1
|
Neumann P, Kloskowski P, Ficner R. Computer-aided design of a cyclic di-AMP synthesizing enzyme CdaA inhibitor. MICROLIFE 2023; 4:uqad021. [PMID: 37223749 PMCID: PMC10167629 DOI: 10.1093/femsml/uqad021] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/24/2023] [Accepted: 04/13/2023] [Indexed: 05/25/2023]
Abstract
Cyclic di-AMP (c-di-AMP) is an essential secondary messenger regulating cell wall homeostasis and myriads of physiological processes in several Gram-positive and mycobacteria, including human pathogens. Hence, c-di-AMP synthesizing enzymes (DACs) have become a promising antibacterial drug target. To overcome a scarcity of small molecule inhibitors of c-di-AMP synthesizing enzyme CdaA, a computer-aided design of a new compound that should block the enzyme has been performed. This has led to the identification of a molecule comprising two thiazole rings and showing inhibitory potential based on ITC measurements. Thiazole scaffold is a good pharmacophore nucleus known due to its various pharmaceutical applications. It is contained in more than 18 FDA-approved drugs as well as in dozens of experimental drugs. Hence, the designed inhibitor can serve as a potent lead compound for further development of inhibitor against CdaA.
Collapse
Affiliation(s)
- Piotr Neumann
- Corresponding author. Department of Molecular Structural Biology, Georg-August-University Goettingen, Institute of Microbiology and Genetics, GZMB, Justus-von-Liebig Weg 11, 37077 Goettingen, Germany. Tel: +495513928624; Fax: +495513928629; E-mail:
| | - Patrick Kloskowski
- Department of Molecular Structural Biology, Georg-August-University Goettingen, Institute of Microbiology and Genetics, GZMB, Justus-von-Liebig Weg 11, 37077 Goettingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Georg-August-University Goettingen, Institute of Microbiology and Genetics, GZMB, Justus-von-Liebig Weg 11, 37077 Goettingen, Germany
| |
Collapse
|
2
|
Frohock BH, Gilbertie JM, Daiker JC, Schnabel LV, Pierce JG. 5-Benzylidene-4-Oxazolidinones Are Synergistic with Antibiotics for the Treatment of Staphylococcus aureus Biofilms. Chembiochem 2019; 21:933-937. [PMID: 31688982 DOI: 10.1002/cbic.201900633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 01/17/2023]
Abstract
The failure of frontline antibiotics in the clinic is one of the most serious threats to human health and requires a multitude of novel therapeutics and innovative approaches to treatment so as to curtail the growing crisis. In addition to traditional resistance mechanisms resulting in the lack of efficacy of many antibiotics, most chronic and recurring infections are further made tolerant to antibiotic action by the presence of biofilms. Herein, we report an expanded set of 5-benzylidene-4-oxazolidinones that are able to inhibit the formation of Staphylococcus aureus biofilms, disperse preformed biofilms, and, in combination with common antibiotics, are able to significantly reduce the bacterial load in a robust collagen-matrix model of biofilm infection.
Collapse
Affiliation(s)
- Bram H Frohock
- Department of Chemistry, College of Sciences, NC State University, 2620 Yarbrough Drive, Raleigh, NC, 27695, USA.,Comparative Medicine Institute, NC State University, Raleigh, NC, 27607, USA
| | - Jessica M Gilbertie
- Department of Clinical Sciences, College of Veterinary Medicine, NC State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA.,Comparative Medicine Institute, NC State University, Raleigh, NC, 27607, USA
| | - Jennifer C Daiker
- Department of Chemistry, College of Sciences, NC State University, 2620 Yarbrough Drive, Raleigh, NC, 27695, USA.,Department of Clinical Sciences, College of Veterinary Medicine, NC State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA.,Comparative Medicine Institute, NC State University, Raleigh, NC, 27607, USA
| | - Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, NC State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA.,Comparative Medicine Institute, NC State University, Raleigh, NC, 27607, USA
| | - Joshua G Pierce
- Department of Chemistry, College of Sciences, NC State University, 2620 Yarbrough Drive, Raleigh, NC, 27695, USA.,Comparative Medicine Institute, NC State University, Raleigh, NC, 27607, USA
| |
Collapse
|
4
|
Brown SP, Blackwell HE, Hammer BK. The State of the Union Is Strong: a Review of ASM's 6th Conference on Cell-Cell Communication in Bacteria. J Bacteriol 2018; 200:e00291-18. [PMID: 29760210 PMCID: PMC6018360 DOI: 10.1128/jb.00291-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 6th American Society for Microbiology Conference on Cell-Cell Communication in Bacteria convened from 16 to 19 October 2017 in Athens, GA. In this minireview, we highlight some of the research presented at that meeting that addresses central questions emerging in the field, including the following questions. How are cell-cell communication circuits designed to generate responses? Where are bacteria communicating? Finally, why are bacteria engaging in such behaviors?
Collapse
Affiliation(s)
- Sam P Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brian K Hammer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Edwards GA, Shymanska NV, Pierce JG. 5-Benzylidene-4-oxazolidinones potently inhibit biofilm formation in Methicillin-resistant Staphylococcus aureus. Chem Commun (Camb) 2017; 53:7353-7356. [PMID: 28537316 PMCID: PMC5526077 DOI: 10.1039/c7cc03626d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Investigation into the biological function of 5-benzylidene-4-oxazolidinones revealed dose-dependent inhibition of biofilm formation in Methicillin-resistant S. aureus (MRSA). This structurally unusual class of small molecules inhibit up to 89% of biofilm formation with IC50 values as low as 0.78 μM, and disperse pre-formed biofilms with IC50 values as low as 4.7 μM. Together, these results suggest that 4-oxazolidinones represent new chemotypes to enable the study of bacterial biofilms with small molecule chemical probes.
Collapse
Affiliation(s)
- Grant A Edwards
- Department of Chemistry, NC State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA.
| | | | | |
Collapse
|
6
|
Opoku-Temeng C, Sintim HO. Potent inhibition of cyclic diadenylate monophosphate cyclase by the antiparasitic drug, suramin. Chem Commun (Camb) 2016; 52:3754-7. [PMID: 26824279 DOI: 10.1039/c5cc10446g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
C-di-AMP synthases are essential in several bacteria, including human pathogens; hence these enzymes are potential antibiotic targets. However, there is a dearth of small molecule inhibitors of c-di-AMP metabolism enzymes. Screening of 2000 known drugs against DisA has led to the identification of suramin, an antiparasitic drug as potent inhibitor of c-di-AMP synthase.
Collapse
Affiliation(s)
- Clement Opoku-Temeng
- Graduate Program in Biochemistry, University of Maryland, College Park, Maryland 20742, USA and Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Herman O Sintim
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA and Center for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
7
|
Opoku-Temeng C, Sintim HO. Inhibition of cyclic diadenylate cyclase, DisA, by polyphenols. Sci Rep 2016; 6:25445. [PMID: 27150552 PMCID: PMC4858736 DOI: 10.1038/srep25445] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/15/2016] [Indexed: 12/27/2022] Open
Abstract
Cyclic di-AMP has emerged as an important signaling molecule that controls a myriad of functions, including cell wall homeostasis in different bacteria. Polyphenols display various biological activities and tea polyphenols in particular have been shown to possess among other properties antioxidant and antibacterial activities. Certain tea polyphenols, such as catechin and epigallocatechin gallate, have been used to augment the action of traditional antibiotics that target the cell wall. Considering the expanding role played by cyclic dinucleotides in bacteria, we investigated whether the action of polyphenols on bacteria could be due in part to modulation of c-di-AMP signaling. Out of 14 tested polyphenols, tannic acid (TA), theaflavin-3'-gallate (TF2B) and theaflavin-3,3'-digallate (TF3) exhibited inhibitory effects on B. subtilis c-di-AMP synthase, DisA. TF2B and TF3 specifically inhibited DisA but not YybT (a PDE) whilst TA was more promiscuous and inhibited both DisA and YybT.
Collapse
Affiliation(s)
- Clement Opoku-Temeng
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.,Center for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA.,Graduate program in Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Herman O Sintim
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.,Center for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|