1
|
Majhi B, Bora A, Palit S, Dev S, Majumdar P, Dutta S. Metal-free internal nucleophile-triggered domino route for synthesis of fused quinoxaline [1,4]-diazepine hybrids and the evaluation of their DNA binding properties. Bioorg Chem 2024; 151:107694. [PMID: 39151388 DOI: 10.1016/j.bioorg.2024.107694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/26/2024] [Accepted: 08/03/2024] [Indexed: 08/19/2024]
Abstract
An unprecedented metal-free synthesis of fused quinoxaline 1,5-disubstituted-[1,4]-diazepine hybrids have been reported under mild conditions through a domino intermolecular SNAr followed by an internal nucleophile-triggered intramolecular SNAr pathway. Our strategy offers the flexibility for the introduction of a broad variety of functionalities at the N-1 position of fused diazepine moiety by using suitable diamine tails to design structurally diverse scaffolds. The DNA binding properties of representative quinoxaline diazepine hybrids were studied using UV-vis absorbance and EtBr displacement assay and were found to be governed by the functionalities at the N-1 position. Interestingly, compound 11f containing the N-1 benzyl substitution demonstrated significant DNA binding (KBH ∼ 2.15 ± 0.25 × 104 M-1 and Ksv ∼ 12.6 ± 1.41 × 103 M-1) accompanied by a bathochromic shift (Δλ ∼ 5 nm). In silico studies indicated possible binding of diazepine hybrid 11f at the GC-rich major groove in the ct-DNA hexamer duplex and showed comparable binding energies to that of ethidium bromide. The antiproliferative activity of compounds was observed in the given order in different cell lines: (HeLa > HT29 > SKOV 3 > HCT116 > HEK293). Lead compound 11f demonstrated maximum cytotoxicity (IC50 value of 13.30 μM) in HeLa cell lines and also caused early apoptosis-mediated cell death in cancer cell lines. We envision that our work will offer newer methodologies for the construction of fused quinoxaline 1,5-disubstituted-[1,4]-diazepine class of molecules.
Collapse
Affiliation(s)
- Bhim Majhi
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Achyut Bora
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Subhadeep Palit
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Samrat Dev
- Mrinalini Dutta Mahavidyapith, Vidyapith Rd, Pratiraksha Nagar, Kolkata 700051, India
| | - Papiya Majumdar
- Department of Chemistry, Sister Nivedita University, DG 1/2, Newtown, Kolkata 700156, India
| | - Sanjay Dutta
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
2
|
Sousa A, Pontes O, Andrade J, Baltazar F, Costa M, Proença F. Imidazolylpyrrolone-Based Small Molecules as Anticancer Agents for Renal Cell Carcinoma. ChemMedChem 2023; 18:e202200519. [PMID: 36310147 PMCID: PMC10098907 DOI: 10.1002/cmdc.202200519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/25/2022] [Indexed: 01/20/2023]
Abstract
An in silico study focused on known cancer-related target proteins, identified a selection of imidazo[4,5-b]pyrrolo[3,4-d]pyridines as potentially active. These compounds were prepared by a novel synthetic approach, designed and developed in-house, based on the reaction of 5-amino-4-cyanoformimidoyl imidazoles with N-substituted cyanoacetamides. The substituted imidazolylpyrrolones obtained, were cyclized intramolecularly to generate the intended imidazo[4,5-b]pyrrolo[3,4-d]pyridines in a process catalyzed by DBU. Treating the imidazolylpyrrolones with an excess of triethyl orthoformate and heating at 80 °C in the presence of acid catalysis led to imidazopyrrolodiazepines. These compounds were screened for their anticancer potential, using the renal cell carcinoma cell line model (A498 and 786-O cell lines). Two compounds exhibited IC50 values in the low micromolar range with a good selectivity index, when compared to non-neoplastic kidney cell line HK2 and the reference compounds rapamycin, cediranib and sunitinib.
Collapse
Affiliation(s)
- Ana Sousa
- Chemistry Department, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Olívia Pontes
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Juliana Andrade
- Chemistry Department, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Marta Costa
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernanda Proença
- Chemistry Department, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
3
|
Montanaro S, Wright IA, Batsanov AS, Bryce MR. Synthesis of Tetracyclic 2,3-Dihydro-1,3-diazepines from a Dinitrodibenzothiophene Derivative. J Org Chem 2018; 83:12320-12326. [PMID: 30247912 DOI: 10.1021/acs.joc.8b02029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Triply fused 1,3-diazepine derivatives have been obtained by acidic reduction of rotationally locked and sterically hindered nitro groups in the presence of an aldehyde or ketone. The nitro groups are sited on adjacent rings of a dicyanodibenzothiophene-5,5-dioxide, which also displays fully reversible two-electron-accepting behavior. The synthesis, crystallographically determined molecular structures, and aspects of the electronic properties of these new molecules are presented.
Collapse
Affiliation(s)
- Stephanie Montanaro
- Department of Chemistry , Durham University , Durham , DH1 3LE , United Kingdom.,Department of Chemistry , Loughborough University , Loughborough , LE11 3TU , United Kingdom
| | - Iain A Wright
- Department of Chemistry , Loughborough University , Loughborough , LE11 3TU , United Kingdom
| | - Andrei S Batsanov
- Department of Chemistry , Durham University , Durham , DH1 3LE , United Kingdom
| | - Martin R Bryce
- Department of Chemistry , Durham University , Durham , DH1 3LE , United Kingdom
| |
Collapse
|
4
|
Novel family of fused tricyclic [1,4]diazepines: Design, synthesis, crystal structures and molecular docking studies. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
5
|
Li J, Liu Y, Kim E, March JC, Bentley WE, Payne GF. Electrochemical reverse engineering: A systems-level tool to probe the redox-based molecular communication of biology. Free Radic Biol Med 2017; 105:110-131. [PMID: 28040473 DOI: 10.1016/j.freeradbiomed.2016.12.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/06/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022]
Abstract
The intestine is the site of digestion and forms a critical interface between the host and the outside world. This interface is composed of host epithelium and a complex microbiota which is "connected" through an extensive web of chemical and biological interactions that determine the balance between health and disease for the host. This biology and the associated chemical dialogues occur within a context of a steep oxygen gradient that provides the driving force for a variety of reduction and oxidation (redox) reactions. While some redox couples (e.g., catecholics) can spontaneously exchange electrons, many others are kinetically "insulated" (e.g., biothiols) allowing the biology to set and control their redox states far from equilibrium. It is well known that within cells, such non-equilibrated redox couples are poised to transfer electrons to perform reactions essential to immune defense (e.g., transfer from NADH to O2 for reactive oxygen species, ROS, generation) and protection from such oxidative stresses (e.g., glutathione-based reduction of ROS). More recently, it has been recognized that some of these redox-active species (e.g., H2O2) cross membranes and diffuse into the extracellular environment including lumen to transmit redox information that is received by atomically-specific receptors (e.g., cysteine-based sulfur switches) that regulate biological functions. Thus, redox has emerged as an important modality in the chemical signaling that occurs in the intestine and there have been emerging efforts to develop the experimental tools needed to probe this modality. We suggest that electrochemistry provides a unique tool to experimentally probe redox interactions at a systems level. Importantly, electrochemistry offers the potential to enlist the extensive theories established in signal processing in an effort to "reverse engineer" the molecular communication occurring in this complex biological system. Here, we review our efforts to develop this electrochemical tool for in vitro redox-probing.
Collapse
Affiliation(s)
- Jinyang Li
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Yi Liu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Eunkyoung Kim
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - John C March
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Gregory F Payne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA.
| |
Collapse
|
6
|
Liu Y, Kim E, White IM, Bentley WE, Payne GF. Information processing through a bio-based redox capacitor: signatures for redox-cycling. Bioelectrochemistry 2014; 98:94-102. [PMID: 24769500 DOI: 10.1016/j.bioelechem.2014.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 11/15/2022]
Abstract
Redox-cycling compounds can significantly impact biological systems and can be responsible for activities that range from pathogen virulence and contaminant toxicities, to therapeutic drug mechanisms. Current methods to identify redox-cycling activities rely on the generation of reactive oxygen species (ROS), and employ enzymatic or chemical methods to detect ROS. Here, we couple the speed and sensitivity of electrochemistry with the molecular-electronic properties of a bio-based redox-capacitor to generate signatures of redox-cycling. The redox capacitor film is electrochemically-fabricated at the electrode surface and is composed of a polysaccharide hydrogel with grafted catechol moieties. This capacitor film is redox-active but non-conducting and can engage diffusible compounds in either oxidative or reductive redox-cycling. Using standard electrochemical mediators ferrocene dimethanol (Fc) and Ru(NH3)6Cl3 (Ru(3+)) as model redox-cyclers, we observed signal amplifications and rectifications that serve as signatures of redox-cycling. Three bio-relevant compounds were then probed for these signatures: (i) ascorbate, a redox-active compound that does not redox-cycle; (ii) pyocyanin, a virulence factor well-known for its reductive redox-cycling; and (iii) acetaminophen, an analgesic that oxidatively redox-cycles but also undergoes conjugation reactions. These studies demonstrate that the redox-capacitor can enlist the capabilities of electrochemistry to generate rapid and sensitive signatures of biologically-relevant chemical activities (i.e., redox-cycling).
Collapse
Affiliation(s)
- Yi Liu
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Ian M White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
7
|
|