1
|
Xia J, Chen X, Li G, Qiu P, Wang W, Shao Z. A Review of Sponge-Derived Diterpenes: 2009-2022. Mar Drugs 2024; 22:447. [PMID: 39452855 PMCID: PMC11509224 DOI: 10.3390/md22100447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Sponges are a vital source of pharmaceutically active secondary metabolites, of which the main structural types are alkaloids and terpenoids. Many of these compounds exhibit biological activities. Focusing specifically on diterpenoids, this article reviews the structures and biological activities of 228 diterpenes isolated from more than 33 genera of sponges from 2009 to 2022. The Spongia sponges produce the most diterpenoid molecules among all genera, accounting for 27%. Of the 228 molecules, 110 exhibit cytotoxic, antibacterial, antifungal, antiparasitic, anti-inflammatory, and antifouling activities, among others. The most prevalent activity is cytotoxicity, present in 54 molecules, which represent 24% of the diterpenes reported. These structurally and biologically diverse diterpenoids highlight the vast, yet largely untapped, potential of marine sponges in the discovery of new bioactive molecules for medicinal use.
Collapse
Affiliation(s)
- Jinmei Xia
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (X.C.); (G.L.); (P.Q.)
| | - Xiangwei Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (X.C.); (G.L.); (P.Q.)
- Department of Pharmacy, NO. 971 Hospital of the People’s Liberation Army Navy, Qingdao 266000, China
| | - Guangyu Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (X.C.); (G.L.); (P.Q.)
| | - Peng Qiu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (X.C.); (G.L.); (P.Q.)
| | - Weiyi Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (X.C.); (G.L.); (P.Q.)
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (X.C.); (G.L.); (P.Q.)
| |
Collapse
|
2
|
Cheng W, Huang Y, Gao H, Bold B, Zhang T, Yang D. Marine Natural Products as Novel Treatments for Parasitic Diseases. Handb Exp Pharmacol 2024. [PMID: 38554166 DOI: 10.1007/164_2024_712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Parasitic diseases including malaria, leishmaniasis, and trypanosomiasis have received significant attention due to their severe health implications, especially in developing countries. Marine natural products from a vast and diverse range of marine organisms such as sponges, corals, molluscs, and algae have been found to produce unique bioactive compounds that exhibit promising potent properties, including antiparasitic, anti-Plasmodial, anti-Leishmanial, and anti-Trypanosomal activities, providing hope for the development of effective treatments. Furthermore, various techniques and methodologies have been used to investigate the mechanisms of these antiparasitic compounds. Continued efforts in the discovery and development of marine natural products hold significant promise for the future of novel treatments against parasitic diseases.
Collapse
Affiliation(s)
- Wenbing Cheng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yanbing Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Haijun Gao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
- Chengdu Fifth People's Hospital (Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine/The Second Clinical Medical College), Chengdu, Sichuan, China
| | - Bolor Bold
- National Center for Zoonotic Disease, Ulaanbaatar, Mongolia
| | - Ting Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China.
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China.
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
- College of Food and Quality Engineering, Nanning University, Nanning, China
| |
Collapse
|
3
|
Xia ZY, Sun MM, Jin Y, Su MZ, Li SW, Wang H, Guo YW. Four uncommon cycloamphilectane-type diterpenoids with antibacterial activity from the South China Sea soft coral Sinularia brassica. PHYTOCHEMISTRY 2024; 219:113960. [PMID: 38159620 DOI: 10.1016/j.phytochem.2023.113960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
The chemical investigation on the soft coral Sinularia brassica collected off Xuwen Country, Guangdong Province, China, has resulted in the isolation and characterization of three uncommon cycloamphilectane-type diterpenoids, namely sinucycloamtin A-C (1-3), along with two known analogues (5 and 6). In addition, compounds 2 and 3 were hydrolyzed and their hydrolytic derivative sinucycloamtin D (4) was obtained. The structures of these previously undescribed compounds were established on the basis of extensive spectroscopic analysis, X-ray diffraction analysis, chemical conversion, as well as the comparison with the literature reported data. Compounds 1-3 represented the first examples of benzene-containing cycloamphilectane-type diterpenoids isolated from soft coral of genus Sinularia. In the in vitro bioassays, all the isolated and derived diterpenoids exhibited significant antibacterial activities against the fish pathogenic bacteria Phoyobacterium damselae FP2244 and Streptococcus parauberis SPOF3K with MIC90 values ranging from 3.7 to 9.1 μM.
Collapse
Affiliation(s)
- Zi-Yi Xia
- Shandong Laboratory of Yantai Drug Discovery, Bohai rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Man-Man Sun
- Shandong Laboratory of Yantai Drug Discovery, Bohai rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Yang Jin
- Shandong Laboratory of Yantai Drug Discovery, Bohai rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Ming-Zhi Su
- Shandong Laboratory of Yantai Drug Discovery, Bohai rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Song-Wei Li
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Hong Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yue-Wei Guo
- Shandong Laboratory of Yantai Drug Discovery, Bohai rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
4
|
Larghi EL, Bracca ABJ, Simonetti SO, Kaufman TS. Recent developments in the total synthesis of natural products using the Ugi multicomponent reactions as the key strategy. Org Biomol Chem 2024; 22:429-465. [PMID: 38126459 DOI: 10.1039/d3ob01837g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The total syntheses of selected natural products using different versions of the Ugi multicomponent reaction is reviewed on a case-by-case basis. The revision covers the period 2008-2023 and includes detailed descriptions of the synthetic sequences, the use of state-of-the-art chemical reagents and strategies, as well as the advantages and limitations of the transformation and some remedial solutions. Relevant data on the isolation and bioactivity of the different natural targets are also briefly provided. The examples clearly evidence the strategic importance of this transformation and its key role in the modern natural products synthetic chemistry toolbox. This methodology proved to be a valuable means for easily building molecular complexity and efficiently delivering step-economic syntheses even of intricate structures, with a promising future.
Collapse
Affiliation(s)
- Enrique L Larghi
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| | - Andrea B J Bracca
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| | - Sebastián O Simonetti
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| |
Collapse
|
5
|
Negm WA, Ezzat SM, Zayed A. Marine organisms as potential sources of natural products for the prevention and treatment of malaria. RSC Adv 2023; 13:4436-4475. [PMID: 36760290 PMCID: PMC9892989 DOI: 10.1039/d2ra07977a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Vector-borne diseases (VBDs) are a worldwide critical concern accounting for 17% of the estimated global burden of all infectious diseases in 2020. Despite the various medicines available for the management, the deadliest VBD malaria, caused by Plasmodium sp., has resulted in hundreds of thousands of deaths in sub-Saharan Africa only. This finding may be explained by the progressive loss of antimalarial medication efficacy, inherent toxicity, the rise of drug resistance, or a lack of treatment adherence. As a result, new drug discoveries from uncommon sources are desperately needed, especially against multi-drug resistant strains. Marine organisms have been investigated, including sponges, soft corals, algae, and cyanobacteria. They have been shown to produce many bioactive compounds that potentially affect the causative organism at different stages of its life cycle, including the chloroquine (CQ)-resistant strains of P. falciparum. These compounds also showed diverse chemical structures belonging to various phytochemical classes, including alkaloids, terpenoids, polyketides, macrolides, and others. The current article presents a comprehensive review of marine-derived natural products with antimalarial activity as potential candidates for targeting different stages and species of Plasmodium in both in vitro and in vivo and in comparison with the commercially available and terrestrial plant-derived products, i.e., quinine and artemisinin.
Collapse
Affiliation(s)
- Walaa A Negm
- Department of Pharmacognosy, Tanta University, College of Pharmacy El-Guish Street Tanta 31527 Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) Giza 12451 Egypt
| | - Ahmed Zayed
- Department of Pharmacognosy, Tanta University, College of Pharmacy El-Guish Street Tanta 31527 Egypt
| |
Collapse
|
6
|
Fisher JF, Mobashery S. β-Lactams from the Ocean. Mar Drugs 2023; 21:86. [PMID: 36827127 PMCID: PMC9963991 DOI: 10.3390/md21020086] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
The title of this essay is as much a question as it is a statement. The discovery of the β-lactam antibiotics-including penicillins, cephalosporins, and carbapenems-as largely (if not exclusively) secondary metabolites of terrestrial fungi and bacteria, transformed modern medicine. The antibiotic β-lactams inactivate essential enzymes of bacterial cell-wall biosynthesis. Moreover, the ability of the β-lactams to function as enzyme inhibitors is of such great medical value, that inhibitors of the enzymes which degrade hydrolytically the β-lactams, the β-lactamases, have equal value. Given this privileged status for the β-lactam ring, it is therefore a disappointment that the exemplification of this ring in marine secondary metabolites is sparse. It may be that biologically active marine β-lactams are there, and simply have yet to be encountered. In this report, we posit a second explanation: that the value of the β-lactam to secure an ecological advantage in the marine environment might be compromised by its close structural similarity to the β-lactones of quorum sensing. The steric and reactivity similarities between the β-lactams and the β-lactones represent an outside-of-the-box opportunity for correlating new structures and new enzyme targets for the discovery of compelling biological activities.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry & Biochemistry, 354 McCourtney Hall, University of Note Dame, Notre Dame, IN 46656-5670, USA
| | - Shahriar Mobashery
- Department of Chemistry & Biochemistry, 354 McCourtney Hall, University of Note Dame, Notre Dame, IN 46656-5670, USA
| |
Collapse
|
7
|
Kingston DGI, Cassera MB. Antimalarial Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2022; 117:1-106. [PMID: 34977998 DOI: 10.1007/978-3-030-89873-1_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Natural products have made a crucial and unique contribution to human health, and this is especially true in the case of malaria, where the natural products quinine and artemisinin and their derivatives and analogues, have saved millions of lives. The need for new drugs to treat malaria is still urgent, since the most dangerous malaria parasite, Plasmodium falciparum, has become resistant to quinine and most of its derivatives and is becoming resistant to artemisinin and its derivatives. This volume begins with a short history of malaria and follows this with a summary of its biology. It then traces the fascinating history of the discovery of quinine for malaria treatment and then describes quinine's biosynthesis, its mechanism of action, and its clinical use, concluding with a discussion of synthetic antimalarial agents based on quinine's structure. The volume then covers the discovery of artemisinin and its development as the source of the most effective current antimalarial drug, including summaries of its synthesis and biosynthesis, its mechanism of action, and its clinical use and resistance. A short discussion of other clinically used antimalarial natural products leads to a detailed treatment of other natural products with significant antiplasmodial activity, classified by compound type. Although the search for new antimalarial natural products from Nature's combinatorial library is challenging, it is very likely to yield new antimalarial drugs. The chapter thus ends by identifying over ten natural products with development potential as clinical antimalarial agents.
Collapse
Affiliation(s)
- David G I Kingston
- Department of Chemistry and the Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Maria Belen Cassera
- Department of Biochemistry and Molecular Biology, and Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
8
|
Hai Y, Cai ZM, Li PJ, Wei MY, Wang CY, Gu YC, Shao CL. Trends of antimalarial marine natural products: progresses, challenges and opportunities. Nat Prod Rep 2022; 39:969-990. [DOI: 10.1039/d1np00075f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review provides an overview of the antimalarial marine natural products, focusing on their chemistry, malaria-related targets and mechanisms, and highlighting their potential for drug development.
Collapse
Affiliation(s)
- Yang Hai
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Zi-Mu Cai
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Peng-Jie Li
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| |
Collapse
|
9
|
Mostafa O, Al-Shehri M, Moustafa M. Promising antiparasitic agents from marine sponges. Saudi J Biol Sci 2022; 29:217-227. [PMID: 35002412 PMCID: PMC8716901 DOI: 10.1016/j.sjbs.2021.08.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 11/30/2022] Open
Abstract
Parasitic diseases especially those prevail in tropical and subtropical regions severely threaten the lives of people due to available drugs found to be ineffective as several resistant strains have been emerged. Due to the complexity of the marine environment, researchers considered it as a new field to search for compounds with therapeutic efficacy, marine sponges represents the milestone in the discovery of unique compounds of potent activities against parasitic infections. In the present article, literatures published from 2010 until March 2021 were screened to review antiparasitic potency of bioactive compounds extracted from marine sponges. 45 different genera of sponges have been studied for their antiparasitic activities. The antiparasitic activity of the crude extract or the compounds that have been isolated from marine sponges were assayed in vitro against Plasmodium falciparum, P. berghei, Trypanosoma brucei rhodesiense, T. b. brucei, T. cruzi, Leishmania donovani, L. tropica, L. infantum, L. amazonesis, L. major, L. panamesis, Haemonchus contortus and Schistosoma mansoni. The majority of antiparastic compounds extracted from marine sponges were related to alkaloids and peroxides represent the second important group of antiparasitic compounds extracted from sponges followed by terpenoids. Some substances have been extracted and used as antiparasitic agents to a lesser extent like steroids, amino acids, lipids, polysaccharides and isonitriles. The activities of these isolated compounds against parasites were screened using in vitro techniques. Compounds' potent activity in screened papers was classified in three categories according to IC50: low active or inactive, moderately active and good potent active.
Collapse
Affiliation(s)
- Osama Mostafa
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohammed Al-Shehri
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia.,Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt
| |
Collapse
|
10
|
Massarotti A, Brunelli F, Aprile S, Giustiniano M, Tron GC. Medicinal Chemistry of Isocyanides. Chem Rev 2021; 121:10742-10788. [PMID: 34197077 DOI: 10.1021/acs.chemrev.1c00143] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In eons of evolution, isocyanides carved out a niche in the ecological systems probably thanks to their metal coordinating properties. In 1859 the first isocyanide was synthesized by humans and in 1950 the first natural isocyanide was discovered. Now, at the beginning of XXI century, hundreds of isocyanides have been isolated both in prokaryotes and eukaryotes and thousands have been synthesized in the laboratory. For some of them their ecological role is known, and their potent biological activity as antibacterial, antifungal, antimalarial, antifouling, and antitumoral compounds has been described. Notwithstanding, the isocyanides have not gained a good reputation among medicinal chemists who have erroneously considered them either too reactive or metabolically unstable, and this has restricted their main use to technical applications as ligands in coordination chemistry. The aim of this review is therefore to show the richness in biological activity of the isocyanide-containing molecules, to support the idea of using the isocyanide functional group as an unconventional pharmacophore especially useful as a metal coordinating warhead. The unhidden hope is to convince the skeptical medicinal chemists of the isocyanide potential in many areas of drug discovery and considering them in the design of future drugs.
Collapse
Affiliation(s)
- Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Francesca Brunelli
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Silvio Aprile
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Mariateresa Giustiniano
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Gian Cesare Tron
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
11
|
Tandi M, Sundriyal S. Recent trends in the design of antimicrobial agents using Ugi-multicomponent reaction. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Marchbank DH, Ptycia-Lamky VC, Decken A, Haltli BA, Kerr RG. Guanahanolide A, a Meroterpenoid with a Sesterterpene Skeleton from Coral-Derived Streptomyces sp. Org Lett 2020; 22:6399-6403. [DOI: 10.1021/acs.orglett.0c02208] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Douglas H. Marchbank
- Nautilus Biosciences CRODA, Regis and Joan Duffy Research Centre, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| | - Vernon C. Ptycia-Lamky
- Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| | - Andreas Decken
- Department of Chemistry, University of New Brunswick, 30 Dineen Drive, Fredericton, NB, Canada E3B 5A3
| | - Bradley A. Haltli
- Nautilus Biosciences CRODA, Regis and Joan Duffy Research Centre, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
- Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| | - Russell G. Kerr
- Nautilus Biosciences CRODA, Regis and Joan Duffy Research Centre, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
- Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| |
Collapse
|
13
|
Marine Pharmacology in 2014-2015: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, Antiviral, and Anthelmintic Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2019; 18:md18010005. [PMID: 31861527 PMCID: PMC7024264 DOI: 10.3390/md18010005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/31/2022] Open
Abstract
The systematic review of the marine pharmacology literature from 2014 to 2015 was completed in a manner consistent with the 1998-2013 reviews of this series. Research in marine pharmacology during 2014-2015, which was reported by investigators in 43 countries, described novel findings on the preclinical pharmacology of 301 marine compounds. These observations included antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral, and anthelmintic pharmacological activities for 133 marine natural products, 85 marine compounds with antidiabetic, and anti-inflammatory activities, as well as those that affected the immune and nervous system, and 83 marine compounds that displayed miscellaneous mechanisms of action, and may probably contribute to novel pharmacological classes upon further research. Thus, in 2014-2015, the preclinical marine natural product pharmacology pipeline provided novel pharmacology as well as new lead compounds for the clinical marine pharmaceutical pipeline, and thus continued to contribute to ongoing global research for alternative therapeutic approaches to many disease categories.
Collapse
|
14
|
Tajuddeen N, Van Heerden FR. Antiplasmodial natural products: an update. Malar J 2019; 18:404. [PMID: 31805944 PMCID: PMC6896759 DOI: 10.1186/s12936-019-3026-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022] Open
Abstract
Background Malaria remains a significant public health challenge in regions of the world where it is endemic. An unprecedented decline in malaria incidences was recorded during the last decade due to the availability of effective control interventions, such as the deployment of artemisinin-based combination therapy and insecticide-treated nets. However, according to the World Health Organization, malaria is staging a comeback, in part due to the development of drug resistance. Therefore, there is an urgent need to discover new anti-malarial drugs. This article reviews the literature on natural products with antiplasmodial activity that was reported between 2010 and 2017. Methods Relevant literature was sourced by searching the major scientific databases, including Web of Science, ScienceDirect, Scopus, SciFinder, Pubmed, and Google Scholar, using appropriate keyword combinations. Results and Discussion A total of 1524 compounds from 397 relevant references, assayed against at least one strain of Plasmodium, were reported in the period under review. Out of these, 39% were described as new natural products, and 29% of the compounds had IC50 ≤ 3.0 µM against at least one strain of Plasmodium. Several of these compounds have the potential to be developed into viable anti-malarial drugs. Also, some of these compounds could play a role in malaria eradication by targeting gametocytes. However, the research into natural products with potential for blocking the transmission of malaria is still in its infancy stage and needs to be vigorously pursued.
Collapse
Affiliation(s)
- Nasir Tajuddeen
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Fanie R Van Heerden
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa.
| |
Collapse
|
15
|
Mohammadkhani L, Heravi MM. Synthesis of Various
N
‐heterocycles Using the Ugi Four‐Center Three‐Component Reaction. ChemistrySelect 2019. [DOI: 10.1002/slct.201902029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Leyla Mohammadkhani
- Department of ChemistrySchool of SciencesAlzahra University, Vanak Tehran Iran
| | - Majid M Heravi
- Department of ChemistrySchool of SciencesAlzahra University, Vanak Tehran Iran
| |
Collapse
|
16
|
Gao X, Shan C, Chen Z, Liu Y, Zhao X, Zhang A, Yu P, Galons H, Lan Y, Lu K. One-pot synthesis of β-lactams by the Ugi and Michael addition cascade reaction. Org Biomol Chem 2019; 16:6096-6105. [PMID: 30091782 DOI: 10.1039/c8ob01176a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diversity-oriented synthesis of β-lactams was achieved via Ugi/Michael reaction cascades under mild conditions. The intramolecular hydrogen bonding between the heteroatom from an aldehyde component and the amide NH group controls the chemoselectivity of the Michael reaction versus the aza-Michael reaction. DFT calculation was performed to clarify the mechanism, chemo-selectivity and diastereoselectivity of this work. This one-pot protocol offers a straightforward method to build a diversified β-lactam library for drug discovery.
Collapse
Affiliation(s)
- Xing Gao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hou XM, Wang CY, Gerwick WH, Shao CL. Marine natural products as potential anti-tubercular agents. Eur J Med Chem 2019; 165:273-292. [PMID: 30685527 DOI: 10.1016/j.ejmech.2019.01.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 02/01/2023]
Abstract
Tuberculosis has been one of the greatest global health challenges of all time. Although the current first-line anti-tuberculosis (anti-TB) medicines used in the clinic have reduced mortality, multidrug-resistance and extensively drug-resistance forms of the disease have now spread worldwide and become a global problem. Even so, few new clinically approved drugs have emerged during the past 30 years. Highly biodiverse marine organisms have received considerable attention for drug discovery in the past couple of decades, and emerging TB drug resistance has motivated interest in assessing marine natural products (MNPs) in the treatment of this disease. So far, more than 170 compounds have been isolated from marine organisms with anti-TB properties, ten of which exhibit potent activity and have the potential for further development. This review systematically surveys MNPs with anti-TB activity and illustrates the impact of these compounds on drug discovery research against tuberculosis.
Collapse
Affiliation(s)
- Xue-Mei Hou
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, United States.
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China.
| |
Collapse
|
18
|
Abstract
Covering: 2015. Previous review: Nat. Prod. Rep., 2016, 33, 382-431This review covers the literature published in 2015 for marine natural products (MNPs), with 1220 citations (792 for the period January to December 2015) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1340 in 429 papers for 2015), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Murray H G Munro
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
19
|
Barros de Alencar MVO, de Castro E Sousa JM, Rolim HML, de Medeiros MDGF, Cerqueira GS, de Castro Almeida FR, Citó AMDGL, Ferreira PMP, Lopes JAD, de Carvalho Melo-Cavalcante AA, Islam MT. Diterpenes as lead molecules against neglected tropical diseases. Phytother Res 2016; 31:175-201. [PMID: 27896890 DOI: 10.1002/ptr.5749] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/29/2016] [Accepted: 10/31/2016] [Indexed: 01/19/2023]
Abstract
Nowadays, neglected tropical diseases (NTDs) are reported to be present everywhere. Poor and developing areas in the world have received great attention to NTDs. Drug resistance, safety profile, and various challenges stimulate the search for alternative medications. Plant-based drugs are viewed with great interest, as they are believed to be devoid of side effects. Diterpenes, a family of essential oils, have showed attractive biological effects. A systematic review of the literature was carried out to summarize available evidences of diterpenes against NTDs. For this, databases were searched using specific search terms. Among the 2338 collected reports, a total of 181 articles were included in this review. Of them, 148 dealt with investigations using single organisms, and 33 used multiple organisms. No mechanisms of action were reported in the case of 164 reports. A total of 93.92% were related to nonclinical studies, and 4.42% and 1.66% dealt with preclinical and clinical studies, respectively. The review displays that many diterpenes are effective upon Chagas disease, chikungunya, echinococcosis, dengue, leishmaniasis, leprosy, lymphatic filariasis, malaria, schistosomiasis, and tuberculosis. Indeed, diterpenes are amazing drug candidates against NTDs. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - João Marcelo de Castro E Sousa
- Department of Biological Sciences, Federal University of Piauí, Picos, (Piauí), 64.607-670, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Hercília Maria Lins Rolim
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Pharmacy, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Maria das Graças Freire de Medeiros
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Pharmacy, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Gilberto Santos Cerqueira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Postgraduate Program in Biotechnology, Biotechnology and Biodiversity Center for Research (BIOTEC), Federal University of Piauí (LAFFEX), Parnaíba, Piauí, 64.218-470, Brazil
| | - Fernanda Regina de Castro Almeida
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Antônia Maria das Graças Lopes Citó
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Chemistry, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | | | - Ana Amélia de Carvalho Melo-Cavalcante
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Md Torequl Islam
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Pharmacy, Southern University Bangladesh, Mehedibag, Chittagong, 4000, Bangladesh
| |
Collapse
|
20
|
Nieves K, Prudhomme J, Le Roch KG, Franzblau SG, Rodríguez AD. Natural product-based synthesis of novel anti-infective isothiocyanate- and isoselenocyanate-functionalized amphilectane diterpenes. Bioorg Med Chem Lett 2016; 26:854-857. [PMID: 26748697 PMCID: PMC4815908 DOI: 10.1016/j.bmcl.2015.12.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 11/24/2022]
Abstract
The marine natural product (-)-8,15-diisocyano-11(20)-amphilectene (1), isolated from the Caribbean sponge Svenzea flava, was used as scaffold to synthetize five new products, all of which were tested against laboratory strains of Plasmodium falciparum and Mycobacterium tuberculosis H37Rv. The scaffold contains two isocyanide units that are amenable to chemical manipulation, enabling them to be elaborated into a small library of sulfur and selenium compounds. Although most of the analogs prepared were less potent than the parent compound, 5 was nearly equipotent showing IC50 values of 0.0066 μM and 0.0025 μM, respectively, against two strains (Dd2 and 3D7) of the malaria parasite. On the other hand, when assayed against the tuberculosis bacterium, analogs 5 and 6 were found to be more potent than 1.
Collapse
Affiliation(s)
- Karinel Nieves
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, United States
| | - Jacques Prudhomme
- Department of Cell Biology and Neuroscience, University of California at Riverside, CA 92521, United States
| | - Karine G Le Roch
- Department of Cell Biology and Neuroscience, University of California at Riverside, CA 92521, United States
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Abimael D Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, United States.
| |
Collapse
|
21
|
Emsermann J, Kauhl U, Opatz T. Marine Isonitriles and Their Related Compounds. Mar Drugs 2016; 14:16. [PMID: 26784208 PMCID: PMC4728513 DOI: 10.3390/md14010016] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/16/2015] [Accepted: 12/23/2015] [Indexed: 11/16/2022] Open
Abstract
Marine isonitriles represent the largest group of natural products carrying the remarkable isocyanide moiety. Together with marine isothiocyanates and formamides, which originate from the same biosynthetic pathways, they offer diverse biological activities and in spite of their exotic nature they may constitute potential lead structures for pharmaceutical development. Among other biological activities, several marine isonitriles show antimalarial, antitubercular, antifouling and antiplasmodial effects. In contrast to terrestrial isonitriles, which are mostly derived from α-amino acids, the vast majority of marine representatives are of terpenoid origin. An overview of all known marine isonitriles and their congeners will be given and their biological and chemical aspects will be discussed.
Collapse
Affiliation(s)
- Jens Emsermann
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Ulrich Kauhl
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Till Opatz
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
22
|
Nishida Y, Ueda M, Hayashi M, Takeda N, Miyata O. Dimethylzinc-Mediated Chlorolactamization of Homoallylic Amines with Chloroform. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Avilés E, Prudhomme J, Le Roch KG, Franzblau SG, Chandrasena K, Mayer AMS, Rodríguez AD. Synthesis and preliminary biological evaluation of a small library of hybrid compounds based on Ugi isocyanide multicomponent reactions with a marine natural product scaffold. Bioorg Med Chem Lett 2015; 25:5339-43. [PMID: 26421992 PMCID: PMC4815915 DOI: 10.1016/j.bmcl.2015.09.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 01/13/2023]
Abstract
A mixture-based combinatorial library of five Ugi adducts (4-8) incorporating known antitubercular and antimalarial pharmacophores was successfully synthesized, starting from the naturally occurring diisocyanide 3, via parallel Ugi four-center three-component reactions (U-4C-3CR). The novel α-acylamino amides obtained were evaluated for their antiinfective potential against laboratory strains of Mycobacterium tuberculosis H37Rv and chloroquine-susceptible 3D7 Plasmodium falciparum. Interestingly, compounds 4-8 displayed potent in vitro antiparasitic activity with higher cytotoxicity in comparison to their diisocyanide precursor 3, with the best compound exhibiting an IC50 value of 3.6 nM. Additionally, these natural product inspired hybrids potently inhibited in vitro thromboxane B2 (TXB2) and superoxide anion (O2(-)) generation from Escherichia coli lipopolysaccharide (LPS)-activated rat neonatal microglia, with concomitant low short-term toxicity.
Collapse
Affiliation(s)
- Edward Avilés
- Department of Chemistry, University of Puerto Rico, PO Box 23346, U.P.R. Station, San Juan, PR 00931-3346, United States
| | - Jacques Prudhomme
- Department of Cell Biology and Neuroscience, University of California at Riverside, CA 92521, United States
| | - Karine G Le Roch
- Department of Cell Biology and Neuroscience, University of California at Riverside, CA 92521, United States
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Kevin Chandrasena
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, United States
| | - Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, United States
| | - Abimael D Rodríguez
- Department of Chemistry, University of Puerto Rico, PO Box 23346, U.P.R. Station, San Juan, PR 00931-3346, United States.
| |
Collapse
|