1
|
Zhou Y, Liao KS, Chen TY, Hsieh YSY, Wong CH. Effective Organotin-Mediated Regioselective Functionalization of Unprotected Carbohydrates. J Org Chem 2023. [PMID: 37167441 DOI: 10.1021/acs.joc.3c00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Regioselective functionalization of unprotected carbohydrates at a secondary OH group in the presence of primary OH groups based on the commonly used organotin-mediated reaction has been improved. We found that the preactivation of the dibutylstannylene acetal intermediate with tetrabutylammonium bromide in toluene is a key to the improved condition for the efficient, high-yielding, and regioselective tosylation, benzoylation, or benzylation of unprotected carbohydrates. The counteranion of tetrabutylammonium ion with a weak coordination ability plays a crucial role in the improved regioselective reactions. A convenient access to the intermediates of synthetic value is also demonstrated in the organotin-mediated regioselective tosylation of unprotected carbohydrates, followed by the nucleophilic inversion reaction to give sulfur-containing and azide-modified carbohydrates.
Collapse
Affiliation(s)
- Yixuan Zhou
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 11529, Taiwan
| | - Kuo-Shiang Liao
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 11529, Taiwan
| | - Tzu-Yin Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei City 110, Taiwan
| | - Yves S Y Hsieh
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 11529, Taiwan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei City 110, Taiwan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 11529, Taiwan
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
2
|
Li ZR, Li R, Pasternack L, Chen P, Wong CH. Chemical Synthesis of a Keto Sugar Nucleotide. J Org Chem 2023. [PMID: 37126664 DOI: 10.1021/acs.joc.3c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Keto sugar nucleotides (KSNs) are common and versatile precursors to various deoxy sugar nucleotides, which are substrates for the corresponding glycosyltransferases involved in the biosynthesis of glycoproteins, glycolipids, and natural products. However, there has been no KSN synthesized chemically due to the inherent instability. Herein, the first chemical synthesis of the archetypal KSN TDP-4-keto-6-deoxy-d-glucose (1) is achieved by an efficient and optimized route, providing feasible access to other KSNs and analogues, thereby opening a new avenue for new applications.
Collapse
Affiliation(s)
- Zhong-Rui Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Ruofan Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Laura Pasternack
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Pengxi Chen
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
3
|
Del Vigo EA, Stortz CA, Marino C. D-Allose, a rare sugar. Synthesis of D-allopyranosyl acceptors from glucose, and their regioselectivity in glycosidation reactions. Org Biomol Chem 2022; 20:4589-4598. [PMID: 35593891 DOI: 10.1039/d2ob00590e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although D-allose (D-All) is a sugar with low natural abundance, it has great pharmacological and alimentary potential due to its biological properties. However, its chemistry, regarding the regioselectivity in protective reactions and glycosidations, has been scarcely explored. Glycobiological studies require appreciable quantities of carbohydrates with defined structures and high purity. Thus, the development of efficient strategies for their synthesis is crucial. In this frame, the knowledge of the regioselectivity between different hydroxyl groups of glycosyl acceptors is valuable because it allows minimizing the use of protecting groups. We have long been interested in the relative reactivity of OH-3 and OH-4 of glycosyl acceptors in glycosidation reactions. In this paper we synthesized D-allose glycopyranosyl acceptors with free OH-3 and OH-4 from D-Glc precursors. We assessed glycosidations with galactose trichloroacetimidates as donors and the experimental results were compared with those obtained by molecular modeling. Axial O-3 was the preferred site of glycosylation for α-anomers, whereas equatorial O-4 was the preferred site for a β-anomer. A good correlation between the experimental and modeling results was observed using atomic charges and cationic intermediates, although Fukui indices did not predict adequately the experimental results. The achieved regioselectivities are useful for the efficient design of oligosaccharide synthesis containing D-All moieties.
Collapse
Affiliation(s)
- Enrique A Del Vigo
- CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina.
| | - Carlos A Stortz
- CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina.
| | - Carla Marino
- CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina.
| |
Collapse
|
4
|
Ren B, Wang J, Zhang M, Chen Y, Zhao W. A Chiral Copper Catalyzed Site‐Selective O‐Alkylation of Carbohydrates. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bo Ren
- College of Pharmacy Xinxiang University Jinsui Avenue 191 Xinxiang Henan 453003 People's Republic of China
| | - Jiaxi Wang
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering Sichuan University Chengdu 610041 People's Republic of China
| | - Mengyao Zhang
- College of Chemistry & Chemical Engineering Xinyang Normal University Nanhu Road 237 Xinyang Henan 464000, People's Republic of China
| | - Yue Chen
- College of Chemistry & Chemical Engineering Xinyang Normal University Nanhu Road 237 Xinyang Henan 464000, People's Republic of China
| | - Wei Zhao
- College of Chemistry & Chemical Engineering Xinyang Normal University Nanhu Road 237 Xinyang Henan 464000, People's Republic of China
| |
Collapse
|
5
|
Del Vigo EA, Stortz CA, Marino C. Experimental and theoretical study of the O3/O4 regioselectivity of glycosylation reactions of glucopyranosyl acceptors. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Wang T, Demchenko AV. Synthesis of carbohydrate building blocks via regioselective uniform protection/deprotection strategies. Org Biomol Chem 2019; 17:4934-4950. [PMID: 31044205 DOI: 10.1039/c9ob00573k] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Discussed herein is the synthesis of partially protected carbohydrates by manipulating only one type of a protecting group for a given substrate. The first focus of this review is the uniform protection of an unprotected starting material in a way that only one (or two) hydroxyl group remains unprotected. The second focus involves regioselective partial deprotection of uniformly protected compounds in a way that only one (or two) hydroxyl group becomes liberated.
Collapse
Affiliation(s)
- Tinghua Wang
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, Missouri 63121, USA.
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, Missouri 63121, USA.
| |
Collapse
|
7
|
Vucko T, Pellegrini Moïse N, Lamandé-Langle S. Value-added carbohydrate building blocks by regioselective O-alkylation of C-glucosyl compounds. Carbohydr Res 2019; 477:1-10. [DOI: 10.1016/j.carres.2019.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
|
8
|
Dimakos V, Taylor MS. Site-Selective Functionalization of Hydroxyl Groups in Carbohydrate Derivatives. Chem Rev 2018; 118:11457-11517. [DOI: 10.1021/acs.chemrev.8b00442] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Victoria Dimakos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Mark S. Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
9
|
Xu H, Zhang Y, Dong H, Lu Y, Pei Y, Pei Z. Organotin-catalyzed regioselective benzylation of carbohydrate trans-diols. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.08.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Gouasmat A, Lemétais A, Solles J, Bourdreux Y, Beau JM. Catalytic Iron(III) Chloride Mediated Site-Selective Protection of Mono- and Disaccharides and One Trisaccharide. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Alexandra Gouasmat
- Laboratoire de Synthèse de Biomolécules; Institut de Chimie Moléculaire et des Matériaux d'Orsay; Univ. Paris-Sud; CNRS; Université Paris-Saclay; 91405 Orsay France
| | - Aurélie Lemétais
- Laboratoire de Synthèse de Biomolécules; Institut de Chimie Moléculaire et des Matériaux d'Orsay; Univ. Paris-Sud; CNRS; Université Paris-Saclay; 91405 Orsay France
| | - Julien Solles
- Laboratoire de Synthèse de Biomolécules; Institut de Chimie Moléculaire et des Matériaux d'Orsay; Univ. Paris-Sud; CNRS; Université Paris-Saclay; 91405 Orsay France
| | - Yann Bourdreux
- Laboratoire de Synthèse de Biomolécules; Institut de Chimie Moléculaire et des Matériaux d'Orsay; Univ. Paris-Sud; CNRS; Université Paris-Saclay; 91405 Orsay France
| | - Jean-Marie Beau
- Laboratoire de Synthèse de Biomolécules; Institut de Chimie Moléculaire et des Matériaux d'Orsay; Univ. Paris-Sud; CNRS; Université Paris-Saclay; 91405 Orsay France
- Institut de Chimie des Substances Naturelles, CNRS UPR2301; Univ. Paris-Sud; 1 av. de la Terrasse 91198 Gif-sur-Yvette France
| |
Collapse
|
11
|
Ren B, Lv J, Zhang Y, Tian J, Dong H. Highly Efficient Selective Benzylation of Carbohydrates Catalyzed by Iron(III) with Silver Oxide and Bromide Anion as Co-catalysts. ChemCatChem 2017. [DOI: 10.1002/cctc.201601558] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bo Ren
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering; Huazhong University of Science & Technology; Luoyu Road 1037 430074 Hongshan Wuhan P.R. China
| | - Jian Lv
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering; Huazhong University of Science & Technology; Luoyu Road 1037 430074 Hongshan Wuhan P.R. China
| | - Yu Zhang
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering; Huazhong University of Science & Technology; Luoyu Road 1037 430074 Hongshan Wuhan P.R. China
| | - Jun Tian
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering; Huazhong University of Science & Technology; Luoyu Road 1037 430074 Hongshan Wuhan P.R. China
| | - Hai Dong
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering; Huazhong University of Science & Technology; Luoyu Road 1037 430074 Hongshan Wuhan P.R. China
| |
Collapse
|
12
|
Liu C, Dunaway-Mariano D, Mariano PS. Rational design of reversible inhibitors for trehalose 6-phosphate phosphatases. Eur J Med Chem 2017; 128:274-286. [PMID: 28192710 DOI: 10.1016/j.ejmech.2017.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 11/19/2022]
Abstract
In some organisms, environmental stress triggers trehalose biosynthesis that is catalyzed collectively by trehalose 6-phosphate synthase, and trehalose 6-phosphate phosphatase (T6PP). T6PP catalyzes the hydrolysis of trehalose 6-phosphate (T6P) to trehalose and inorganic phosphate and is a promising target for the development of antibacterial, antifungal and antihelminthic therapeutics. Herein, we report the design, synthesis and evaluation of a library of aryl d-glucopyranoside 6-sulfates to serve as prototypes for small molecule T6PP inhibitors. Steady-state kinetic techniques were used to measure inhibition constants (Ki) of a panel of structurally diverse T6PP orthologs derived from the pathogens Brugia malayi, Ascaris suum, Mycobacterium tuberculosis, Shigella boydii and Salmonella typhimurium. The binding affinities of the most active inhibitor of these T6PP orthologs, 4-n-octylphenyl α-d-glucopyranoside 6-sulfate (9a), were found to be in the low micromolar range. The Ki of 9a with the B. malayi T6PP ortholog is 5.3 ± 0.6 μM, 70-fold smaller than the substrate Michaelis constant. The binding specificity of 9a was demonstrated using several representative sugar phosphate phosphatases from the HAD enzyme superfamily, the T6PP protein fold family of origin. Lastly, correlations drawn between T6PP active site structure, inhibitor structure and inhibitor binding affinity suggest that the aryl d-glucopyranoside 6-sulfate prototypes will find future applications as a platform for development of tailored second-generation T6PP inhibitors.
Collapse
Affiliation(s)
- Chunliang Liu
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Debra Dunaway-Mariano
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Patrick S Mariano
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
13
|
Ren B, Yan N, Gan L. Regioselective alkylation of carbohydrates and diols: a cheaper iron catalyst, new applications and mechanism. RSC Adv 2017. [DOI: 10.1039/c7ra10220h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We developed a much cheaper iron catalyst, Fe(dipm)3, which has a good catalytic efficiency in regioselective alkylation of carbohydrates.
Collapse
Affiliation(s)
- Bo Ren
- College of Chemistry & Chemical Engineering
- Xinyang Normal University
- Xinyang
- P. R. China
| | - Ningning Yan
- College of Chemistry & Chemical Engineering
- Xinyang Normal University
- Xinyang
- P. R. China
| | - Lu Gan
- College of Chemistry & Chemical Engineering
- Xinyang Normal University
- Xinyang
- P. R. China
| |
Collapse
|
14
|
|
15
|
Ren B, Ramström O, Zhang Q, Ge J, Dong H. An Iron(III) Catalyst with Unusually Broad Substrate Scope in Regioselective Alkylation of Diols and Polyols. Chemistry 2016; 22:2481-6. [DOI: 10.1002/chem.201504477] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Bo Ren
- Key laboratory of Material Chemistry for; Energy Conversion and Storage; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Luoyu Road 1037 430074 Wuhan P.R. China
| | - Olof Ramström
- Department of Chemistry; KTH-Royal Institute of Technology; Teknikringen 30 10044 Stockholm Sweden
| | - Qiang Zhang
- Key laboratory of Material Chemistry for; Energy Conversion and Storage; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Luoyu Road 1037 430074 Wuhan P.R. China
| | - Jiantao Ge
- Key laboratory of Material Chemistry for; Energy Conversion and Storage; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Luoyu Road 1037 430074 Wuhan P.R. China
| | - Hai Dong
- Key laboratory of Material Chemistry for; Energy Conversion and Storage; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Luoyu Road 1037 430074 Wuhan P.R. China
| |
Collapse
|
16
|
Aly MRES, Saad HA, Abdel-Hafez SH. Synthesis, antimicrobial and cytotoxicity evaluation of new cholesterol congeners. Beilstein J Org Chem 2015; 11:1922-32. [PMID: 26664612 PMCID: PMC4661006 DOI: 10.3762/bjoc.11.208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/28/2015] [Indexed: 12/30/2022] Open
Abstract
3β-Azidocholest-5-ene (3) and (3β)-3-(prop-2-yn-1-yloxy)cholest-5-ene (10) were prepared as substrates to synthesize a variety of three-motif pharmacophoric conjugates through CuAAC. Basically, these conjugates included cholesterol and 1,2,3-triazole moieties, while the third, the pharmacophore, was either a chalcone, a lipophilic residue or a carbohydrate tag. These compounds were successfully prepared in good yields and characterized by NMR, MS and IR spectroscopic techniques. Chalcone conjugate 6c showed the best antimicrobial activity, while the lactoside conjugate 27 showed the best cytotoxic effect in vitro.
Collapse
Affiliation(s)
- Mohamed Ramadan El Sayed Aly
- Chemistry Department, Faculty of Science, Taif University, 21974-Hawyah-Taif, Kingdom of Saudi Arabia
- Chemistry Department, Faculty of Applied Science, Port Said University, 42522-Port Said, Egypt
| | - Hosam Ali Saad
- Chemistry Department, Faculty of Science, Taif University, 21974-Hawyah-Taif, Kingdom of Saudi Arabia
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig, 44511, Egypt
| | - Shams Hashim Abdel-Hafez
- Chemistry Department, Faculty of Science, Taif University, 21974-Hawyah-Taif, Kingdom of Saudi Arabia
- Chemistry Department, Faculty of Science, Assuit University, 71516-Assuit, Egypt
| |
Collapse
|
17
|
Synthesis and binding affinity analysis of positional thiol analogs of mannopyranose for the elucidation of sulfur in different position. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.04.060] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Lu S, Boyd RJ, Grindley TB. Role of Fluoride in Accelerating the Reactions of Dialkylstannylene Acetals. J Org Chem 2015; 80:2989-3002. [DOI: 10.1021/jo502560q] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Simiao Lu
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| | - Russell J. Boyd
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| | - T. Bruce Grindley
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| |
Collapse
|
19
|
Ren B, Wang M, Liu J, Ge J, Dong H. Enhanced Basicity of Ag2O by Coordination to Soft Anions. ChemCatChem 2015. [DOI: 10.1002/cctc.201403035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Krylov VB, Argunov DA, Vinnitskiy DZ, Verkhnyatskaya SA, Gerbst AG, Ustyuzhanina NE, Dmitrenok AS, Huebner J, Holst O, Siebert HC, Nifantiev NE. Pyranoside-into-furanoside rearrangement: new reaction in carbohydrate chemistry and its application in oligosaccharide synthesis. Chemistry 2014; 20:16516-22. [PMID: 25319316 DOI: 10.1002/chem.201405083] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Indexed: 01/24/2023]
Abstract
Great interest in natural furanoside-containing compounds has challenged the development of preparative methods for their synthesis. Herein a novel reaction in carbohydrate chemistry, namely a pyranoside-into-furanoside (PIF) rearrangement permitting the transformation of selectively O-substituted pyranosides into the corresponding furanosides is reported. The discovered process includes acid-promoted sulfation accompanied by rearrangement of the pyranoside ring into a furanoside ring followed by solvolytic O-desulfation. This process, which has no analogy in organic chemistry, was shown to be a very useful tool for the synthesis of furanoside-containing complex oligosaccharides, which was demonstrated by synthesizing disaccharide derivatives α-D-Galp-(1→3)-β-D-Galf-OPr, 3-O-s-lactyl-β-D-Galf-(1→3)-β-D-Glcp-OPr, and α-L-Fucf-(1→4)-β-D-GlcpA-OPr related to polysaccharides from the bacteria Klebsiella pneumoniae and Enterococcus faecalis and the brown seaweed Chordaria flagelliformis.
Collapse
Affiliation(s)
- Vadim B Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow (Russian Federation)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ren B, Rahm M, Zhang X, Zhou Y, Dong H. Regioselective Acetylation of Diols and Polyols by Acetate Catalysis: Mechanism and Application. J Org Chem 2014; 79:8134-42. [DOI: 10.1021/jo501343x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Bo Ren
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, People’s Republic of China
| | - Martin Rahm
- Department
of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca 14853, New York, United States
- Department
of Applied Physical Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, 10044 Stockholm, Sweden
| | - Xiaoling Zhang
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, People’s Republic of China
| | - Yixuan Zhou
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, People’s Republic of China
| | - Hai Dong
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, People’s Republic of China
| |
Collapse
|
22
|
Xu H, Lu Y, Zhou Y, Ren B, Pei Y, Dong H, Pei Z. Regioselective Benzylation of Diols and Polyols by Catalytic Amounts of an Organotin Reagent. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201301152] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
23
|
Giordano M, Iadonisi A. Tin-Mediated Regioselective Benzylation and Allylation of Polyols: Applicability of a Catalytic Approach Under Solvent-Free Conditions. J Org Chem 2013; 79:213-22. [DOI: 10.1021/jo402399n] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Maddalena Giordano
- Department
of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, Naples 80126, Italy
| | - Alfonso Iadonisi
- Department
of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, Naples 80126, Italy
| |
Collapse
|
24
|
Whittleton SR, Boyd RJ, Grindley TB. How Do Nucleophiles Accelerate the Reactions of Dialkylstannylene Acetals? The Effects of Adding Fluoride to Dialkoxydi-n-butylstannanes. J Phys Chem A 2013; 117:12648-57. [DOI: 10.1021/jp4094172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sarah R. Whittleton
- Department of Chemistry, Dalhousie University, 6274 Coburg
Road, P.O. Box 15000, Halifax, Nova Scotia, Canada B3H
4R2
| | - Russell J. Boyd
- Department of Chemistry, Dalhousie University, 6274 Coburg
Road, P.O. Box 15000, Halifax, Nova Scotia, Canada B3H
4R2
| | - T. Bruce Grindley
- Department of Chemistry, Dalhousie University, 6274 Coburg
Road, P.O. Box 15000, Halifax, Nova Scotia, Canada B3H
4R2
| |
Collapse
|
25
|
Zhou Y, Rahm M, Wu B, Zhang X, Ren B, Dong H. H-bonding activation in highly regioselective acetylation of diols. J Org Chem 2013; 78:11618-22. [PMID: 24164588 DOI: 10.1021/jo402036u] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
H-bonding activation in the regioselective acetylation of vicinal and 1,3-diols is presented. Herein, the acetylation of the hydroxyl group with acetic anhydride can be activated by the formation of H-bonds between the hydroxyl group and anions. The reaction exhibits high regioselectivity when a catalytic amount of tetrabutylammonium acetate is employed. Mechanistic studies indicated that acetate anion forms dual H-bonding complexes with the diol, which facilitates the subsequent regioselective monoacetylation.
Collapse
Affiliation(s)
- Yixuan Zhou
- School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology , Luoyu Road 1037, Wuhan 430074, P. R. China
| | | | | | | | | | | |
Collapse
|