1
|
Borah P, Borah G, Nath AC, Latif W, Banik BK. Facile Multicomponent Mannich Reaction towards Biologically Active Compounds. ChemistrySelect 2023. [DOI: 10.1002/slct.202203758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Preetismita Borah
- CSIO Analytical facility CAF)(a) CSIR-Central Scientific Instruments Organisation, Sector 30C Chandigarh India
| | - Gongutri Borah
- Department of Chemistry University of Science and Technology Meghalaya India
| | - Arabinda C. Nath
- Department of Chemistry University of Science and Technology Meghalaya India
| | - Wajid Latif
- Research Development & College of Natural Sciences and Human Studies Prince Mohammad Bin Fahd University Al Khobar, Kingdom of Saudi Arabia
| | - Bimal Krishna Banik
- Research Development & College of Natural Sciences and Human Studies Prince Mohammad Bin Fahd University Al Khobar, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Yin XS, Qi WY, Shi BF. Synthesis of tryptophan-containing 2,5-diketopiperazines via sequential C-H activation: total syntheses of tryprostatin A, maremycins A and B. Chem Sci 2021; 12:13137-13143. [PMID: 34745544 PMCID: PMC8513992 DOI: 10.1039/d1sc02343h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/06/2021] [Indexed: 01/23/2023] Open
Abstract
Indole 2,5-diketopiperazines (DKPs) are an important type of metabolic cyclic dipeptides containing a tryptophan (Trp) unit possessing a range of interesting biological activities. The intriguing structural features and divergent activities have stimulated tremendous efforts towards their efficient synthesis. Herein, we report the development of a unified strategy for the synthesis of three Trp-containing DKPs, namely tryprostatin A, and maremycins A and B, via a sequential C–H activation strategy. The key Trp skeletons were synthesized from the inexpensive, readily available alanine via a Pd(ii)-catalyzed β-methyl C(sp3)–H monoarylation. A subsequent C2-selective prenylation of the resulting 6-OMe-Trp by Pd/norbornene-promoted C–H activation led to the total synthesis of tryprostatin A in 12 linear steps from alanine with 25% overall yield. Meanwhile, total syntheses of maremycins A and B were successfully accomplished using a sequential Pd-catalyzed methylene C(sp3)–H methylation as the key step in 15 linear steps from alanine. Indole 2,5-diketopiperazines (DKPs) are an important type of metabolic cyclic dipeptides containing a tryptophan (Trp) unit possessing a range of interesting biological activities.![]()
Collapse
Affiliation(s)
- Xue-Song Yin
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
| | - Wei-Yi Qi
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
3
|
Catalytic C2 prenylation of unprotected indoles: Late-stage diversification of peptides and two-step total synthesis of tryprostatin B. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63780-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Basuli S, Sahu S, Saha S, Maji MS. Cp*Co(III)‐Catalyzed Dehydrative C2‐Prenylation of Pyrrole and Indole with Allyl Alcohols. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Suchand Basuli
- Department of Chemistry Indian Institute of Technology Kharagpur West Bengal 721302 India
| | - Samrat Sahu
- Department of Chemistry Indian Institute of Technology Kharagpur West Bengal 721302 India
| | - Shuvendu Saha
- Department of Chemistry Indian Institute of Technology Kharagpur West Bengal 721302 India
| | - Modhu Sudan Maji
- Department of Chemistry Indian Institute of Technology Kharagpur West Bengal 721302 India
| |
Collapse
|
5
|
Barlow SR, Callaghan LJ, Franckevičius V. Investigation of the palladium-catalysed cyclisation of α-amido malonates with propargylic compounds. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Anti-tubulin agents of natural origin: Targeting taxol, vinca, and colchicine binding domains. Eur J Med Chem 2019; 171:310-331. [PMID: 30953881 DOI: 10.1016/j.ejmech.2019.03.025] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 12/24/2022]
Abstract
Microtubules are a protein which is made of α- and β-heterodimer. It is one of the main components of the cell which play a vital role in cell division especially in G2/M-phase. It exists in equilibrium dynamic of polymerization and depolymerization of α- and β-heterodimer. It is one of the best targets for developing anti-cancer drugs. Various natural occurring molecules are well known for their anti-tubulin effect such as vinca, paclitaxel, combretastatin, colchicine etc. These microtubule-targeted drugs are acted through two processes (i) inhibiting depolymerization of tubulin (tubulin stabilizing agents) and (ii) inhibiting polymerization of tubulin (tubulin destabilizing agents). Now days, various binding domains have been explore through which these molecules are binding to tubulin but the three major binding domain of tubulin are taxol, vinca and colchicine binding domain. The present article mainly focus on the classification of various naturally occurring compounds on the basis of their inhibition processes (depolymerization and polymerization) and the site of interaction (targets taxol, vinca and colchicine binding domain) which has been hitherto reported. By placing all the naturally occurring taxol, vinca and colchicine binding site analogues at one place makes a better understanding of the tubulin interactions with known natural tubulin binders that would helps in the discovery of new and potent natural, semi-synthetic and synthetic analogues for treating cancer.
Collapse
|
7
|
Benfodda Z, Benimélis D, Reginato G, Meffre P. Ethynylglycine synthon, a useful precursor for the synthesis of biologically active compounds: an update. Part II: synthetic uses of ethynylglycine synthon. Amino Acids 2018; 50:1307-1328. [DOI: 10.1007/s00726-018-2628-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/20/2018] [Indexed: 11/28/2022]
|
8
|
Shiozawa M, Iida K, Odagi M, Yamanaka M, Nagasawa K. Synthesis of 2,6,7-Trisubstituted Prenylated indole. J Org Chem 2018. [DOI: 10.1021/acs.joc.7b03273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Motoki Shiozawa
- Department of Biotechnology and Life Science, Graduate Scholl of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei City 184-8588, Tokyo, Japan
| | - Keisuke Iida
- Department of Chemistry, Graduate Scholl of Science, Chiba University, 1-33 Yayoi, Inage, 263-8522 Chiba, Japan
| | - Minami Odagi
- Department of Biotechnology and Life Science, Graduate Scholl of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei City 184-8588, Tokyo, Japan
| | - Masahiro Yamanaka
- Department of Chemistry, Faculty of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, 171-8501, Tokyo, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Graduate Scholl of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei City 184-8588, Tokyo, Japan
| |
Collapse
|
9
|
Tanaka S, Shiomi S, Ishikawa H. Bioinspired Indole Prenylation Reactions in Water. JOURNAL OF NATURAL PRODUCTS 2017; 80:2371-2378. [PMID: 28803474 DOI: 10.1021/acs.jnatprod.7b00464] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Isoprene units derived from dimethylallyl diphosphate (DMAPP) are an important motif in many natural products including terpenoids, carotenoids, steroids, and natural rubber. Understanding the chemical characteristics of DMAPP is an important topic in natural products chemistry, organic chemistry, and biochemistry. We have developed a direct bioinspired indole prenylation reaction using DMAPP or its equivalents as the electrophile in homogeneous aqueous acidic media in the absence of enzyme to provide prenylated indole products. After establishing the bioinspired indole prenylation reaction, this was then used to achieve the synthesis of a series of natural products, namely, N-prenylcyclo-l-tryptophyl-l-proline, tryprostatins, rhinocladins, and terezine D.
Collapse
Affiliation(s)
- Satomi Tanaka
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University , 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Shinya Shiomi
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University , 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Hayato Ishikawa
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University , 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
10
|
Shimokawa J, Fukuyama T. Synthetic Studies on Heteropolycyclic Natural Products: Strategies via Novel Reactions and Reactivities. J SYN ORG CHEM JPN 2017. [DOI: 10.5059/yukigoseikyokaishi.75.1115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Tohru Fukuyama
- Graduate School of Pharmaceutical Sciences, Nagoya University
| |
Collapse
|
11
|
Ansari NH, Dacko CA, Akhmedov NG, Söderberg BCG. Double Palladium Catalyzed Reductive Cyclizations. Synthesis of 2,2'-, 2,3'-, and 3,3'-Bi-1H-indoles, Indolo[3,2-b]indoles, and Indolo[2,3-b]indoles. J Org Chem 2016; 81:9337-9349. [PMID: 27641321 DOI: 10.1021/acs.joc.6b01987] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A palladium catalyzed, carbon monoxide mediated, double reductive cyclization of 1,4-, 1,3-, and 2,3-bis(2-nitroaryl)-1,3-butadienes to afford 2,2'-, 2,3'-, and 3,3'-biindoles, respectively, was developed. In contrast, reductive cyclizations of 1,2-bis(2-nitroaryl)ethenes were nonselective, affording mixtures of monocyclized indoles, indolo[3,2-b]indole, indolo[1,2-c]quinazolin-6(5H)-ones, and 5,11-dihydro-6H-indolo[3,2-c]quinolin-6-ones. Nonselective product formation was also observed from reductive cyclization of 1,1-bis(2-nitroaryl)ethenes, producing indolo[2,3-b]indoles and indolo[2,3-c]quinolin-6-ones. Carbon monoxide insertion to give the carbonyl containing products was the major or sole reaction path starting from 1,1- or 1,2-bis(2-nitroaryl)ethenes.
Collapse
Affiliation(s)
- Nurul H Ansari
- C. Eugene Bennett Department of Chemistry, West Virginia University , Morgantown, West Virginia 26506-6045, United States
| | - Christopher A Dacko
- C. Eugene Bennett Department of Chemistry, West Virginia University , Morgantown, West Virginia 26506-6045, United States
| | - Novruz G Akhmedov
- C. Eugene Bennett Department of Chemistry, West Virginia University , Morgantown, West Virginia 26506-6045, United States
| | - Björn C G Söderberg
- C. Eugene Bennett Department of Chemistry, West Virginia University , Morgantown, West Virginia 26506-6045, United States
| |
Collapse
|
12
|
Castillo NI, Ibáñez M, Beltrán E, Rivera-Monroy J, Ochoa JC, Páez-Castillo M, Posada-Buitrago ML, Sulyok M, Hernández F. Identification of mycotoxins by UHPLC-QTOF MS in airborne fungi and fungi isolated from industrial paper and antique documents from the Archive of Bogotá. ENVIRONMENTAL RESEARCH 2016; 144:130-138. [PMID: 26599591 DOI: 10.1016/j.envres.2015.10.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/28/2015] [Accepted: 10/28/2015] [Indexed: 06/05/2023]
Abstract
Mold deterioration of historical documents in archives and libraries is a frequent and complex phenomenon that may have important economic and cultural consequences. In addition, exposure to toxic fungal metabolites might produce health problems. In this work, samples of broths of fungal species isolated from the documentary material and from indoor environmental samples of the Archive of Bogotá have been analyzed to investigate the presence of mycotoxins. High resolution mass spectrometry made possible to search for a large number of mycotoxins, even without reference standards available at the laboratory. For this purpose, a screening strategy based on ultra-high pressure liquid chromatography coupled to quadrupole-time of flight mass spectrometry (UHPLC-QTOF MS) under MS(E) mode was applied. A customized home-made database containing elemental composition for around 600 mycotoxins was compiled. The presence of the (de)protonated molecule measured at its accurate mass was evaluated in the samples. When a peak was detected, collision induced dissociation fragments and characteristic isotopic ions were also evaluated and used for tentative identification, based on structure compatibility and comparison with literature data (if existing). Up to 44 mycotoxins were tentatively identified by UHPLC-QTOF MS. 34 of these tentative compounds were confirmed by subsequent analysis using a targeted LC-MS/MS method, supporting the strong potential of QTOF MS for identification/elucidation purposes. The presence of mycotoxins in these samples might help to reinforce safety measures for researchers and staff who work on reception, restoration and conservation of archival material, not only at the Archive of Bogotá but worldwide.
Collapse
Affiliation(s)
- Nancy I Castillo
- Facultad de Ciencias Básicas, Universidad Antonio Nariño, Bogotá D.C. 111821, Colombia
| | - María Ibáñez
- Research Institute for Pesticides and Water, University Jaume I, Castellón 12071, Spain
| | - Eduardo Beltrán
- Research Institute for Pesticides and Water, University Jaume I, Castellón 12071, Spain
| | - Jhon Rivera-Monroy
- Laboratorio de Química, Física y Biología, Archivo de Bogotá, Bogotá D.C. 111711, Colombia
| | - Juan Camilo Ochoa
- Laboratorio de Química, Física y Biología, Archivo de Bogotá, Bogotá D.C. 111711, Colombia
| | - Mónica Páez-Castillo
- Laboratorio de Química, Física y Biología, Archivo de Bogotá, Bogotá D.C. 111711, Colombia
| | | | - Michael Sulyok
- Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Applied Life Sciences, Vienna (BOKU), Tulln 3430, Austria
| | - Félix Hernández
- Research Institute for Pesticides and Water, University Jaume I, Castellón 12071, Spain.
| |
Collapse
|
13
|
Synthesis of tryptophans by alkylation of chiral glycine enolate equivalents with quaternary gramines. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Ethynylglycine synthon, a useful precursor for the synthesis of biologically active compounds: an update: part I: preparations of ethynylglycine synthon. Amino Acids 2015; 47:271-9. [PMID: 25563810 DOI: 10.1007/s00726-014-1902-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
Abstract
The ethynylglycine synthon {(R)-2,2-dimethyl-3-(tert-butoxycarbonyl)-4-ethynyloxazolidine} is a chiral compound with valuable synthetic interest. An update on the different routes for its synthesis is reviewed and discussed.
Collapse
|
15
|
Hirose T, Noguchi Y, Furuya Y, Ishiyama A, Iwatsuki M, Otoguro K, Ōmura S, Sunazuka T. Structure Determination and Total Synthesis of (+)-16-Hydroxy-16,22-dihydroapparicine. Chemistry 2013; 19:10741-50. [DOI: 10.1002/chem.201300292] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/22/2013] [Indexed: 11/06/2022]
|
16
|
Ishikura M, Abe T, Choshi T, Hibino S. Simple indole alkaloids and those with a non-rearranged monoterpenoid unit. Nat Prod Rep 2013; 30:694-752. [DOI: 10.1039/c3np20118j] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
|