry, University of Debrecen , P.O. Box 400, Debrecen H-4002, Hungary
| | - Sándor Kun
- Department of Organic Chemistry, University of Debrecen , P.O. Box 400, Debrecen H-4002, Hungary
| | - David Goyard
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Claude Bernard Lyon 1 and CNRS , 43 Boulevard du 11 Novembre 1918, Villeurbanne F-69622, France
| | - Marietta Tóth
- Department of Organic Chemistry, University of Debrecen , P.O. Box 400, Debrecen H-4002, Hungary
| | - Jean-Pierre Praly
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Claude Bernard Lyon 1 and CNRS , 43 Boulevard du 11 Novembre 1918, Villeurbanne F-69622, France
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Claude Bernard Lyon 1 and CNRS , 43 Boulevard du 11 Novembre 1918, Villeurbanne F-69622, France
| | - László Somsák
- Department of Organic Chemistry, University of Debrecen , P.O. Box 400, Debrecen H-4002, Hungary
| |
Collapse
|
7
|
Vankar YD, Linker T. Recent Developments in the Synthesis of 2-C-Branched and 1,2-Annulated Carbohydrates. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501176] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
|
9
|
Synthesis of 5-alkyl-3,4-difluorofuran-2(5H)-ones by lactonisation. Effects of substituents on cyclisation ability of fluorinated 4-hydroxyalkanoates. DFT calculations of the cyclisation energies. J Fluor Chem 2014. [DOI: 10.1016/j.jfluchem.2014.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Chen M, Roush WR. Reprint of: Enantiodivergent hydroboration reactions of a racemic allenylsilane with diisopinocampheylborane and Curtin–Hammett controlled double asymmetric crotylboration reactions of (S)-E-α-phenyldimethylsilyl(ddiisopinocampheyl)-crotylborane. Tetrahedron 2013; 69:7551-7558. [DOI: 10.1016/j.tet.2013.06.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Manna C, Pathak T. Diversity-Oriented Synthesis of Enantiopure Furofurans from Carbohydrates: An Expedient Approach with Built-in Michael Acceptor, Masked Aldehyde and Leaving Group in a Single Sugar Derivative. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300603] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Chen M, Roush WR. Enantiodivergent Hydroboration Reactions of a Racemic Allenylsilane with Diisopinocampheylborane and Curtin-Hammett Controlled Double Asymmetric Crotylboration Reactions of ( S)- E-α-phenyldimethylsilyl( d diisopinocampheyl)-crotylborane. Tetrahedron 2013; 69:5468-5475. [PMID: 24039304 DOI: 10.1016/j.tet.2013.04.098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The enantiodivergent hydroboration reactions of racemic allenylsilane (±)-4 with ( d Ipc)2BH and subsequent crotylboration of achiral aldehydes with the product crotylborane (S)-E-5 at -78 °C provide (E)-δ-silyl-anti-homoallylic alcohols 6 in 71-89% yield and with 93-96% ee. Intriguingly, mismatched double asymmetric crotylboration reactions of enantioenriched chiral aldehydes 20 with (S)-E-5 proceed under Curtin-Hammett control to give anti-3-hydroxylcrotylsilanes 24 as the only products.
Collapse
Affiliation(s)
- Ming Chen
- Department of Chemistry, The Scripps Research Institute, Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | | |
Collapse
|
13
|
Ma X, Tang Q, Ke J, Zhang J, Wang C, Wang H, Li Y, Shao H. Straightforward and highly diastereoselective synthesis of 2,2-di-substituted perhydrofuro[2,3-b]pyran (and furan) derivatives promoted by BiCl3. Chem Commun (Camb) 2013; 49:7085-7. [DOI: 10.1039/c3cc42292e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Yin J, Linker T. Recent advances in the stereoselective synthesis of carbohydrate 2-C-analogs. Org Biomol Chem 2012; 10:2351-62. [PMID: 22311080 DOI: 10.1039/c2ob06529k] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
C-branched carbohydrates are of current interest for glycochemistry, are widely found in nature and serve as important subunits in many antibiotics, bacterial polysaccharides and macrolides. Among C-functionalized saccharides, 2-C-branched carbohydrates represent challenging structures for synthetic chemists, since in contrast to C-glycosides they are not easily accessible from glycosyl bromides or other simple precursors. In this perspective we want to summarize recent approaches to 2-C-branched carbohydrates over the past fifteen years. The two main strategies are based on ring-opening of 1,2-cyclopropanated carbohydrates by various reagents, as well as radical additions to glycals and further transformations, developed in our group. Both methods are characterized by high stereoselectivities and good yields and give access to a broad variety of functionalized carbohydrate 2-C-analogs.
Collapse
Affiliation(s)
- Jian Yin
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China
| | | |
Collapse
|
15
|
Pimpalpalle TM, Yin J, Linker T. Barton radical reactions of 2-C-branched carbohydrates. Org Biomol Chem 2011; 10:103-9. [PMID: 22027808 DOI: 10.1039/c1ob06370g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Barton esters have been introduced into the side chain of carbohydrates with high yields in only a few steps from easily available glycals. Their radical reactions afford 2-C-methyl and 2-C-bromomethyl hexoses, pentoses and disaccharides in good yields in analytically pure form. Since the Barton esters have been synthesized by an oxidative radical addition and their transformations by reductive radical processes, our results demonstrate the power of such reactions in carbohydrate chemistry.
Collapse
Affiliation(s)
- Tukaram M Pimpalpalle
- Department of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | | | | |
Collapse
|
16
|
Pimpalpalle TM, Vidadala SR, Hotha S, Linker T. Lewis acid-catalyzed stereoselective lactonization and subsequent glycosidation of 2-C-malonyl carbohydrates. Chem Commun (Camb) 2011; 47:10434-6. [DOI: 10.1039/c1cc13425f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|