1
|
Anghinoni JM, Ferreira SS, Piquini PC, Iglesias BA, Perin G, Penteado F, Lenardão EJ. Visible Light and Triselenium Dicyanide (TSD): New Horizons in the Synthesis of Organic Selenocyanates. Chemistry 2023; 29:e202301934. [PMID: 37544915 DOI: 10.1002/chem.202301934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/24/2023] [Accepted: 08/06/2023] [Indexed: 08/08/2023]
Abstract
Herein, we describe a new method for the synthesis of α-carbonyl selenocyanates by reacting triselenium dicyanide (TSD) and styrenes under blue light irradiation and O2 atmosphere. The reactions are triggered by the formation of Se-centered radical species, followed by the addition/oxidation of the styrene π-bond. α-Carbonyl selenocyanates and α-hydroxy selenocyanates were obtained in moderate to excellent yields from aryl- and alkyl-substituted alkenes, respectively. It was demonstrated that α-carbonyl selenocyanates could be used as a synthetic platform in a multicomponent reaction strategy to prepare 2-phenylimidazo[1,2-a]pyridine derivatives, which were evaluated for their photophysical properties. Overall, this new method provides a useful tool for synthesizing α-carbonyl selenocyanates, and demonstrates their potential for use in the synthesis of other compounds, thus giving new synthetic opportunities to construct organic selenocyanate compounds.
Collapse
Affiliation(s)
- João M Anghinoni
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, 96010-900, Pelotas, RS, Brazil
| | - Sabrina S Ferreira
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, 96010-900, Pelotas, RS, Brazil
| | - Paulo C Piquini
- Departamento de Física, Universidade Federal de Santa Maria, Av. Roraima, Building 13, 97105-900, Santa Maria, RS, Brazil
| | - Bernardo A Iglesias
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, Building 18, 97105-340, Santa Maria, RS, Brazil
| | - Gelson Perin
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, 96010-900, Pelotas, RS, Brazil
| | - Filipe Penteado
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, Building 18, 97105-340, Santa Maria, RS, Brazil
| | - Eder J Lenardão
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
2
|
Marpna ID, Wanniang K, Lipon TM, Shangpliang OR, Myrboh B. Selenocyanation of Aryl and Styryl Methyl Ketones in the Presence of Selenium Dioxide and Malononitrile: An Approach for the Synthesis of α-Carbonyl Selenocyanates. J Org Chem 2021; 86:1980-1986. [PMID: 33377776 DOI: 10.1021/acs.joc.0c02630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A convenient method has been developed for the synthesis of α-carbonyl selenocyanates from aryl methyl ketones/styryl methyl ketones using selenium dioxide as the selenating agent under simple reaction conditions. This reaction has notable advantages over the traditional methods in terms of accessibility and affordability of the starting materials. The method features the interaction of aryl methyl ketones/styryl methyl ketones with selenium dioxide and malononitrile to afford a series of α-carbonyl selenocyanates in moderate to good yields.
Collapse
Affiliation(s)
- Ibakyntiew D Marpna
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | | | | | | | - Bekington Myrboh
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
3
|
Synthesis and biological evaluation of new antioxidant and antiproliferative chalcogenobiotin derivatives for bladder carcinoma treatment. Bioorg Med Chem 2020; 28:115423. [PMID: 32205047 DOI: 10.1016/j.bmc.2020.115423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 11/21/2022]
Abstract
Approximately 90% of bladder carcinomas are of the urothelial carcinoma type, which are characterized by high rates of recurrence and predisposition to progress to invasive tumors, representing one of the most costly neoplasms for health systems. Intravesical chemotherapy is a standard for the treatment of non-invasive bladder cancer. However, chemotherapy is usually aggressive and cytotoxic, which increases the death rates caused by cancer. Heterocyclic compounds which exhibit favorable pharmacokinetic and pharmacodynamic properties may enhance drug affinity for a target protein by targeting the treatment. Thus, this work presents the synthesis, characterization, and in vitro biological evaluation of new antioxidant (inhibition of lipid peroxidation, scavenging of free radical DPPH, and thiol peroxidase-like activity) and antiproliferative chalcogenobiotin derivatives and tests them against bladder carcinoma 5637 cells. A prominent response was obtained for the selected compounds, with tellurium biotin derivatives displaying effective antioxidant and antiproliferative activity. The effective compounds also demonstrated no toxicity in in vitro or in vivo studies.
Collapse
|
4
|
Dalmolin MC, Bandeira PT, Ferri MS, de Oliveira AR, Piovan L. Straightforward microwave-assisted synthesis of organochalcogen amines by reductive amination. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|