1
|
Lei J, Jiang Y, Xia Y, Fang Q, Duan S, Ruan Y, Yang J. Stereoselective Synthesis of a Tetrasaccharide Fragment from Rhamnogalacturonan
II
Side Chain A. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jin‐Cai Lei
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu 610041 China
| | - Yuan‐Yuan Jiang
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu 610041 China
| | - Yi‐Fei Xia
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu 610041 China
| | - Qing Fang
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu 610041 China
| | - Shi‐Chao Duan
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu 610041 China
| | - Yu‐Xiong Ruan
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu 610041 China
| | - Jin‐Song Yang
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu 610041 China
| |
Collapse
|
2
|
Li X, Wang D, Zhang P, Yu G, Cai C. Recent Advances in the Chemical Synthesis of Marine Acidic Carbohydrates. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201230120805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ocean supplies abundant active compounds, including small organic molecules,
proteins, lipids, and carbohydrates, with diverse biological functions. The high-value
transformation of marine carbohydrates primarily refers to their pharmaceutical, food, and
cosmetic applications. However, it is still a big challenge to obtain these marine carbohydrates
in well-defined structures. Synthesis is a powerful approach to access marine oligosaccharides,
polysaccharide derivatives, and glycomimetics. In this review, we focus on the
chemical synthesis of marine acidic carbohydrates with uronic acid building blocks such as
alginate, and glycosaminoglycans. Regioselective sulfation using a chemical approach is also
highlighted in the synthesis of marine oligosaccharides, as well as the multivalent glycodendrimers
and glycopolymers for achieving specific functions. This review summarizes recent
advances in the synthesis of marine acidic carbohydrates, as well as their preliminary structure activity relationship
(SAR) studies, which establishes a foundation for the development of novel marine carbohydrate-based drugs and
functional reagents.
Collapse
Affiliation(s)
- Xinru Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Depeng Wang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ping Zhang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
3
|
Kumar Mishra U, Ramesh NG. A carbohydrate based straightforward approach to trans-4-hydroxy-d-proline and trans-4-hydroxy-d-prolinol. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
4
|
Mannino MP, Demchenko AV. Synthesis of β-Glucosides with 3-O-Picoloyl-Protected Glycosyl Donors in the Presence of Excess Triflic Acid: A Mechanistic Study. Chemistry 2020; 26:2927-2937. [PMID: 31886924 DOI: 10.1002/chem.201905277] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Indexed: 12/26/2022]
Abstract
Our previous study showed that picoloylated donors are capable of providing excellent facial stereoselectivity through the H-bond-mediated aglycone delivery (HAD) pathway. Presented herein is a detailed mechanistic study of stereoselective glycosylation with 3-O-picoloylated glucosyl donors. While reactions of glycosyl donors equipped with the 3-O-benzoyl group are typically non-stereoselective because these reactions proceed via the oxacarbenium intermediate, 3-O-picoloylated donors are capable of providing enhanced, but somewhat relaxed, β-stereoselectivity by the HAD pathway. In an attempt to refine this reaction, we noticed that glycosylations are highly β-stereoselective in the presence of NIS and stoichiometric TfOH. The HAD pathway is highly unlikely because the picoloyl nitrogen is protonated under these reaction conditions. The protonation and glycosylation were studied by low-temperature NMR, and the intermediacy of the glycosyl triflate has been observed. This article is dedicated to broadening the scope of this reaction in application to a variety of substrates and targets.
Collapse
Affiliation(s)
- Michael P Mannino
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| |
Collapse
|
5
|
Zeng Y, Yang J. Stereoselective Synthesis of a Tetrasaccharide Fragment from Cellulosome Produced by
Clostridium thermocellum. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yan Zeng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of PharmacySichuan University Chengdu 610041 China
| | - Jin‐Song Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of PharmacySichuan University Chengdu 610041 China
| |
Collapse
|
6
|
Liu DM, Wang HL, Lei JC, Zhou XY, Yang JS. A Highly α-Stereoselective Sialylation Method Using 4-O
-4-Nitropicoloyl Thiosialoside Donor. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dong-Mei Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; 610041 Chengdu China
| | - Hong-Ling Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; 610041 Chengdu China
| | - Jin-Cai Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; 610041 Chengdu China
| | - Xian-Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; 610041 Chengdu China
| | - Jin-Song Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; 610041 Chengdu China
| |
Collapse
|
7
|
Pan XL, Huang L, Zeng Y, Xu CY, Liu DM, Chu Y, Qin Y, Yang JS. Synthesis of an unusual hexasaccharide repeating unit from the cell wall polysaccharide of Eubacterium saburreum strain T19. Org Chem Front 2020. [DOI: 10.1039/d0qo00704h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Eubacterium saburreum is one of the human oral pathogens and has been proved to play a significant role in the development of periodontal diseases.
Collapse
Affiliation(s)
- Xing-Ling Pan
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology
- Department of Chemistry of Medicinal Natural Products
- West China School of Pharmacy
- Sichuan University
| | - Lei Huang
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology
- Department of Chemistry of Medicinal Natural Products
- West China School of Pharmacy
- Sichuan University
| | - Yan Zeng
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology
- Department of Chemistry of Medicinal Natural Products
- West China School of Pharmacy
- Sichuan University
| | - Chun-Yun Xu
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology
- Department of Chemistry of Medicinal Natural Products
- West China School of Pharmacy
- Sichuan University
| | - Dong-Mei Liu
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology
- Department of Chemistry of Medicinal Natural Products
- West China School of Pharmacy
- Sichuan University
| | - Yue Chu
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology
- Department of Chemistry of Medicinal Natural Products
- West China School of Pharmacy
- Sichuan University
| | - Yong Qin
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology
- Department of Chemistry of Medicinal Natural Products
- West China School of Pharmacy
- Sichuan University
| | - Jin-Song Yang
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology
- Department of Chemistry of Medicinal Natural Products
- West China School of Pharmacy
- Sichuan University
| |
Collapse
|
8
|
Lei JC, Ruan YX, Luo S, Yang JS. Stereodirecting Effect of C3-Ester Groups on the Glycosylation Stereochemistry of L-Rhamnopyranose Thioglycoside Donors: Stereoselective Synthesis of α- and β-L-Rhamnopyranosides. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901186] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jin-Cai Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital; Sichuan University; 610041 Chengdu China
| | - Yu-Xiong Ruan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital; Sichuan University; 610041 Chengdu China
| | - Sheng Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital; Sichuan University; 610041 Chengdu China
| | - Jin-Song Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital; Sichuan University; 610041 Chengdu China
| |
Collapse
|
9
|
Efficient synthesis of a linear octyl pentaarabinofuranoside, a substrate for mycobacterial EmbA/EmbB proteins. Carbohydr Res 2018; 465:10-15. [PMID: 29879545 DOI: 10.1016/j.carres.2018.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/26/2018] [Accepted: 05/26/2018] [Indexed: 10/16/2022]
Abstract
The efficient synthesis of a linear pentasaccharide with the structure 1, β-D-Araf-(1 → 2)-α-D-Araf-(1 → 5)-α-D-Araf-(1 → 5)-α-D-Araf-(1 → 5)-α-D-Araf-(1 → 5), as its octyl glycoside has been achieved through a convergent [3 + 2] coupling strategy. The difficult-to-obtain 1,2-cis-β-arabinofuranosidic bond at the non-reducing end of the target molecule was stereoselectively constructed by the use of a 2-quinolinecarbonyl-directed 1,2-cis glycosylation method.
Collapse
|
10
|
Li HZ, Ding J, Cheng CR, Chen Y, Liang XY. β-L-Arabinofuranosylation Conducted by 5-O-(2-pyridinecarbonyl)-L-arabinofuranosyl Trichloroacetimidate. Carbohydr Res 2018; 460:1-7. [PMID: 29476991 DOI: 10.1016/j.carres.2018.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 11/29/2022]
Abstract
We describe a β-L-arabinofuranosylation method by employing the 5-O-(2-pyridinecarbonyl)-L-arabinofuranosyl trichloroacetimidate 10 as a donor. This approach allows a wide range of acceptor substrates, especially amino acid acceptors, to be used. Stereoselective synthesis of β-(1,4)-L-arabinofuranosyl-(2S, 4R)-4-hydroxy-L-proline (β-L-Araf-L-Hyp4) and its dimer is achieved readily by this method. Both the stereoselectivities and yields of the reactions are excellent. To demonstrate the utility of this methodology, the preparation of a trisaccharide in a one-pot manner was carried out.
Collapse
Affiliation(s)
- Hong-Zhan Li
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Jie Ding
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Chun-Ru Cheng
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Yue Chen
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Xing-Yong Liang
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| |
Collapse
|
11
|
Huang W, Zhou YY, Pan XL, Zhou XY, Lei JC, Liu DM, Chu Y, Yang JS. Stereodirecting Effect of C5-Carboxylate Substituents on the Glycosylation Stereochemistry of 3-Deoxy-d-manno-oct-2-ulosonic Acid (Kdo) Thioglycoside Donors: Stereoselective Synthesis of α- and β-Kdo Glycosides. J Am Chem Soc 2018; 140:3574-3582. [PMID: 29481074 DOI: 10.1021/jacs.7b09461] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Wei Huang
- Department of Chemistry of Medicinal Natural Products, Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying-Yu Zhou
- Department of Chemistry of Medicinal Natural Products, Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xing-Ling Pan
- Department of Chemistry of Medicinal Natural Products, Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xian-Yang Zhou
- Department of Chemistry of Medicinal Natural Products, Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin-Cai Lei
- Department of Chemistry of Medicinal Natural Products, Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dong-Mei Liu
- Department of Chemistry of Medicinal Natural Products, Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yue Chu
- Department of Chemistry of Medicinal Natural Products, Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin-Song Yang
- Department of Chemistry of Medicinal Natural Products, Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Stereoselective synthesis of aryl 1,2- cis -furanosides and its application to the synthesis of the carbohydrate portion of antibiotic hygromycin A. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.02.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Tilve MJ, Cori CR, Gallo-Rodriguez C. Regioselective 5-O-Opening of Conformationally Locked 3,5-O-Di-tert-butylsilylene-d-galactofuranosides. Synthesis of (1→5)-β-d-Galactofuranosyl Derivatives. J Org Chem 2016; 81:9585-9594. [PMID: 27673745 DOI: 10.1021/acs.joc.6b01562] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of thiogalactofuranoside as donors for the construction of internal Galf containing oligosaccharide is limited, probably due to the difficulty to functionalize thiogalactofuranoside derivatives showing O-2, O-3, and O-5 with similar reactivity. An efficient method for complete regioselective 5-O-opening of conformationally restricted 3,5-O-di-tert-butylsilylene-d-galactofuranoside derivatives was developed. The use of a solution nBu4NF (1.1 equiv) in CH2Cl2 on 6 gave the 5-OH free derivative 10 as the only product (90%). 3-O-Di-tert-butylhydroxysilyl derivative 10 was stable upon purification and glycosylation reaction. Preactivation of conformationally restricted thioglycoside 6 employing p-NO2-benzensulfenyl chloride/AgOTf followed by condensation over the 5-OH thioglycoside acceptor 10 gave the corresponding disaccharide 12 without autocondensation byproduct. Regioselective 5-O-deprotection was also successfully performed over the (1→5)-β-d-galactofuranosyl di- and trisaccharide derivatives 12 and 13. This methodology allowed the differentiation between the secondary hydroxyl groups OH-3 and OH-5 of 1,2-cis or 1,2-trans d-galactofuranoside derivatives, and it still constitutes an innovative approach to access oligosaccharides of pharmacological importance.
Collapse
Affiliation(s)
- Mariano J Tilve
- CIHIDECAR, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Ciudad Universitaria , Pabellón II, 1428 Buenos Aires, Argentina
| | - Carmen R Cori
- CIHIDECAR, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Ciudad Universitaria , Pabellón II, 1428 Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- CIHIDECAR, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Ciudad Universitaria , Pabellón II, 1428 Buenos Aires, Argentina
| |
Collapse
|