1
|
Fansher D, Besna JN, Fendri A, Pelletier JN. Choose Your Own Adventure: A Comprehensive Database of Reactions Catalyzed by Cytochrome P450 BM3 Variants. ACS Catal 2024; 14:5560-5592. [PMID: 38660610 PMCID: PMC11036407 DOI: 10.1021/acscatal.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
Cytochrome P450 BM3 monooxygenase is the topic of extensive research as many researchers have evolved this enzyme to generate a variety of products. However, the abundance of information on increasingly diversified variants of P450 BM3 that catalyze a broad array of chemistry is not in a format that enables easy extraction and interpretation. We present a database that categorizes variants by their catalyzed reactions and includes details about substrates to provide reaction context. This database of >1500 P450 BM3 variants is downloadable and machine-readable and includes instructions to maximize ease of gathering information. The database allows rapid identification of commonly reported substitutions, aiding researchers who are unfamiliar with the enzyme in identifying starting points for enzyme engineering. For those actively engaged in engineering P450 BM3, the database, along with this review, provides a powerful and user-friendly platform to understand, predict, and identify the attributes of P450 BM3 variants, encouraging the further engineering of this enzyme.
Collapse
Affiliation(s)
- Douglas
J. Fansher
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Jonathan N. Besna
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| | - Ali Fendri
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Joelle N. Pelletier
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| |
Collapse
|
2
|
A 96-multiplex capillary electrophoresis screening platform for product based evolution of P450 BM3. Sci Rep 2019; 9:15479. [PMID: 31664146 PMCID: PMC6820799 DOI: 10.1038/s41598-019-52077-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/04/2019] [Indexed: 11/08/2022] Open
Abstract
The main challenge that prevents a broader application of directed enzyme evolution is the lack of high-throughput screening systems with universal product analytics. Most directed evolution campaigns employ screening systems based on colorimetric or fluorogenic surrogate substrates or universal quantification methods such as nuclear magnetic resonance spectroscopy or mass spectrometry, which have not been advanced to achieve a high-throughput. Capillary electrophoresis with a universal UV-based product detection is a promising analytical tool to quantify product formation. Usage of a multiplex system allows the simultaneous measurement with 96 capillaries. A 96-multiplexed capillary electrophoresis (MP-CE) enables a throughput that is comparable to traditional direct evolution campaigns employing 96-well microtiter plates. Here, we report for the first time the usage of a MP-CE system for directed P450 BM3 evolution towards increased product formation (oxidation of alpha-isophorone to 4-hydroxy-isophorone; highest reached total turnover number after evolution campaign: 7120 mol4-OH molP450−1). The MP-CE platform was 3.5-fold more efficient in identification of beneficial variants than the standard cofactor (NADPH) screening system.
Collapse
|
3
|
Sterckx H, Morel B, Maes BUW. Catalytic Aerobic Oxidation of C(sp 3 )-H Bonds. Angew Chem Int Ed Engl 2019; 58:7946-7970. [PMID: 30052305 DOI: 10.1002/anie.201804946] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 01/04/2023]
Abstract
Oxidation reactions are a key technology to transform hydrocarbons from petroleum feedstock into chemicals of a higher oxidation state, allowing further chemical transformations. These bulk-scale oxidation processes usually employ molecular oxygen as the terminal oxidant as at this scale it is typically the only economically viable oxidant. The produced commodity chemicals possess limited functionality and usually show a high degree of symmetry thereby avoiding selectivity issues. In sharp contrast, in the production of fine chemicals preference is still given to classical oxidants. Considering the strive for greener production processes, the use of O2 , the most abundant and greenest oxidant, is a logical choice. Given the rich functionality and complexity of fine chemicals, achieving regio/chemoselectivity is a major challenge. This review presents an overview of the most important catalytic systems recently described for aerobic oxidation, and the current insight in their reaction mechanism.
Collapse
Affiliation(s)
- Hans Sterckx
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Bénédicte Morel
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Bert U W Maes
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| |
Collapse
|
4
|
Sterckx H, Morel B, Maes BUW. Katalytische, aerobe Oxidation von C(sp
3
)‐H‐Bindungen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201804946] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hans Sterckx
- Department of Chemistry University of Antwerp Groenenborgerlaan 171 B-2020 Antwerpen Belgien
| | - Bénédicte Morel
- Department of Chemistry University of Antwerp Groenenborgerlaan 171 B-2020 Antwerpen Belgien
| | - Bert U. W. Maes
- Department of Chemistry University of Antwerp Groenenborgerlaan 171 B-2020 Antwerpen Belgien
| |
Collapse
|
5
|
Syntrivanis LD, Wong LL, Robertson J. Hydroxylation of Eleuthoside Synthetic Intermediates by P450BM3
(CYP102A1). European J Org Chem 2018. [DOI: 10.1002/ejoc.201801206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Luet Lok Wong
- Department of Chemistry; Inorganic Chemistry Laboratory; University of Oxford; South Parks Road 3QR Oxford, OX1 UK
| | - Jeremy Robertson
- Department of Chemistry; Chemistry Research Laboratory; University of Oxford; Mansfield Road 3TA (UK) Oxford, OX1
| |
Collapse
|
6
|
Ilie A, Harms K, Reetz MT. P450-Catalyzed Regio- and Stereoselective Oxidative Hydroxylation of 6-Iodotetralone: Preparative-Scale Synthesis of a Key Intermediate for Pd-Catalyzed Transformations. J Org Chem 2018; 83:7504-7508. [DOI: 10.1021/acs.joc.7b02878] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Adriana Ilie
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein Str. 4, 35032 Marburg, Germany
| | - Klaus Harms
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein Str. 4, 35032 Marburg, Germany
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein Str. 4, 35032 Marburg, Germany
| |
Collapse
|
7
|
Mazur M, Gładkowski W, Srček VG, Radošević K, Maciejewska G, Wawrzeńczyk C. Regio- and enantioselective microbial hydroxylation and evaluation of cytotoxic activity of β-cyclocitral-derived halolactones. PLoS One 2017; 12:e0183429. [PMID: 28837605 PMCID: PMC5570294 DOI: 10.1371/journal.pone.0183429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/02/2017] [Indexed: 11/19/2022] Open
Abstract
Three β-cyclocitral-derived halolactones, which exhibit antifeedant activity towards storage product pests, were subjected to microbial transformation processes. Among the thirty tested strains of filamentous fungi and yeast, the most effective biocatalysts were Absidia cylindrospora AM336, Mortierella isabellina AM212 and Mortierella vinaceae AM149. As a result of regio- and enantioselective hydroxylation four new oxygenated derivatives were obtained. Regardless of the biocatalyst applied, the δ-iodo- and δ-bromo-γ-lactones were hydroxylated in an inactivated position C-5 of cyclohexane ring. The analogous transformation of chlorolactone was observed in Mortierella isabellina AM212 culture but in the case of two other biocatalysts the hydroxy group was introduced at C-3 position. All obtained hydroxylactones were enantiomerically pure (ee = 100%) or enriched (ee = 50%). The highest enantioselectivity of hydroxylation was observed for M. isabellina AM212. The cytotoxic activity of halolactones was also examined by WST-1 assay wherein tested compounds did not exhibit significant effect on the viability of tumor HeLa and normal CHO-K1 cells.
Collapse
Affiliation(s)
- Marcelina Mazur
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Witold Gładkowski
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Višnja Gaurina Srček
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Kristina Radošević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Gabriela Maciejewska
- Central Laboratory of the Instrumental Analysis, Wrocław University of Technology, Wrocław, Poland
| | - Czesław Wawrzeńczyk
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
8
|
Synthesis and Biotransformation of Bicyclic Unsaturated Lactones with Three or Four Methyl Groups. Molecules 2017; 22:molecules22010147. [PMID: 28106750 PMCID: PMC6155629 DOI: 10.3390/molecules22010147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/04/2017] [Accepted: 01/11/2017] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to obtain new unsaturated lactones by chemical synthesis and their microbial transformations using fungal strains. Some of these strains were able to transform unsaturated lactones into different hydroxy or epoxy derivatives. Strains of Syncephalastrum racemosum and Absidia cylindrospora gave products with a hydroxy group introduced into a tertiary carbon, while the Penicillium vermiculatum strain hydroxylated primary carbons. The Syncephalastrum racemosum strain hydroxylated both substrates in an allylic position. Using the Absidia cylindrospora and Penicillium vermiculatum strains led to the obtained epoxylactones. The structures of all lactones were established on the basis of spectroscopic data.
Collapse
|
9
|
Biocatalysts for the formation of three- to six-membered carbo- and heterocycles. Biotechnol Adv 2015; 33:457-80. [DOI: 10.1016/j.biotechadv.2015.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/27/2015] [Indexed: 11/18/2022]
|
10
|
Ilie A, Lonsdale R, Agudo R, Reetz MT. A diastereoselective P450-catalyzed epoxidation reaction: anti versus syn reactivity. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.03.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Ilie A, Agudo R, Roiban GD, Reetz MT. P450-catalyzed regio- and stereoselective oxidative hydroxylation of disubstituted cyclohexanes: creation of three centers of chirality in a single CH-activation event. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.11.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Roiban GD, Reetz MT. Expanding the toolbox of organic chemists: directed evolution of P450 monooxygenases as catalysts in regio- and stereoselective oxidative hydroxylation. Chem Commun (Camb) 2015; 51:2208-24. [DOI: 10.1039/c4cc09218j] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytochrome P450 enzymes (CYPs) have been used for more than six decades as catalysts for the CH-activating oxidative hydroxylation of organic compounds with formation of added-value products.
Collapse
Affiliation(s)
| | - Manfred T. Reetz
- Department of Chemistry
- Philipps-Universität Marburg
- 35032 Marburg
- Germany
- Max-Planck-Institut für Kohlenforschung
| |
Collapse
|
13
|
Roiban GD, Agudo R, Reetz MT. Cytochrome P450 Catalyzed Oxidative Hydroxylation of Achiral Organic Compounds with Simultaneous Creation of Two Chirality Centers in a Single CH Activation Step. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310892] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Roiban GD, Agudo R, Reetz MT. Cytochrome P450 catalyzed oxidative hydroxylation of achiral organic compounds with simultaneous creation of two chirality centers in a single C-H activation step. Angew Chem Int Ed Engl 2014; 53:8659-63. [PMID: 24590553 DOI: 10.1002/anie.201310892] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/22/2014] [Indexed: 11/08/2022]
Abstract
Regio- and stereoselective oxidative hydroxylation of achiral or chiral organic compounds mediated by synthetic reagents, catalysts, or enzymes generally leads to the formation of one new chiral center that appears in the respective enantiomeric or diastereomeric alcohols. By contrast, when subjecting appropriate achiral compounds to this type of C-H activation, the simultaneous creation of two chiral centers with a defined relative and absolute configuration may result, provided that control of the regio-, diastereo-, and enantioselectivity is ensured. The present study demonstrates that such control is possible by using wild type or mutant forms of the monooxygenase cytochrome P450 BM3 as catalysts in the oxidative hydroxylation of methylcyclohexane and seven other monosubstituted cyclohexane derivatives.
Collapse
Affiliation(s)
- Gheorghe-Doru Roiban
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany); Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg (Germany)
| | | | | |
Collapse
|
15
|
Méndez-Sánchez D, Ríos-Lombardía N, Gotor V, Gotor-Fernández V. Chemoenzymatic epoxidation of alkenes based on peracid formation by a Rhizomucor miehei lipase-catalyzed perhydrolysis reaction. Tetrahedron 2014. [DOI: 10.1016/j.tet.2013.12.084] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|