1
|
Wang Z, Chen Y, Dong Z, Tang Y. Natural Product-Oriented Photo-Induced Denitrogenative Annulations of 1-Alkenylbenzotriazoles. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010363. [PMID: 36615557 PMCID: PMC9823906 DOI: 10.3390/molecules28010363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023]
Abstract
The photo-induced denitrogenative annulations of a variety of 1-alkenylbenzotriazoles were investigated. By judiciously manipulating the structural variations of 1-alkenylbenzotriazoles, two characteristic polycyclic skeletons associated with monoterpene indole alkaloids were constructed through a diverted and controllable manner. The present work not only enriches the photochemistry of 1-alkenylbenzotriazoles, but also offers a unified approach to access skeletally diverse indole alkaloid scaffolds.
Collapse
Affiliation(s)
- Zhiguo Wang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- College of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Yi Chen
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Zhen Dong
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- Correspondence:
| |
Collapse
|
2
|
Liu XY, Qin Y. Recent advances in the total synthesis of monoterpenoid indole alkaloids enabled by asymmetric catalysis. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
3
|
Fouotsa H, Le Pogam P, Mkounga P, Lannang AM, Bernadat G, Vanheuverzwijn J, Zhou Z, Leblanc K, Rharrabti S, Nkengfack AE, Gallard JF, Fontaine V, Meyer F, Poupon E, Beniddir MA. Voatriafricanines A and B, Trimeric Vobasine-Aspidosperma-Aspidosperma Alkaloids from Voacanga africana. JOURNAL OF NATURAL PRODUCTS 2021; 84:2755-2761. [PMID: 34569237 DOI: 10.1021/acs.jnatprod.1c00812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Voatriafricanines A and B (1 and 2), the first examples of vobasine-aspidosperma-aspidosperma monoterpene trisindole alkaloids, were isolated from the stem barks of Voacanga africana, guided by a molecular networking strategy. Their structures, including absolute configurations, were elucidated by spectroscopic methods and ECD calculations. Compounds 1 and 2 possess intramolecular hydrogen bonding, sufficiently robust to transfer homonuclear and heteronuclear magnetizations. Compound 1 exhibited potent antimycobacterial activity with no discernible cytotoxic activity.
Collapse
Affiliation(s)
- Hugues Fouotsa
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
- Faculty of Pharmacy, Microbiology, Bioorganic and Macromolecular Chemistry Unit, Université Libre de Bruxelles, Campus de la Plaine-CP 206/04, Boulevard du Triomphe, ACC.2, PO Box 1050, 1050 Bruxelles, Belgium
| | - Pierre Le Pogam
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Pierre Mkounga
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Alain Meli Lannang
- Department of Chemistry, Higher Teachers Training College, University of Maroua, P.O. Box 55, Maroua, Cameroon
| | - Guillaume Bernadat
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Jérôme Vanheuverzwijn
- Faculty of Pharmacy, Microbiology, Bioorganic and Macromolecular Chemistry Unit, Université Libre de Bruxelles, Campus de la Plaine-CP 206/04, Boulevard du Triomphe, ACC.2, PO Box 1050, 1050 Bruxelles, Belgium
| | - Zhiyu Zhou
- Faculty of Pharmacy, Microbiology, Bioorganic and Macromolecular Chemistry Unit, Université Libre de Bruxelles, Campus de la Plaine-CP 206/04, Boulevard du Triomphe, ACC.2, PO Box 1050, 1050 Bruxelles, Belgium
| | - Karine Leblanc
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Somia Rharrabti
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Augustin Ephrem Nkengfack
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Jean-François Gallard
- Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Véronique Fontaine
- Faculty of Pharmacy, Microbiology, Bioorganic and Macromolecular Chemistry Unit, Université Libre de Bruxelles, Campus de la Plaine-CP 206/04, Boulevard du Triomphe, ACC.2, PO Box 1050, 1050 Bruxelles, Belgium
| | - Franck Meyer
- Faculty of Pharmacy, Microbiology, Bioorganic and Macromolecular Chemistry Unit, Université Libre de Bruxelles, Campus de la Plaine-CP 206/04, Boulevard du Triomphe, ACC.2, PO Box 1050, 1050 Bruxelles, Belgium
| | - Erwan Poupon
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Mehdi A Beniddir
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France
| |
Collapse
|
4
|
Gao B, Yao F, Zhang Z, Ding H. Total Synthesis of (+)-Alsmaphorazine C and Formal Synthesis of (+)-Strictamine: A Photo-Fries Approach. Angew Chem Int Ed Engl 2021; 60:10603-10607. [PMID: 33660898 DOI: 10.1002/anie.202101752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 01/04/2023]
Abstract
A bioinspired photo-Fries/imine capture cascade reaction was developed in continuous-flow mode, which facilitated the rapid construction of a series of diversely functionalized 2,7-heterocycle-fused tetrahydrocarbazoles, the ubiquitous core structures embedded in strychnos and akuammiline-type monoterpene indole alkaloids. The synthetic utility of this novel method has been preliminarily explored by the first total synthesis of (+)-alsmaphorazine C and formal synthesis of (+)-strictamine in a concise and efficient manner.
Collapse
Affiliation(s)
- Beiling Gao
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Fengjie Yao
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhaodong Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
5
|
Gao B, Yao F, Zhang Z, Ding H. Total Synthesis of (+)‐Alsmaphorazine C and Formal Synthesis of (+)‐Strictamine: A Photo‐Fries Approach. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Beiling Gao
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Fengjie Yao
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Zhaodong Zhang
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Hanfeng Ding
- Department of Chemistry Zhejiang University Hangzhou 310058 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
6
|
Mohammed AE, Abdul-Hameed ZH, Alotaibi MO, Bawakid NO, Sobahi TR, Abdel-Lateff A, Alarif WM. Chemical Diversity and Bioactivities of Monoterpene Indole Alkaloids (MIAs) from Six Apocynaceae Genera. Molecules 2021; 26:488. [PMID: 33477682 PMCID: PMC7831967 DOI: 10.3390/molecules26020488] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/06/2023] Open
Abstract
By the end of the twentieth century, the interest in natural compounds as probable sources of drugs has declined and was replaced by other strategies such as molecular target-based drug discovery. However, in the recent times, natural compounds regained their position as extremely important source drug leads. Indole-containing compounds are under clinical use which includes vinblastine and vincristine (anticancer), atevirdine (anti-HIV), yohimbine (erectile dysfunction), reserpine (antihypertension), ajmalicine (vascular disorders), ajmaline (anti-arrhythmic), vincamine (vasodilator), etc. Monoterpene Indole Alkaloids (MIAs) deserve the curiosity and attention of researchers due to their chemical diversity and biological activities. These compounds were considered as an impending source of drug-lead. In this review 444 compounds, were identified from six genera belonging to the family Apocynaceae, will be discussed. These genera (Alstonia, Rauvolfia, Kopsia, Ervatamia, and Tabernaemontana, and Rhazya) consist of 400 members and represent 20% of Apocynaceae species. Only 30 (7.5%) species were investigated, whereas the rest are promising to be investigated. Eleven bioactivities, including antibacterial, antifungal, anti-inflammatory and immunosuppressant activities, were reported. Whereas cytotoxic effect represents 47% of the reported activities. Convincingly, the genera selected in this review are a wealthy source for future anticancer drug lead.
Collapse
Affiliation(s)
- Afrah E. Mohammed
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Zainab H. Abdul-Hameed
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (Z.H.A.-H.); (N.O.B.); (T.R.S.)
| | - Modhi O. Alotaibi
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Nahed O. Bawakid
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (Z.H.A.-H.); (N.O.B.); (T.R.S.)
| | - Tariq R. Sobahi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (Z.H.A.-H.); (N.O.B.); (T.R.S.)
| | - Ahmed Abdel-Lateff
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Walied M. Alarif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Cauchie G, N’Nang EO, van der Hooft JJJ, Le Pogam P, Bernadat G, Gallard JF, Kumulungui B, Champy P, Poupon E, Beniddir MA. Phenylpropane as an Alternative Dearomatizing Unit of Indoles: Discovery of Inaequalisines A and B Using Substructure-Informed Molecular Networking. Org Lett 2020; 22:6077-6081. [DOI: 10.1021/acs.orglett.0c02153] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gaëla Cauchie
- Équipe “Chimie des Substances Naturelles” Université Paris-Saclay, CNRS, BioCIS, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Elvis Otogo N’Nang
- Équipe “Chimie des Substances Naturelles” Université Paris-Saclay, CNRS, BioCIS, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
- Department of Chemistry (INSAB), Université des Sciences et Techniques de Masuku, BP769 Franceville, Gabon
| | | | - Pierre Le Pogam
- Équipe “Chimie des Substances Naturelles” Université Paris-Saclay, CNRS, BioCIS, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Guillaume Bernadat
- Équipe “Chimie des Substances Naturelles” Université Paris-Saclay, CNRS, BioCIS, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Jean-François Gallard
- Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Brice Kumulungui
- Department of Chemistry (INSAB), Université des Sciences et Techniques de Masuku, BP769 Franceville, Gabon
| | - Pierre Champy
- Équipe “Chimie des Substances Naturelles” Université Paris-Saclay, CNRS, BioCIS, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Erwan Poupon
- Équipe “Chimie des Substances Naturelles” Université Paris-Saclay, CNRS, BioCIS, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Mehdi A. Beniddir
- Équipe “Chimie des Substances Naturelles” Université Paris-Saclay, CNRS, BioCIS, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| |
Collapse
|
8
|
Rosales PF, Bordin GS, Gower AE, Moura S. Indole alkaloids: 2012 until now, highlighting the new chemical structures and biological activities. Fitoterapia 2020; 143:104558. [PMID: 32198108 DOI: 10.1016/j.fitote.2020.104558] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 01/11/2023]
Abstract
Indole alkaloids have attracted attention because of their therapeutic properties, being anti-inflammatory, antinociceptive, antitumoural, antioxidant and antimicrobial. These compounds present a wide structural diversity, which is directly related to the genera of the producing plants, as well as the biological activities. Indole alkaloids have attracted attention over the last decade because of this combination of bioactivity and structural diversity. Therefore, this review presented recent (2012-2018) advances in alkaloids, focusing on new compounds, extraction methods and biological activities. As such, approximately 70 articles were identified, which showed 261 new compounds produced by plants of the families Apocynaceae, Rubiaceae, Annonaceae and Loganiaceae. In addition, different extraction methods were identified, and the structures of the new compounds were analysed. In addition to indole molecules, there were mono-indole-, di-indole-, vinblastine-, vimblastine-, gelsedine-, geissospermidine-, koumine-, geissospermidine-, iboga-, perakine-, corynanthe-, vincamine-, ajmaline-, aspidorpema-, strychnos-type, β-carboline alkaloids and indole alkaloid glucosides. The reported biological activities are mainly anticancer, antibacterial, antimalarial, antifungal, antiparasitic, and antiviral, as well as anti-acetylcholinesterase and anti-butyrylcolinesterase properties. This review serves as a guide for those wishing to find the most recently identified alkaloid structures and their associated activities.
Collapse
Affiliation(s)
- Pauline Fagundes Rosales
- LBIOP - Laboratory of Biotechnology of Natural and Synthetics Products, Technology Department, Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, Brazil; IFRS -Federal Institute of Education, Science and Technology of Rio Grande do Sul, Campus Bento Gonçalves, Brazil
| | - Gabriela Sandri Bordin
- LBIOP - Laboratory of Biotechnology of Natural and Synthetics Products, Technology Department, Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, Brazil
| | - Adriana Escalona Gower
- LBIOP - Laboratory of Biotechnology of Natural and Synthetics Products, Technology Department, Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, Brazil
| | - Sidnei Moura
- LBIOP - Laboratory of Biotechnology of Natural and Synthetics Products, Technology Department, Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, Brazil.
| |
Collapse
|
9
|
Li CJ, Chen S, Sun C, Zhang L, Shi X, Wu SJ. Cytotoxic monoterpenoid indole alkaloids from Alstonia yunnanensis Diels. Fitoterapia 2016; 117:79-83. [PMID: 28040532 DOI: 10.1016/j.fitote.2016.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/24/2016] [Accepted: 12/26/2016] [Indexed: 11/16/2022]
Abstract
The ethanol extract of the aerial parts of Alstonia yunnanensis Diels afforded five new monoterpenoid indole alkaloids, alstiyunnanenines A-E (1-5), along with one known compound, alstoniascholarine I (6). The structures of the isolated compounds were established based on 1D and 2D (1H-1H COSY, HMQC, and HMBC) NMR spectroscopy, in addition to high resolution mass spectrometry. The isolated compounds were tested in vitro for cytotoxic potential using eight tumor cell lines. As a result, alkaloids 4-6 exhibited cytotoxicities against all tested tumor cell lines, especially against osteosarcoma cell lines (SOSP-9607, MG-63, Saos-2, M663) with IC50 values<6μM.
Collapse
Affiliation(s)
- Cheng-Jun Li
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Zhongshan East Road 305, Nanjing, Jiangsu, 210002, Peoples R China
| | - Shuo Chen
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Zhongshan East Road 305, Nanjing, Jiangsu, 210002, Peoples R China
| | - Chang Sun
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Zhongshan East Road 305, Nanjing, Jiangsu, 210002, Peoples R China
| | - Lei Zhang
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Zhongshan East Road 305, Nanjing, Jiangsu, 210002, Peoples R China
| | - Xin Shi
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Zhongshan East Road 305, Nanjing, Jiangsu, 210002, Peoples R China..
| | - Su-Jia Wu
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Zhongshan East Road 305, Nanjing, Jiangsu, 210002, Peoples R China..
| |
Collapse
|
10
|
Yu K, Gao B, Liu Z, Ding H. Enantioselective total synthesis and structural reassignment of (+)-alsmaphorazine E via a traceless chirality transfer strategy. Chem Commun (Camb) 2016; 52:4485-8. [DOI: 10.1039/c6cc00930a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first enantioselective total synthesis of (+)-alsmaphorazine E was described, which led to the structural reassignment of the title molecule.
Collapse
Affiliation(s)
- Kuan Yu
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058
- P. R. China
| | - Beiling Gao
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058
- P. R. China
| | - Zhaobo Liu
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058
- P. R. China
| | - Hanfeng Ding
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058
- P. R. China
| |
Collapse
|
11
|
Lim JL, Sim KS, Yong KT, Loong BJ, Ting KN, Lim SH, Low YY, Kam TS. Biologically active vallesamine, strychnan, and rhazinilam alkaloids from Alstonia: Pneumatophorine, a nor-secovallesamine with unusual incorporation of a 3-ethylpyridine moiety. PHYTOCHEMISTRY 2015; 117:317-324. [PMID: 26125941 DOI: 10.1016/j.phytochem.2015.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/22/2015] [Accepted: 06/22/2015] [Indexed: 06/04/2023]
Abstract
Four alkaloids comprising two vallesamine, one strychnan, and one pyranopyridine alkaloid, in addition to 32 other known alkaloids were isolated from two Malayan Alstonia species, Alstonia pneumatophora and Alstonia rostrata. The structures of these alkaloids were determined using NMR and MS analyses, and in one instance, confirmed by X-ray diffraction analysis. The nor-6,7-secovallesamine alkaloid, pneumatophorine, is notable for an unusual incorporation of a 3-ethylpyridine moiety in a monoterpenoid indole. The rhazinilam-type alkaloids (rhazinicine, nor-rhazinicine, rhazinal, and rhazinilam) showed strong cytotoxicity toward human KB, HCT-116, MDA-MB-231, and MRC-5 cells, while pneumatophorine, the uleine alkaloid undulifoline, and the strychnan alkaloids, N4-demethylalstogustine and echitamidine, induced concentration dependent relaxation in phenylephrine-precontracted rat aortic rings.
Collapse
Affiliation(s)
- Jun-Lee Lim
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kae-Shin Sim
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kien-Thai Yong
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Bi-Juin Loong
- Department of Biomedical Sciences, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Kang-Nee Ting
- Department of Biomedical Sciences, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Siew-Huah Lim
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yun-Yee Low
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Toh-Seok Kam
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
12
|
Fujiwara T, Yasuda H, Nishimura Y, Nambu H, Yakura T. Synthesis of 10b-fluorinated analogues of protubonine A and its 11a-epimer via fluorocyclisation of tryptophan-containing dipeptides. RSC Adv 2015. [DOI: 10.1039/c4ra08741k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The 10b-fluorinated analogues of protubonine A and its 11a-epimer were synthesisedviafluorocyclisation of tryptophan-containing dipeptides withN-fluoro-2,4,6-trimethylpyridinium triflate.
Collapse
Affiliation(s)
- Tomoya Fujiwara
- Graduate School of Medicine and Pharmaceutical Sciences
- University of Toyama
- Toyama 930-0194
- Japan
| | - Hiroko Yasuda
- Graduate School of Medicine and Pharmaceutical Sciences
- University of Toyama
- Toyama 930-0194
- Japan
| | - Yushi Nishimura
- Graduate School of Medicine and Pharmaceutical Sciences
- University of Toyama
- Toyama 930-0194
- Japan
| | - Hisanori Nambu
- Graduate School of Medicine and Pharmaceutical Sciences
- University of Toyama
- Toyama 930-0194
- Japan
| | - Takayuki Yakura
- Graduate School of Medicine and Pharmaceutical Sciences
- University of Toyama
- Toyama 930-0194
- Japan
| |
Collapse
|
13
|
Ishikura M, Abe T, Choshi T, Hibino S. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat Prod Rep 2015; 32:1389-471. [DOI: 10.1039/c5np00032g] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review summarizes the isolation, structure determination, total syntheses and biological activities of simple indole alkaloids and those with a nonrearranged monoterpenoid unit, with literature coverage from 2012 to 2013.
Collapse
Affiliation(s)
- Minoru Ishikura
- School of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-Tobetsu
- Japan
| | - Takumi Abe
- School of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-Tobetsu
- Japan
| | - Tominari Choshi
- Graduate School of Pharmacy & Pharmaceutical Sciences
- Faculty of Pharmacy & Pharmaceutical Sciences
- Fukuyama University
- Fukuyama
- Japan
| | - Satoshi Hibino
- Graduate School of Pharmacy & Pharmaceutical Sciences
- Faculty of Pharmacy & Pharmaceutical Sciences
- Fukuyama University
- Fukuyama
- Japan
| |
Collapse
|
14
|
Zhu C, Liu Z, Chen G, Zhang K, Ding H. Total Synthesis of Indole Alkaloid Alsmaphorazine D. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409827] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Zhu C, Liu Z, Chen G, Zhang K, Ding H. Total Synthesis of Indole Alkaloid Alsmaphorazine D. Angew Chem Int Ed Engl 2014; 54:879-82. [DOI: 10.1002/anie.201409827] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Indexed: 11/08/2022]
|
16
|
Fujiwara T, Seki T, Yakura T, Takeuchi Y. Useful procedures for fluorocyclization of tryptamine and tryptophol derivatives to 3a-fluoropyrrolo[2,3-b]indoles and 3a-fluorofuro[2,3-b]indoles. J Fluor Chem 2014. [DOI: 10.1016/j.jfluchem.2014.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Gataullin RR. Advances in the synthesis of cycloalka[b]indoles. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2013. [DOI: 10.1134/s1070428013020012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Che Q, Zhu T, Qi X, Mándi A, Kurtán T, Mo X, Li J, Gu Q, Li D. Hybrid Isoprenoids from a Reeds Rhizosphere Soil Derived Actinomycete Streptomyces sp. CHQ-64. Org Lett 2012; 14:3438-41. [DOI: 10.1021/ol301396h] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People’s Republic of China, Department of Organic Chemistry, University of Debrecen, POB 20, H-4010 Debrecen, Hungary, and College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People’s Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People’s Republic of China, Department of Organic Chemistry, University of Debrecen, POB 20, H-4010 Debrecen, Hungary, and College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People’s Republic of China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People’s Republic of China, Department of Organic Chemistry, University of Debrecen, POB 20, H-4010 Debrecen, Hungary, and College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People’s Republic of China
| | - Attila Mándi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People’s Republic of China, Department of Organic Chemistry, University of Debrecen, POB 20, H-4010 Debrecen, Hungary, and College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People’s Republic of China
| | - Tibor Kurtán
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People’s Republic of China, Department of Organic Chemistry, University of Debrecen, POB 20, H-4010 Debrecen, Hungary, and College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People’s Republic of China
| | - Xiaomei Mo
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People’s Republic of China, Department of Organic Chemistry, University of Debrecen, POB 20, H-4010 Debrecen, Hungary, and College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People’s Republic of China
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People’s Republic of China, Department of Organic Chemistry, University of Debrecen, POB 20, H-4010 Debrecen, Hungary, and College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People’s Republic of China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People’s Republic of China, Department of Organic Chemistry, University of Debrecen, POB 20, H-4010 Debrecen, Hungary, and College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People’s Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People’s Republic of China, Department of Organic Chemistry, University of Debrecen, POB 20, H-4010 Debrecen, Hungary, and College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People’s Republic of China
| |
Collapse
|