1
|
Wang WF, Liu T, Cheng YL, Song QH. Visible-light-promoted difluoroamidated oxindole synthesis via electron donor-acceptor complexes. Org Biomol Chem 2024; 22:805-810. [PMID: 38170477 DOI: 10.1039/d3ob01885g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A method involving a metal-free visible-light-promoted synthesis was developed for the construction of difluoroalkylated oxindoles with N-phenylacrylamides and bromodifluoroacetamides as starting materials in the presence of N,N,N',N'-tetramethylethylenediamine (TMEDA). Twenty-four examples of the photochemical reaction were successfully performed, with good yields (44-99%) and excellent substrate adaptability. Mechanistic studies showed that the visible-light-promoted reaction involved a radical addition to N-phenylacrylamide, intramolecular cyclization, dehydrogenation, and rearomatization. The difluoroacetamide radical was produced as a result of electron transfer to bromodifluoroacetamides from the electron donor TMEDA in their electron-donor-acceptor (EDA) complexes under visible light irradiation. This protocol is a promising photochemical method due to its advantages of mild conditions, simple operation, wide substrate scope and high yields. And the obtained products may have great potential in the field of medicine.
Collapse
Affiliation(s)
- Wei-Feng Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Tao Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Yan-Liang Cheng
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Qin-Hua Song
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| |
Collapse
|
2
|
Tagami K, Yajima T. Development of Electrophilic Radical Perfluoroalkylation of Electron-Deficient Olefins. CHEM REC 2023; 23:e202300037. [PMID: 37058111 DOI: 10.1002/tcr.202300037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/31/2023] [Indexed: 04/15/2023]
Abstract
Fluorinated organic compounds have attracted significant attention over the past few decades owing to their unique properties and versatility. An established method for the synthesis of fluorinated organic compounds involves radical perfluoroalkylation reactions towards double bonds. In this radical pathway, electrophilic perfluoroalkyl radicals exhibit excellent reactivity towards electron-rich olefins. Therefore, several splendid perfluoroalkylation reactions of electron-rich olefins have been reported. However, there are only a few examples of reaction involving electron-deficient olefins because of their poor electronic compatibility with perfluoroalkyl radicals. This review focuses on the reports that challenge this long-standing issue. Radical perfluoroalkylation/bifunctionalization reactions of electron-deficient olefins are described according to the radical generation methods.
Collapse
Affiliation(s)
- Koto Tagami
- Department of Chemistry, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Tomoko Yajima
- Department of Chemistry, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| |
Collapse
|
3
|
Remete AM, Nonn M, Novák TT, Csányi D, Kiss L. Recent progress in aryltrifluoromethylation reactions of carbon-carbon multiple bonds. Chem Asian J 2022; 17:e202200395. [PMID: 35584374 DOI: 10.1002/asia.202200395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/18/2022] [Indexed: 11/06/2022]
Abstract
Due to the increasing relevance of fluorine-containing organic molecules in drug design, the synthesis of organofluorine compounds has gained high significance in synthetic organic chemistry. Trifluoromethylative difunctionalizations of carbon-carbon multiple bonds, with the simultaneous incorporation of a CF 3 group and another functional element, have considerable potential. Because of the high importance of carbon-carbon bond-forming reactions in organic synthesis, carbotrifluoromethylations and, in particular, aryltrifluoromethylations or heteroaryltrifluoromethylations are considered to be increasing fields of synthetic organic chemistry. The aim of the current review is to summarize recent developments of aryltrifluoromethylation or heteroaryltrifluoromethylation reactions.
Collapse
Affiliation(s)
- Attila M Remete
- University of Szeged: Szegedi Tudomanyegyetem, INSTITUTE OF PHARMACEUTICAL CHEMISTRY, HUNGARY
| | - Melinda Nonn
- HAS RCNS: Termeszettudomanyi Kutatokozpont, INSTITUTE OF MATERIALS AND ENVIRONMENTAL CHEMISTRY, HUNGARY
| | - Tamás T Novák
- HAS RCNS: Termeszettudomanyi Kutatokozpont, INSTITUTE OF ORGANIC CHEMISTRY, HUNGARY
| | - Dorottya Csányi
- HAS RCNS: Termeszettudomanyi Kutatokozpont, INSTITUTE OF ORGANIC CHEMISTRY, HUNGARY
| | - Lorand Kiss
- Research Centre for Natural Sciences: Termeszettudomanyi Kutatokozpont, Institute of Organic Chemistry, Magyar Tudósok krt, 1117, Budapest, HUNGARY
| |
Collapse
|
4
|
Harada S, Masuda R, Morikawa T, Nishida A. Trichloromethylative Olefin Cycloamination by Photoredox Catalysis. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shinji Harada
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana Chuo-ku, Chiba 2608675 Japan
- Molecular Chirality Research Center Chiba University 1-33 Yayoi-cho Inage-ku, Chiba 2638522 Japan
| | - Ryuya Masuda
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana Chuo-ku, Chiba 2608675 Japan
| | - Takahiro Morikawa
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana Chuo-ku, Chiba 2608675 Japan
| | - Atsushi Nishida
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana Chuo-ku, Chiba 2608675 Japan
| |
Collapse
|
5
|
Jia R, Wang X, Hu J. Recent advance in synthetic applications of difluoromethyl phenyl sulfone and its derivatives. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Iron- or copper-catalyzed cascade chloromethylation of activated alkenes: Efficient access to chlorinated oxindoles. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
Wu H, Zhou M, Li W, Zhang P. Heterogeneous chitosan@nickel (II)-catalyzed tandem radical cyclization of N-arylacrylamides: A general method for constructing fluorinated 3,3-disubstituted oxindoles using perfluoroalkyl iodides. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2019.105832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
8
|
Mai WP, Wang F, Zhang XF, Wang SM, Duan QP, Lu K. Nickel-catalysed radical tandem cyclisation/arylation: practical synthesis of 4-benzyl-3,3-difluoro-γ-lactams. Org Biomol Chem 2019; 16:6491-6498. [PMID: 30155541 DOI: 10.1039/c8ob01389f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enabled by nickel catalysis, a practical access to the synthesis of 4-benzyl-3,3-difluoro-γ-lactams has been developed via radical tandem cyclisation/arylation. This method features a nickel catalyst, high reaction efficiency, and good substrate tolerance and scope. This protocol proceeds through an intramolecular radical addition to form a primary alkyl radical followed by intermolecular Suzuki-type coupling.
Collapse
Affiliation(s)
- Wen-Peng Mai
- School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, 450006, China.
| | | | | | | | | | | |
Collapse
|
9
|
Yang Z, Cheng Y, Long J, Feng X, Tang R, Wei J. Transition metal-free synthesis of fluoroalkylated oxindoles via base-mediated fluoroalkylation of N-arylacrylamides with RFI. NEW J CHEM 2019. [DOI: 10.1039/c9nj04458b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel method for synthesizing fluoroalkylated oxindoles by the cyclization of N-arylacrylamides with fluoroalkyl iodide initiated with K2CO3 is reported.
Collapse
Affiliation(s)
- Zhiyong Yang
- School of Chemical Engineering
- Guizhou Institute of Technology
- Guiyang 550003
- P. R. China
| | - Yuanyuan Cheng
- School of Chemical Engineering
- Guizhou Institute of Technology
- Guiyang 550003
- P. R. China
| | - Jikun Long
- School of Chemical Engineering
- Guizhou Institute of Technology
- Guiyang 550003
- P. R. China
| | - Xiaoying Feng
- School of Chemical Engineering
- Guizhou Institute of Technology
- Guiyang 550003
- P. R. China
| | - Rong Tang
- School of Chemical Engineering
- Guizhou Institute of Technology
- Guiyang 550003
- P. R. China
| | - Jinmei Wei
- School of Chemical Engineering
- Guizhou Institute of Technology
- Guiyang 550003
- P. R. China
| |
Collapse
|
10
|
Yang J, Han QY, Zhao CL, Dong T, Hou ZY, Qin HL, Zhang CP. Pd-catalyzed divergent trifluoroethylation and arylation of arylboronic acids by aryl(2,2,2-trifluoroethyl)iodonium triflates. Org Biomol Chem 2018; 14:7654-8. [PMID: 27384263 DOI: 10.1039/c6ob01384h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Highly electrophilic aryl(2,2,2-trifluoroethyl)iodonium triflates have been used for the first time as trifluoroethyl and aryl transfer reagents in Pd-catalyzed functionalization of arylboronic acids. Electron-rich arylboronic acids reacted with aryl(2,2,2-trifluoroethyl)iodonium triflates (2a-b) in CH3CN in the presence of Pd2(dba)3 and K3PO4 at room temperature to provide trifluoroethyl arenes in up to 82% yield, while the reactions of both electron-rich and -poor arylboronic acids with 2a-b in DMF in the presence of Pd[P(t-Bu)3]2 and Cs2CO3 at 40 °C afforded arylation products in up to 99% yield. This tunable protocol allows access to trifluoroethyl arenes or biaryls in good to excellent yields under mild conditions and without the addition of extra ligands.
Collapse
Affiliation(s)
- Jing Yang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China.
| | - Qiu-Yan Han
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China.
| | - Cheng-Long Zhao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China.
| | - Tao Dong
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China.
| | - Zhi-Yuan Hou
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China.
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China.
| | - Cheng-Pan Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China.
| |
Collapse
|
11
|
Shi Y, Xiao H, Xu XH, Huang Y. Transition metal free decarboxylative fluoroalkylation of N-acrylamides with 3,3,3-trifluoro-2,2-dimethylpropanoic acid (TFDMPA). Org Biomol Chem 2018; 16:8472-8476. [DOI: 10.1039/c8ob02457j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,1-Dimethyl-2,2,2-trifluoroethyl substituted oxindoles were prepared by a novel transition metal-free decarboxylative fluoroalkylation of activated alkenes and C–H functionalization cascade process.
Collapse
Affiliation(s)
- Yingkun Shi
- Key Laboratory of Science and Technology of Eco-Textiles
- Ministry of Education
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Hongqing Xiao
- Key Laboratory of Science and Technology of Eco-Textiles
- Ministry of Education
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Science
- Shanghai 200032
| | - Yangen Huang
- Key Laboratory of Science and Technology of Eco-Textiles
- Ministry of Education
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| |
Collapse
|
12
|
Fluoride-Catalyzed Nucleophilic Addition of PhSCF2
SiMe3
to Isatins: Synthesis of 3-(1′,1′-Difluoroalkyl)-3-hydroxyindolin-2-ones. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Zhang Y, Du H, Zhu M, Li J, Zou D, Wu Y, Wu Y. Copper-catalyzed decarboxylative trifluoroethylation of cinnamic acids. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.01.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|