1
|
Sugiyama Y, Yamada K, Kaneko D, Kusagawa Y, Okamura T, Sato T. Iridium-Catalyzed Reductive (3+2) Annulation of Lactams Enabling the Rapid Total Synthesis of (±)-Eburnamonine. Angew Chem Int Ed Engl 2024; 63:e202317290. [PMID: 38088513 DOI: 10.1002/anie.202317290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 12/30/2023]
Abstract
A reductive (3+2) annulation of lactams through iridium-catalyzed hydrosilylation and photoredox coupling with α-bromoacetic acid was developed. The iridium-catalyzed hydrosilylation of the lactam carbonyl group and subsequent elimination provide a transient cyclic enamine, which undergoes iridium-catalyzed photoredox coupling with α-bromoacetic acid in a one-pot process. The developed conditions show high functional-group tolerance and provide cyclic N,O-acetals containing a quaternary carbon center. The resulting N,O-acetals undergo a variety of acid-mediated nucleophilic addition reactions via iminium ions to give substituted cyclic amines. The developed sequence including reductive (3+2) annulation and acid-mediated nucleophilic addition was successfully applied to the four-step total synthesis of (±)-eburnamonine.
Collapse
Affiliation(s)
- Yasukazu Sugiyama
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Kento Yamada
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Daiki Kaneko
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yuya Kusagawa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Toshitaka Okamura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Takaaki Sato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
2
|
Ramakrishna GV, Pop LP, Latif Z, Suryadevara HKV, Santo L, Romiti F. Streamlined Strategy for Scalable and Enantioselective Total Syntheses of the Eburnane Alkaloids. J Am Chem Soc 2023; 145:20062-20072. [PMID: 37647157 DOI: 10.1021/jacs.3c07019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A general, concise, and efficient strategy for the enantioselective synthesis of the eburnane alkaloid family of natural products is disclosed. Specifically, 13 members of the natural product family were prepared from commercially available and inexpensive starting materials. The brevity and modularity of the route are largely on account of a two-phase synthesis logic and a key catalytic enantioconvergent cross-coupling to establish the C20 stereogenic center. The strategies described here are expected to facilitate in-depth biological studies and provide access to new anticancer eburnane analogues.
Collapse
Affiliation(s)
- Gujjula V Ramakrishna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Larisa P Pop
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Zurwa Latif
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Harish K V Suryadevara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Luca Santo
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Filippo Romiti
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
3
|
Ren Y, DeRose K, Li L, Gallucci JC, Yu J, Douglas Kinghorn A. Vincamine, from an antioxidant and a cerebral vasodilator to its anticancer potential. Bioorg Med Chem 2023; 92:117439. [PMID: 37579526 PMCID: PMC10530545 DOI: 10.1016/j.bmc.2023.117439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Vincamine is a naturally occurring indole alkaloid showing antioxidant activity and has been used clinically for the prevention and treatment of cerebrovascular disorders and insufficiencies. It has been well documented that antioxidants may contribute to cancer treatment, and thus, vincamine has been investigated recently for its potential antitumor activity. Vincamine was found to show cancer cell cytotoxicity and to modulate several important proteins involved in tumor growth, including acetylcholinesterase (AChE), mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), and T-box 3 (TBX3). Several bisindole alkaloids, including vinblastine and vincristine and their synthetic derivatives, vindesine, vinflunine, and vinorelbine, have been used as clinically effective cancer chemotherapeutic agents. In the present review, the discovery and development of vincamine as a useful therapeutic agent and its antioxidant and antitumor activity are summarized, with its antioxidant-related mechanisms of anticancer potential being described. Also, discussed herein are the design of the potential vincamine-based oncolytic agents, which could contribute to the discovery of further new agents for cancer treatment.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States.
| | - Kevin DeRose
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Leyan Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Judith C Gallucci
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Jianhua Yu
- City of Hope National Medical Center, Duarte, CA 91010, United States
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
4
|
Jagora A, Szwarc S, Litaudon M, Dumontet V, Gallard JF, Beniddir MA, Le Pogam P. Structure elucidation of an aspidofractinine-type monoterpene indole alkaloid from Melodinus reticulatus. Z NATURFORSCH C 2023; 78:271-274. [PMID: 36793235 DOI: 10.1515/znc-2022-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023]
Abstract
The structure and complete NMR assignments of aspidoreticulofractine, an aspidofractinine N-oxide, are reported. Its structure was elucidated based on a combination of spectroscopic techniques including 1D and 2D NMR, high-resolution mass spectrometry, and electronic circular dichroism.
Collapse
Affiliation(s)
- Adrien Jagora
- Équipe "Chimie des substances naturelles" BioCIS, CNRS, Université Paris-Saclay, 17, avenue des Sciences, 91400, Orsay, France
| | - Sarah Szwarc
- Équipe "Chimie des substances naturelles" BioCIS, CNRS, Université Paris-Saclay, 17, avenue des Sciences, 91400, Orsay, France
| | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Vincent Dumontet
- Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Jean-François Gallard
- Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Mehdi A Beniddir
- Équipe "Chimie des substances naturelles" BioCIS, CNRS, Université Paris-Saclay, 17, avenue des Sciences, 91400, Orsay, France
| | - Pierre Le Pogam
- Équipe "Chimie des substances naturelles" BioCIS, CNRS, Université Paris-Saclay, 17, avenue des Sciences, 91400, Orsay, France
| |
Collapse
|
5
|
Hop NQ, Son NT. A comprehensive review on phytochemistry and pharmacology of genus Kopsia: monoterpene alkaloids - major secondary metabolites. RSC Adv 2022; 12:19171-19208. [PMID: 35865593 PMCID: PMC9253876 DOI: 10.1039/d2ra01791a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
Kopsia belongs to the family Apocynaceae, which was originally classified as a genus in 1823. Kopsia consists of medicinal plants that can be traditionally used to treat rheumatoid arthritis, pharyngitis, tonsillitis, and dropsy. More than one hundred and twenty-five publications have been documented relating to the phytochemical and pharmacological results, but a systematic review is not available. The goal of this study is to compile almost all of the secondary metabolites from the plants of genus Kopsia, as well as the coverage of their pharmacological research. The document findings were conducted via reliable sources, including Web of Science, Sci-Finder, Science Direct, PubMed, Google Scholar, and publishers, while four words "Kopsia", "monoterpene alkaloids", "Phytochemistry" and "Pharmacology" are key factors to search for references. Most Kopsia secondary metabolites were collected. A total of four hundred and seventy-two, including four hundred and sixty-six monoterpene alkaloids, five triterpenoids, and one sterol, were summarized, along with their resource. Kopsia monoterpene alkaloids presented in various skeletons, but aspidofractinines, eburnamines, and chanofruticosinates are the three major backbones. Mersinines and pauciflorines are new chemical classes of monoterpene alkaloids. With the rich content of monoterpene alkaloids, Kopsia constituents were also the main objects in pharmacological studies since the plant extracts and isolated compounds were proposed for anti-microbial, anti-inflammatory, anti-allergic, anti-diabetic, anti-manic, anti-nociceptive, acetylcholinesterase (AChE) inhibitory, cardiovascular, and vasorelaxant activities, especially cytotoxicity.
Collapse
Affiliation(s)
- Nguyen Quang Hop
- Faculty of Chemistry, Hanoi Pedagogical University 2 (HPU2) Nguyen Van Linh, Xuanhoa Phucyen Vinhphuc Vietnam
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Caugiay Hanoi Vietnam
- Graduate University of Science and Technology, VAST Vietnam
| |
Collapse
|
6
|
Jin Q, Zhao YL, Liu YP, Zhang RS, Zhu PF, Zhao LQ, Qin XJ, Luo XD. Anti-inflammatory and analgesic monoterpenoid indole alkaloids of Kopsia officinalis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114848. [PMID: 34798159 DOI: 10.1016/j.jep.2021.114848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE "Ya gai", an important part of Dai medical theory, is traditionally recognized as an antidote. Kopsia officinalis Tsiang et P. T. Li is a "Ya gai" related medicine and has been widely used by Dai people for the treatment of pain and inflammation. Previous literature on title species suggested that monoterpenoid indole alkaloids (MIAs) could be its main bioactive components. However, the specific bioactive ingredients for inflammation-related treatment are still unrevealed, which inspired us to conduct a phytochemical and pharmacological investigation related to its traditional use. AIM OF THE STUDY To support the traditional use of K. officinalis by assessing the anti-inflammatory and analgesic effects of its purified MIAs. MATERIAL AND METHODS Compounds were isolated and purified from the barks and leaves of K. officinalis using diverse chromatographic methods. The structures were established by means of extensive spectroscopic analyses and quantum computational technique. The anti-inflammatory activities of the purified MIAs were evaluated in vitro based on the suppression of lipopolysaccharide-activated inflammatory mediators (COX-2, IL-1β, and TNF-α) in RAW 264.7 macrophage cells. Anti-inflammatory and analgesic activities in vivo were assessed with carrageenan-induced paw edema and acetic acid-stimulated writhing in mice models. RESULTS 23 MIAs including four new compounds were obtained and structurally established. Most of isolates showed significant anti-inflammatory effects in vitro by inhibiting inflammatory mediators (COX-2, IL-1β, and TNF-α). Further pharmacological evaluation in vivo revealed that 12-hydroxy-19(R)-hydroxy-ibophyllidine (1) and 11,12-methylenedioxykopsinaline N4-oxide (5) remarkably decreased the number of writhing, while kopsinic acid (8), (-)-kopsinilam (12), and normavacurine-21-one (20) significantly relieved paw edema, respectively, even better than the positive control aspirin. CONCLUSIONS The in vitro and in vivo findings supported the traditional use of K. officinalis with respect to its anti-inflammatory and analgesic effect, as well as provided potent bioactive MIAs for further chemical modification and pharmacological investigation.
Collapse
Affiliation(s)
- Qiong Jin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yun-Li Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Ya-Ping Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Ruo-Song Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Pei-Feng Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Lan-Qin Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xu-Jie Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Xiao-Dong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
7
|
Vrabec R, Maříková J, Ločárek M, Korábečný J, Hulcová D, Hošťálková A, Kuneš J, Chlebek J, Kučera T, Hrabinová M, Jun D, Soukup O, Andrisano V, Jenčo J, Šafratová M, Nováková L, Opletal L, Cahlíková L. Monoterpene indole alkaloids from Vinca minor L. (Apocynaceae): Identification of new structural scaffold for treatment of Alzheimer's disease. PHYTOCHEMISTRY 2022; 194:113017. [PMID: 34798410 DOI: 10.1016/j.phytochem.2021.113017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 05/24/2023]
Abstract
One undescribed indole alkaloid together with twenty-two known compounds have been isolated from aerial parts of Vinca minor L. (Apocynaceae). The chemical structures of the isolated alkaloids were determined by a combination of MS, HRMS, 1D, and 2D NMR techniques, and by comparison with literature data. The NMR data of several alkaloids have been revised, corrected, and missing data have been supplemented. Alkaloids isolated in sufficient quantity were screened for their in vitro acetylcholinesterase (AChE; E.C. 3.1.1.7) and butyrylcholinesterase (BuChE; E.C. 3.1.1.8) inhibitory activity. Selected compounds were also evaluated for prolyl oligopeptidase (POP; E.C. 3.4.21.26), and glycogen synthase 3β-kinase (GSK-3β; E.C. 2.7.11.26) inhibition potential. Significant hBuChE inhibition activity has been shown by (-)-2-ethyl-3[2-(3-ethylpiperidinyl)-ethyl]-1H-indole with an IC50 value of 0.65 ± 0.16 μM. This compound was further studied by enzyme kinetics, along with in silico techniques, to reveal the mode of inhibition. This compound is also predicted to cross the blood-brain barrier (BBB) through passive diffusion.
Collapse
Affiliation(s)
- Rudolf Vrabec
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic; Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Jana Maříková
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Miroslav Ločárek
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Jan Korábečný
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Daniela Hulcová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic; Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Anna Hošťálková
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Jiří Kuneš
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Jakub Chlebek
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Tomáš Kučera
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic
| | - Martina Hrabinová
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic
| | - Ondřej Soukup
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Vincenza Andrisano
- Department for Life Quality Studies, University of Bologna, 47921, Rimini, Italy
| | - Jaroslav Jenčo
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Marcela Šafratová
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Lubomír Opletal
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Lucie Cahlíková
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
8
|
Szabó T, Volk B, Milen M. Recent Advances in the Synthesis of β-Carboline Alkaloids. Molecules 2021; 26:663. [PMID: 33513936 PMCID: PMC7866041 DOI: 10.3390/molecules26030663] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/31/2022] Open
Abstract
β-Carboline alkaloids are a remarkable family of natural and synthetic indole-containing heterocyclic compounds and they are widely distributed in nature. Recently, these alkaloids have been in the focus of interest, thanks to their diverse biological activities. Their pharmacological activity makes them desirable as sedative, anxiolytic, hypnotic, anticonvulsant, antitumor, antiviral, antiparasitic or antimicrobial drug candidates. The growing potential inherent in them encourages many researchers to address the challenges of the synthesis of natural products containing complex β-carboline frameworks. In this review, we describe the recent developments in the synthesis of β-carboline alkaloids and closely related derivatives through selected examples from the last 5 years. The focus is on the key steps with improved procedures and synthetic approaches. Furthermore the pharmacological potential of the alkaloids is also highlighted.
Collapse
Affiliation(s)
| | | | - Mátyás Milen
- Egis Pharmaceuticals Plc., Directorate of Drug Substance Development, P.O. Box 100, H-1475 Budapest, Hungary; (T.S.); (B.V.)
| |
Collapse
|
9
|
Mohammed AE, Abdul-Hameed ZH, Alotaibi MO, Bawakid NO, Sobahi TR, Abdel-Lateff A, Alarif WM. Chemical Diversity and Bioactivities of Monoterpene Indole Alkaloids (MIAs) from Six Apocynaceae Genera. Molecules 2021; 26:488. [PMID: 33477682 PMCID: PMC7831967 DOI: 10.3390/molecules26020488] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/06/2023] Open
Abstract
By the end of the twentieth century, the interest in natural compounds as probable sources of drugs has declined and was replaced by other strategies such as molecular target-based drug discovery. However, in the recent times, natural compounds regained their position as extremely important source drug leads. Indole-containing compounds are under clinical use which includes vinblastine and vincristine (anticancer), atevirdine (anti-HIV), yohimbine (erectile dysfunction), reserpine (antihypertension), ajmalicine (vascular disorders), ajmaline (anti-arrhythmic), vincamine (vasodilator), etc. Monoterpene Indole Alkaloids (MIAs) deserve the curiosity and attention of researchers due to their chemical diversity and biological activities. These compounds were considered as an impending source of drug-lead. In this review 444 compounds, were identified from six genera belonging to the family Apocynaceae, will be discussed. These genera (Alstonia, Rauvolfia, Kopsia, Ervatamia, and Tabernaemontana, and Rhazya) consist of 400 members and represent 20% of Apocynaceae species. Only 30 (7.5%) species were investigated, whereas the rest are promising to be investigated. Eleven bioactivities, including antibacterial, antifungal, anti-inflammatory and immunosuppressant activities, were reported. Whereas cytotoxic effect represents 47% of the reported activities. Convincingly, the genera selected in this review are a wealthy source for future anticancer drug lead.
Collapse
Affiliation(s)
- Afrah E. Mohammed
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Zainab H. Abdul-Hameed
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (Z.H.A.-H.); (N.O.B.); (T.R.S.)
| | - Modhi O. Alotaibi
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Nahed O. Bawakid
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (Z.H.A.-H.); (N.O.B.); (T.R.S.)
| | - Tariq R. Sobahi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (Z.H.A.-H.); (N.O.B.); (T.R.S.)
| | - Ahmed Abdel-Lateff
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Walied M. Alarif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia
| |
Collapse
|
10
|
Wong SK, Yeap JSY, Tan CH, Sim KS, Lim SH, Low YY, Kam TS. Arbolodinines A−C, biologically-active aspidofractinine-aspidofractinine, aspidofractinine-strychnan, and kopsine-strychnan bisindole alkaloids from Kopsia arborea. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
He T, Wang YD, Li FR, He SY, Cui QM, Liu YP, Zhao TR, Cheng GG. Monoterpenoid indole alkaloids from Kopsia hainanensis Tsiang. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Mohammadkhani L, Heravi MM. Applications of Transition-Metal-Catalyzed Asymmetric Allylic Substitution in Total Synthesis of Natural Products: An Update. CHEM REC 2020; 21:29-68. [PMID: 33206466 DOI: 10.1002/tcr.202000086] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 01/14/2023]
Abstract
Metal-catalyzed asymmetric allylic substitution (AAS) reaction is one of the most synthetically useful reactions catalyzed by metal complexes for the formation of carbon-carbon and carbon-heteroatom bonds. It comprises the substitution of allylic substrates with a wide range of nucleophiles or SN 2'-type allylic substitution, which results in the formation of the above-mentioned bonds with high levels of enantioselective induction. AAS reaction tolerates a broad range of functional groups, thus has been successfully applied in the asymmetric synthesis of a wide range of optically pure compounds. This reaction has been extensively used in the total synthesis of several complex molecules, especially natural products. In this review, we try to highlight the applications of metal (Pd, Ir, Mo, or Cu)-catalyzed AAS reaction in the total synthesis of the biologically active natural products, as a key step, updating the subject from 2003 till date.
Collapse
Affiliation(s)
- Leyla Mohammadkhani
- Department of Chemistry, School of Sciences, Alzahra University Vanak, Tehran, Iran
| | - Majid M Heravi
- Department of Chemistry, School of Sciences, Alzahra University Vanak, Tehran, Iran
| |
Collapse
|
13
|
Yang M, Wang Y, Fan Z, Xue Q, Njateng GSS, Liu Y, Cao J, Zhao T, Cheng G. Acute and Sub-Acute Toxicological Evaluations of Bioactive Alkaloidal Extract from Melodinus henryi and Their Main Chemical Constituents. NATURAL PRODUCTS AND BIOPROSPECTING 2020; 10:227-241. [PMID: 32519306 PMCID: PMC7367981 DOI: 10.1007/s13659-020-00252-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/04/2020] [Indexed: 05/05/2023]
Abstract
Melodinus henryi is a good source of terpenoid indole alkaloids, and traditionally used as a folk medicine in the treatment of meningitis and fracture. In order to further exploit their potential uses, its anti-inflammatory and immunosuppressive activities, safety evaluations and chemical profiles have been illustrated. Compared to the crude methanol extract from M. henryi and its non-alkaloidal fraction, the total alkaloidal fraction (MHTA) had the strongest anti-inflammatory and immunosuppressive activities. In the acute oral toxicity assay, the half lethal dose (LD50) of MHTA was more than 2000 mg/kg. The sub-acute toxicity assay for consecutive 28 days exhibited MHTA at a lower concentrations of less than 500 mg/kg might be regarded as safe, and might damage spleen, liver, kidney, and heart when the dose is higher than 1000 mg/kg. In addition, a phytochemical investigation on MHTA led to the isolation of 15 monoterpenoid indole alkaloids. Thus, in regard with the potent side effects of MHTA, it should be used with caution in the development of phytomedicine.
Collapse
Affiliation(s)
- Meilian Yang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Yudan Wang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Kunming, 650500, People's Republic of China
| | - Zhifeng Fan
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Qingwang Xue
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, Shandong, China
| | - Guy Sedar Singor Njateng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, People's Republic of China
| | - Yaping Liu
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, People's Republic of China
| | - Jianxin Cao
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Tianrui Zhao
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| | - Guiguang Cheng
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| |
Collapse
|
14
|
Du Preez CI, Gründemann C, Reinhardt JK, Mumbengegwi DR, Huber R. Immunomodulatory effects of some Namibian plants traditionally used for treating inflammatory diseases. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112683. [PMID: 32087321 DOI: 10.1016/j.jep.2020.112683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/30/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acanthosicyos naudininus, Gomphocarpus fruticosus, and Cryptolepis decidua are, according to the knowledge of traditional healers, used in Namibia to treat inflammatory disorders such as pain, fever and skin rashes. AIM OF THE STUDY The present study was conducted to evaluate the immunomodulatory effects and the possible underlying mechanisms of action of the plant extracts on peripheral blood mononuclear cells (PBMCs) such as T-lymphocytes. MATERIALS AND METHODS Methanolic and EtOAc extracts of A. naudinianus, G. fruticosus and C. decidua were analysed for their immunomodulatory potential. PBMCs were isolated from the blood of healthy donors and incubated with the plant extracts at concentrations 100, 30, 10, 3, 1 and 0.3 μg/mL. Effects on proliferation and viability of activated human lymphocytes were assessed in comparison to ciclosporin A by flow cytometry using carboxyfluorescein succinimidyl ester (CFSE) and WST-1 assay. Flow cytometry by annexin V/propidium iodide (PI) staining was performed to investigate the necrotic/apoptotic effect of the plant extracts on mitogen-activated human lymphocytes. In addition, analysis of the influence of plant extracts on the regulatory mechanisms of T-lymphocytes was performed using activation marker and cytokine production assays. An HPLC-PDA-ELSD-ESIMS profile was recorded for each of the extracts. RESULTS T-lymphocyte proliferation was inhibited in a dose-dependent manner by the extracts of A. naudinianus, G. fruticosus, and C. decidua in concentrations not causing apoptosis or necrosis. This effect was mediated by inhibition of lymphocyte activation, specifically the suppression of CD25 and CD69 surface receptor expression. Moreover, the extracts suppressed effector functions, as indicated by reduced production of IFN-γ and IL-2. Based on the HPLC profile, possible responsible compound classes could be identified for the extracts of A. naudinianus (cucurbitacins) and C. decidua (indole alkaloids), but not for G. fruticosus. CONCLUSIONS The data show that the extracts of A. naudinianus, G. fruticosus and C. decidua have in vitro immunomodulatory activity and they interfere with the function of immunocompetent cells, suggesting an anti-inflammatory mode-of-action. The present chemical determination and pattern recognition results explain the therapeutic potency. However, further studies to investigate the therapeutic potential of the plants in inflammatory disorders should be done.
Collapse
Affiliation(s)
- C I Du Preez
- Programme for Traditional Medicine and Drug Discovery, Multidisciplinary Research Centre, University of Namibia, 340 Mandume Ndemufayo Avenue, Pioneers Park, Windhoek, Namibia.
| | - C Gründemann
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| | - J K Reinhardt
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| | - D R Mumbengegwi
- Programme for Traditional Medicine and Drug Discovery, Multidisciplinary Research Centre, University of Namibia, 340 Mandume Ndemufayo Avenue, Pioneers Park, Windhoek, Namibia.
| | - R Huber
- Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, University of Freiburg, Faculty of Medicine, Breisacherstr. 115B, 79106, Freiburg, Germany.
| |
Collapse
|
15
|
Rosales PF, Bordin GS, Gower AE, Moura S. Indole alkaloids: 2012 until now, highlighting the new chemical structures and biological activities. Fitoterapia 2020; 143:104558. [PMID: 32198108 DOI: 10.1016/j.fitote.2020.104558] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 01/11/2023]
Abstract
Indole alkaloids have attracted attention because of their therapeutic properties, being anti-inflammatory, antinociceptive, antitumoural, antioxidant and antimicrobial. These compounds present a wide structural diversity, which is directly related to the genera of the producing plants, as well as the biological activities. Indole alkaloids have attracted attention over the last decade because of this combination of bioactivity and structural diversity. Therefore, this review presented recent (2012-2018) advances in alkaloids, focusing on new compounds, extraction methods and biological activities. As such, approximately 70 articles were identified, which showed 261 new compounds produced by plants of the families Apocynaceae, Rubiaceae, Annonaceae and Loganiaceae. In addition, different extraction methods were identified, and the structures of the new compounds were analysed. In addition to indole molecules, there were mono-indole-, di-indole-, vinblastine-, vimblastine-, gelsedine-, geissospermidine-, koumine-, geissospermidine-, iboga-, perakine-, corynanthe-, vincamine-, ajmaline-, aspidorpema-, strychnos-type, β-carboline alkaloids and indole alkaloid glucosides. The reported biological activities are mainly anticancer, antibacterial, antimalarial, antifungal, antiparasitic, and antiviral, as well as anti-acetylcholinesterase and anti-butyrylcolinesterase properties. This review serves as a guide for those wishing to find the most recently identified alkaloid structures and their associated activities.
Collapse
Affiliation(s)
- Pauline Fagundes Rosales
- LBIOP - Laboratory of Biotechnology of Natural and Synthetics Products, Technology Department, Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, Brazil; IFRS -Federal Institute of Education, Science and Technology of Rio Grande do Sul, Campus Bento Gonçalves, Brazil
| | - Gabriela Sandri Bordin
- LBIOP - Laboratory of Biotechnology of Natural and Synthetics Products, Technology Department, Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, Brazil
| | - Adriana Escalona Gower
- LBIOP - Laboratory of Biotechnology of Natural and Synthetics Products, Technology Department, Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, Brazil
| | - Sidnei Moura
- LBIOP - Laboratory of Biotechnology of Natural and Synthetics Products, Technology Department, Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, Brazil.
| |
Collapse
|
16
|
Xie TZ, Zhao YL, He JJ, Zhao LX, Wei X, Liu YP, Luo XD. Monoterpenoid indole alkaloids from the stems of Kopsia officinalis. Fitoterapia 2020; 143:104547. [PMID: 32173419 DOI: 10.1016/j.fitote.2020.104547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
Abstract
Five new indole alkaloids, kopsiofficines H-L (1-5), along with fourteen known alkaloids (6-19) were isolated from the stems of Kopsia officinalis. Their structures were elucidated by extensive NMR, mass spectroscopic analyses and comparison to the reported data. All the isolated compounds were evaluated their anti-inflammatory activities by inhibiting IL-1β, PGE2 and TNF-α secretion in lipopolysaccharide (LPS)-activated RAW264.7 cells. Compounds 2, 3, 6, 7, 11, 12, 15, and 17 show significant anti-inflammatory activities. These results demonstrate pharmacodynamic substance basis of these folkloric claims.
Collapse
Affiliation(s)
- Tian-Zhen Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Yun-Li Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Jun-Jie He
- Lanzhou University of Technolog, Lanzhou 730050, PR China
| | - Li-Xin Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Xin Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Ya-Ping Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China; Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Xiao-Dong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China.
| |
Collapse
|
17
|
Kataoka M, Otawa Y, Ido N, Mori K. Highly Diastereoselective Synthesis of Medium-Sized Carbocycle-Fused Piperidines via Sequential Hydride Shift Triggered Double C(sp3)–H Bond Functionalization. Org Lett 2019; 21:9334-9338. [DOI: 10.1021/acs.orglett.9b03498] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Miyabi Kataoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Yuna Otawa
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Natsuki Ido
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Keiji Mori
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
18
|
Wang ZW, Guo CR, Lin YL, Yan HJ, Mu Y, Geng YL, Liu W, Wang X. Chemical constituents of Kopsia officinalis and their antagonizing high glucose-evoked podocyte injury activity. Fitoterapia 2019; 137:104258. [PMID: 31284017 DOI: 10.1016/j.fitote.2019.104258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 02/05/2023]
Abstract
Four new indole alkaloids (1-4) and twenty known compounds (5-24) were isolated from the leaves and stems, and fruits of Kopsia officinalis. Their structures were confirmed by means of spectroscopic methods. All these isolates were evaluated for their antagonizing high glucose-evoked podocyte injury activity for the first time, and compounds 5-8 showed potent activity with EC50 values of 3.0-12.0 μM.
Collapse
Affiliation(s)
- Zhi-Wei Wang
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), 19 Keyuan Street, Jinan 250014, China.
| | - Chang-Run Guo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Yun-Liang Lin
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), 19 Keyuan Street, Jinan 250014, China
| | - Hui-Jiao Yan
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), 19 Keyuan Street, Jinan 250014, China
| | - Yan Mu
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), 19 Keyuan Street, Jinan 250014, China
| | - Yan-Ling Geng
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), 19 Keyuan Street, Jinan 250014, China
| | - Wei Liu
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), 19 Keyuan Street, Jinan 250014, China
| | - Xiao Wang
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), 19 Keyuan Street, Jinan 250014, China
| |
Collapse
|
19
|
Trost BM, Bai Y, Bai WJ, Schultz JE. Enantioselective Divergent Synthesis of C19-Oxo Eburnane Alkaloids via Palladium-Catalyzed Asymmetric Allylic Alkylation of an N-Alkyl-α,β-unsaturated Lactam. J Am Chem Soc 2019; 141:4811-4814. [PMID: 30848892 DOI: 10.1021/jacs.9b00788] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The C19-oxo-functionalized eburnane alkaloids display unique chemical structure and interesting biological activity. Herein, we report a divergent enantioselective strategy to access these alkaloids by use of a challenging palladium-catalyzed asymmetric allylic alkylation of an N-alkyl-α,β-unsaturated lactam. 19-( S)-OH-Δ14-vincamone (phutdonginin), (-)-19-OH-eburnamine, (+)-19-oxoeburnamine, and (+)-19-OH-eburnamonine (1-4) have been concisely synthesized for the first time in 11 to 13 steps.
Collapse
Affiliation(s)
- Barry M Trost
- Department of Chemistry , Stanford University , Stanford , California 94305-5080 , United States
| | - Yu Bai
- Department of Chemistry , Stanford University , Stanford , California 94305-5080 , United States
| | - Wen-Ju Bai
- Department of Chemistry , Stanford University , Stanford , California 94305-5080 , United States
| | - Johnathan E Schultz
- Department of Chemistry , Stanford University , Stanford , California 94305-5080 , United States
| |
Collapse
|
20
|
Indole alkaloids from the aerial parts of Kopsia fruticosa and their cytotoxic, antimicrobial and antifungal activities. Fitoterapia 2018; 129:145-149. [PMID: 29935259 DOI: 10.1016/j.fitote.2018.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 11/21/2022]
Abstract
A chemical investigation on the 80% EtOH extract of the aerial parts of Kopsia fruticosa led to five new indole alkaloids, kopsifolines G-K (1-5), and one known alkaloid, kopsifoline A (6). Structural elucidation of all the compounds were performed by spectral methods such as 1D and 2D (1H-1H COSY, HMQC, and HMBC) NMR spectroscopy, in addition to high resolution mass spectrometry. The isolated components were evaluated in vitro for cytotoxic activities against seven tumor cell lines, antimicrobial activities against two Gram-positive bacteria and five Gram-negative bacteria, and antifungal activities against five pathogens. As a result, alkaloids 3-5 exhibited some cytotoxicity against all of seven tested tumor cell lines (HS-1, HS-4, SCL-1, A431, BGC-823, MCF-7, and W480) with IC50 values of 11.8-13.8, 10.3-12.5, and 7.3-9.5 μM, respectively. Alkaloids 3-5 also possessed significant antimicrobial and antifungal activities which was reported for the first time for the alkaloids isolated from Kopsia genus.
Collapse
|
21
|
Chong KW, Yeap JSY, Lim SH, Weber JFF, Low YY, Kam TS. Biosynthetic Enantiodivergence in the Eburnane Alkaloids from Kopsia. JOURNAL OF NATURAL PRODUCTS 2017; 80:3014-3024. [PMID: 29087707 DOI: 10.1021/acs.jnatprod.7b00621] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Reexamination of the absolute configuration of recently isolated eburnane alkaloids from Malaysian Kopsia and Leuconotis species by X-ray diffraction analysis and ECD/TDDFT has revealed the existence of biosynthetic enantiodivergence. Three different scenarios are discerned with respect to the composition of the enantiomeric eburnane alkaloids in these plants: first, where the new eburnane congeners possess the same C-20, C-21 absolute configurations as the common eburnane alkaloids (eburnamonine, eburnamine, isoeburnamine, eburnamenine) occurring in the same plant; second, where the new eburnane congeners possess opposite or enantiomeric C-20, C-21 absolute configurations compared to the common eburnane alkaloids found in the same plant; and, third, where the four common eburnane alkaloids were isolated as racemic or scalemic mixtures, while the new eburnane congeners were isolated as pure enantiomers with a common C-20, C-21 configuration (20α, 21α). Additionally, the same Kopsia species (K. pauciflora) found in two different geographical locations (Peninsular Malaysia and Malaysian Borneo) showed different patterns in the composition of the enantiomeric eburnane alkaloids. Revision of the absolute configurations of a number of new eburnane congeners (previously assigned based on the assumption of a common biogenetic origin to that of the known eburnane alkaloids co-occurring in the same plant) is required based on the present results.
Collapse
Affiliation(s)
- Kam-Weng Chong
- Department of Chemistry, Faculty of Science, University of Malaya , 50603 Kuala Lumpur, Malaysia
| | - Joanne Soon-Yee Yeap
- Department of Chemistry, Faculty of Science, University of Malaya , 50603 Kuala Lumpur, Malaysia
| | - Siew-Huah Lim
- Department of Chemistry, Faculty of Science, University of Malaya , 50603 Kuala Lumpur, Malaysia
| | - Jean-Frédéric F Weber
- Atta-ur-Rahman Institute for Natural Product Discovery and Faculty of Pharmacy, Universiti Technologi MARA (UiTM, Selangor Branch), Puncak Alam Campus , 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Yun-Yee Low
- Department of Chemistry, Faculty of Science, University of Malaya , 50603 Kuala Lumpur, Malaysia
| | - Toh-Seok Kam
- Department of Chemistry, Faculty of Science, University of Malaya , 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
N’Nang Obiang EO, Genta-Jouve G, Gallard JF, Kumulungui B, Mouray E, Grellier P, Evanno L, Poupon E, Champy P, Beniddir MA. Pleiokomenines A and B: Dimeric Aspidofractinine Alkaloids Tethered with a Methylene Group. Org Lett 2017; 19:6180-6183. [DOI: 10.1021/acs.orglett.7b03098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elvis Otogo N’Nang Obiang
- Équipe
“Pharmacognosie-Chimie des substances naturelles” BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
- Laboratoire
de microbiologie, Université des Sciences et Techniques de Masuku, BP769 Franceville, Gabon
| | - Grégory Genta-Jouve
- C-TAC,
UMR 8638 CNRS, Faculté de Pharmacie de Paris, Paris-Descartes University, Sorbonne, Paris Cité, 4, Avenue de l’Observatoire, 75006 Paris, France
| | - Jean-François Gallard
- Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301, Université Paris-Saclay,
21, avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Brice Kumulungui
- Laboratoire
de microbiologie, Université des Sciences et Techniques de Masuku, BP769 Franceville, Gabon
| | - Elisabeth Mouray
- Unité
Molécules de Communication et Adaptation des Microorganismes
(MCAM, UMR 7245), Muséum national d’Histoire Naturelle,
CNRS, Sorbonne Universités, CP52, 57, rue Cuvier, 75005 Paris, France
| | - Philippe Grellier
- Unité
Molécules de Communication et Adaptation des Microorganismes
(MCAM, UMR 7245), Muséum national d’Histoire Naturelle,
CNRS, Sorbonne Universités, CP52, 57, rue Cuvier, 75005 Paris, France
| | - Laurent Evanno
- Équipe
“Pharmacognosie-Chimie des substances naturelles” BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Erwan Poupon
- Équipe
“Pharmacognosie-Chimie des substances naturelles” BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Pierre Champy
- Équipe
“Pharmacognosie-Chimie des substances naturelles” BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Mehdi A. Beniddir
- Équipe
“Pharmacognosie-Chimie des substances naturelles” BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| |
Collapse
|
23
|
Onozawa T, Kitajima M, Kogure N, Peerakam N, Santiarworn D, Takayama H. A Cyclopeptide and a Tetrahydroisoquinoline Alkaloid from Ophiorrhiza nutans. JOURNAL OF NATURAL PRODUCTS 2017; 80:2156-2160. [PMID: 28726398 DOI: 10.1021/acs.jnatprod.7b00290] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A new cyclopeptide, ophiorrhisine A (1), a new tetrahydroisoquinoline alkaloid, 7',10-dide-O-methylcephaeline (2), two known β-carboline alkaloids, and four known tetrahydroisoquinoline alkaloids were isolated from Ophiorrhiza nutans (Rubiaceae). Compound 1 is a tetrapeptide possessing a 14-membered paracyclophane ring and a novel N,N,N-trimethyltyrosine residue in the side chain. The stereochemistry at the aryl-alkyl ether bond was different from that of other known 14-membered paracyclophanes. The structure of 2 was established by spectroscopic analysis and semisynthesis.
Collapse
Affiliation(s)
- Tadayoshi Onozawa
- Department of Biofunctional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Mariko Kitajima
- Department of Biofunctional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Noriyuki Kogure
- Department of Biofunctional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Nichakan Peerakam
- Faculty of Pharmaceutical Science, Burapha University , Bangsaen, Chonburi Province 20131, Thailand
| | | | - Hiromitsu Takayama
- Department of Biofunctional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
24
|
|
25
|
Zeng T, Wu XY, Yang SX, Lai WC, Shi SD, Zou Q, Liu Y, Li LM. Monoterpenoid Indole Alkaloids from Kopsia officinalis and the Immunosuppressive Activity of Rhazinilam. JOURNAL OF NATURAL PRODUCTS 2017; 80:864-871. [PMID: 28218521 DOI: 10.1021/acs.jnatprod.6b00697] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Six new monoterpenoid indole alkaloids, kopsinidines C-E (1-3), 11,12-methylenedioxychanofruticosinic acid (4), 12-methoxychanofruticosinic acid (5), and N(4)-methylkopsininate (7), as well as chanofruticosinic acid (6, as a natural product) and 23 known alkaloids, were obtained from the twigs and leaves of Kopsia officinalis. Their structures were characterized by physical data analysis. All isolated compounds were evaluated for their immunosuppressive activity on human T cell proliferation. Rhazinilam (29) significantly inhibited human T cell proliferation activated by anti-CD3/anti-CD28 antibodies (IC50 = 1.0 μM) and alloantigen stimulation (IC50 = 1.1 μM) without obvious cytotoxicity for naïve human T cells and peripheral blood mononuclear cells (0-320 μM). Although it did not affect T cell activation, it induced T cell cycle arrest in the G2/M phase and inhibited proinflammatory cytokine production in activated T cells.
Collapse
Affiliation(s)
- Ting Zeng
- Research Center, Chengdu Medical College , Xindu Avenue 783, Chengdu 610500, People's Republic of China
| | - Xiu-Yin Wu
- Research Center, Chengdu Medical College , Xindu Avenue 783, Chengdu 610500, People's Republic of China
| | - Shu-Xia Yang
- Research Center, Chengdu Medical College , Xindu Avenue 783, Chengdu 610500, People's Republic of China
| | - Wei-Chun Lai
- Research Center, Chengdu Medical College , Xindu Avenue 783, Chengdu 610500, People's Republic of China
| | - Shun-Dong Shi
- Research Center, Chengdu Medical College , Xindu Avenue 783, Chengdu 610500, People's Republic of China
| | - Qiang Zou
- Research Center, Chengdu Medical College , Xindu Avenue 783, Chengdu 610500, People's Republic of China
| | - Yang Liu
- Research Center, Chengdu Medical College , Xindu Avenue 783, Chengdu 610500, People's Republic of China
| | - Li-Mei Li
- Research Center, Chengdu Medical College , Xindu Avenue 783, Chengdu 610500, People's Republic of China
| |
Collapse
|
26
|
Wang ZW, Shi XJ, Mu Y, Fang L, Chen Y, Lin YL. Three novel indole alkaloids from Kopsia officinalis. Fitoterapia 2017; 119:8-11. [PMID: 28363506 DOI: 10.1016/j.fitote.2017.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 10/19/2022]
Abstract
Three new indole alkaloids, named kopsioffines A-C (1-3), possessing relatively novel ten-membered lactam ring, and one known compound (11,12-demethoxy-16-deoxypauciflorine, 4) were isolated from the leaves and stems of Kopsia officinalis. Their structures were elucidated by means of spectroscopic methods. The absolute configuration of 1 was determined by calculated electronic circular dichroism data. The hypothetical biosynthetic pathway of 1 was postulated. All these isolates were evaluated for their inhibitory effects on α-glucosidase. None of them showed activity with IC50 far beyond 50μM.
Collapse
Affiliation(s)
- Zhi-Wei Wang
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Shandong Academy of Sciences, 19 Keyuan Street, Jinan, Shandong 250014, China.
| | - Xiao-Jian Shi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Yan Mu
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Shandong Academy of Sciences, 19 Keyuan Street, Jinan, Shandong 250014, China
| | - Lei Fang
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Shandong Academy of Sciences, 19 Keyuan Street, Jinan, Shandong 250014, China
| | - Yue Chen
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Shandong Academy of Sciences, 19 Keyuan Street, Jinan, Shandong 250014, China
| | - Yun-Liang Lin
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Shandong Academy of Sciences, 19 Keyuan Street, Jinan, Shandong 250014, China
| |
Collapse
|
27
|
Pfaffenbach M, Gaich T. The Rhazinilam-Leuconoxine-Mersicarpine Triad of Monoterpenoid Indole Alkaloids. THE ALKALOIDS: CHEMISTRY AND BIOLOGY 2017; 77:1-84. [DOI: 10.1016/bs.alkal.2016.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Hirama T, Umemura T, Kogure N, Kitajima M, Takayama H. Synthetic study of biphenylquinolizidine alkaloids I. Asymmetric total synthesis of lasubine I featuring organocatalyzed asymmetric intramolecular aza-Michael addition. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2016.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Kitajima M, Nakazawa M, Wu Y, Kogure N, Zhang RP, Takayama H. Kopsiyunnanines L and M, Strychnos-related monoterpenoid indole alkaloids from Yunnan Kopsia arborea. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.08.082] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|