1
|
Bharadwaj KC. Chemoselective Intramolecular Morita-Baylis-Hillman Reaction; Acrylamide and Ketone as Sluggish Reacting Partners on a Labile Framework. J Org Chem 2024. [PMID: 38164748 DOI: 10.1021/acs.joc.3c02168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Chemoselectivity is an important issue frequently encountered while working over labile precursors. Carbonyl compounds with a heteroatom at the β carbon are sensitive precursors because they are prone to elimination under different conditions. Morita-Baylis-Hillman (MBH) reaction, although a widespread method for C-C bond formation, has its own limitations. Acrylamide and ketone are such limitations of the MBH reaction. Using them together for an intramolecular MBH (IMBH) reaction on a labile framework prone to elimination is a significant 2-fold synthetic challenge. A highly chemoselective IMBH reaction on such precursors has been established using 1,4-diazabicyclo[2.2.2]octane (DABCO) as a promoter. The protocol leads to quick access to a diversely substituted and functionalized piperidone framework in high yields. Various substitution patterns in the form of 34 successful examples have been studied. A diastereoselective version and tolerance to various functional and protecting groups are the added advantages of the developed methodology. A tertiary carbon at the β position of ketone, however, led to complete reversal of selectivity and gave only the elimination product. Control experiments toward a better understanding of the substitution pattern, role of catalyst, and mechanistic study have been carried out. As an application of the IMBH adduct, a one-step allylic rearrangement for the dihydropyridone framework has also been demonstrated.
Collapse
|
2
|
Heravi MM, Momeni T, Zadsirjan V, Mohammadi L. Application of The Dess-Martin Oxidation in Total Synthesis of Natural Products. Curr Org Synth 2020; 18:125-196. [PMID: 32940184 DOI: 10.2174/1570179417666200917102634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Dess-Martin periodinane (DMP), a commercially available chemical, is frequently utilized as a mild oxidative agent for the selective oxidation of primary and secondary alcohols to their corresponding aldehydes and ketones, respectively. DMP shows several merits over other common oxidative agents such as chromiumand DMSO-based oxidants; thus, it is habitually employed in the total synthesis of natural products. In this review, we try to underscore the applications of DMP as an effective oxidant in an appropriate step (steps) in the multi-step total synthesis of natural products.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University, POBox 1993891176, Vanak, Tehran, Iran
| | - Tayebe Momeni
- Department of Chemistry, School of Science, Alzahra University, POBox 1993891176, Vanak, Tehran, Iran
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Science, Alzahra University, POBox 1993891176, Vanak, Tehran, Iran
| | - Leila Mohammadi
- Department of Chemistry, School of Science, Alzahra University, POBox 1993891176, Vanak, Tehran, Iran
| |
Collapse
|
3
|
Walia M, Teijaro CN, Gardner A, Tran T, Kang J, Zhao S, O'Connor SE, Courdavault V, Andrade RB. Synthesis of (-)-Melodinine K: A Case Study of Efficiency in Natural Product Synthesis. JOURNAL OF NATURAL PRODUCTS 2020; 83:2425-2433. [PMID: 32786883 DOI: 10.1021/acs.jnatprod.0c00310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Efficiency is a key organizing principle in modern natural product synthesis. Practical criteria include time, cost, and effort expended to synthesize the target, which tracks with step-count and scale. The execution of a natural product synthesis, that is, the sum and identity of each reaction employed therein, falls along a continuum of chemical (abiotic) synthesis on one extreme, followed by the hybrid chemoenzymatic approach, and ultimately biological (biosynthesis) on the other, acknowledging the first synthesis belongs to Nature. Starting materials also span a continuum of structural complexity approaching the target with constituent elements on one extreme, followed by petroleum-derived and "chiral pool" building blocks, and complex natural products (i.e., semisynthesis) on the other. Herein, we detail our approach toward realizing the first synthesis of (-)-melodinine K, a complex bis-indole alkaloid. The total syntheses of monomers (-)-tabersonine and (-)-16-methoxytabersonine employing our domino Michael/Mannich annulation is described. Isolation of (-)-tabersonine from Voacanga africana and strategic biotransformation with tabersonine 16-hydroxylase for site-specific C-H oxidation enabled a scalable route. The Polonovski-Potier reaction was employed in biomimetic fragment coupling. Subsequent manipulations delivered the target. We conclude with a discussion of efficiency in natural products synthesis and how chemical and biological technologies define the synthetic frontier.
Collapse
Affiliation(s)
- Manish Walia
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Christiana N Teijaro
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Alex Gardner
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Thi Tran
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Jinfeng Kang
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Senzhi Zhao
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute of Chemical Ecology, Hans-Knöll-Straße 8, Jena D-07745, Germany
| | - Vincent Courdavault
- EA2106 "Biomolécules et Biotechnologies Végétales", Université de Tours, Tours 37200, France
| | - Rodrigo B Andrade
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
4
|
Zaman M, Hasan M, Peshkov AA, Van Hecke K, Van der Eycken EV, Pereshivko OP, Peshkov VA. Silver(I) Triflate‐Catalyzed Protocol for the Post‐Ugi Synthesis of Spiroindolines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901064] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Manzoor Zaman
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Dushu Lake Campus Suzhou 215123 People's Republic of China
| | - Muhammad Hasan
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Dushu Lake Campus Suzhou 215123 People's Republic of China
| | - Anatoly A. Peshkov
- Department of Chemistry, School of Science and TechnologyNazarbayev University 53 Kabanbay Batyr Ave, Block 7 Nur-Sultan 010000 Republic of Kazakhstan
| | - Kristof Van Hecke
- XStruct, Department of ChemistryGhent University Krijgslaan 281-S3 B-9000 Ghent Belgium
| | - Erik V. Van der Eycken
- Laboratory of Organic & Microwave-Assisted Chemistry (LOMAC), Department of ChemistryUniversity of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya street 6 Moscow 117198 Russia
| | - Olga P. Pereshivko
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Dushu Lake Campus Suzhou 215123 People's Republic of China
- Department of Chemistry, School of Science and TechnologyNazarbayev University 53 Kabanbay Batyr Ave, Block 7 Nur-Sultan 010000 Republic of Kazakhstan
| | - Vsevolod A. Peshkov
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Dushu Lake Campus Suzhou 215123 People's Republic of China
- Department of Chemistry, School of Science and TechnologyNazarbayev University 53 Kabanbay Batyr Ave, Block 7 Nur-Sultan 010000 Republic of Kazakhstan
- The Environment and Resource Efficiency Cluster (EREC)Nazarbayev University Nur-Sultan Republic of Kazakhstan
| |
Collapse
|
5
|
Abstract
Herein, we report the first asymmetric total synthesis of aspidospermatan indole alkaloid (+)-epi-condyfoline (1) in 15 steps from commercially available 2-methylindole-3-carboxaldehyde. Key steps include (1) our domino Michael/Mannich annulation method of N-sulfinyl metallodienamines to set three contiguous stereocenters, (2) LiHMDS-mediated cyclization of an ω-tosyloxy N-sulfinamide to prepare the signature indole-fused 2-azabicyclo[3.3.1]nonane framework, and (3) DMTSF-promoted spirocyclization of a dithioacetal intermediate to access the final pyrrolidine ring. Functional group manipulations delivered the targeted alkaloid (+)-epi-condyfoline (1) in 13 steps and 1.25% overall yield from N-sulfinylimine (+)-8.
Collapse
Affiliation(s)
- Praveen Kokkonda
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Rodrigo B Andrade
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| |
Collapse
|
6
|
Saya JM, Ruijter E, Orru RVA. Total Synthesis of
Aspidosperma
and
Strychnos
Alkaloids through Indole Dearomatization. Chemistry 2019; 25:8916-8935. [DOI: 10.1002/chem.201901130] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Jordy M. Saya
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines & SystemsVrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Eelco Ruijter
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines & SystemsVrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Romano V. A. Orru
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines & SystemsVrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| |
Collapse
|
7
|
|
8
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2016. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Si CM, Shao LP, Mao ZY, Zhou W, Wei BG. An efficient approach to trans-4-hydroxy-5-substituted 2-pyrrolidinones through a stereoselective tandem Barbier process: divergent syntheses of (3R,4S)-statines, (+)-preussin and (−)-hapalosin. Org Biomol Chem 2017; 15:649-661. [DOI: 10.1039/c6ob02523d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Natural products of (+)-preussin and (−)-hapalosin have been asymmetrically synthesized through the stereoselective tandem Barbier process.
Collapse
Affiliation(s)
- Chang-Mei Si
- Department of Natural Products Chemistry
- School of Pharmacy
- Fudan University
- Shanghai
- China
| | - Lu-Ping Shao
- Department of Natural Products Chemistry
- School of Pharmacy
- Fudan University
- Shanghai
- China
| | - Zhuo-Ya Mao
- Department of Natural Products Chemistry
- School of Pharmacy
- Fudan University
- Shanghai
- China
| | - Wen Zhou
- Department of Natural Products Chemistry
- School of Pharmacy
- Fudan University
- Shanghai
- China
| | - Bang-Guo Wei
- Department of Natural Products Chemistry
- School of Pharmacy
- Fudan University
- Shanghai
- China
| |
Collapse
|
10
|
Satpathi B, Wagulde SV, Ramasastry SSV. An enantioselective organocatalytic intramolecular Morita–Baylis–Hillman (IMBH) reaction of dienones, and elaboration of the IMBH adducts to fluorenones. Chem Commun (Camb) 2017; 53:8042-8045. [DOI: 10.1039/c7cc02524f] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An efficient synthesis of cyclopenta-fused arenes and heteroarenes has been achieved via an enantioselective organocatalytic intramolecular Morita–Baylis–Hillman (IMBH) reaction of dienones. The IMBH-adducts were transformed to fluorenones in a serendipitous manner.
Collapse
Affiliation(s)
- Bishnupada Satpathi
- Organic Synthesis and Catalysis Lab
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Manauli PO
- India
| | - Siddhant V. Wagulde
- Organic Synthesis and Catalysis Lab
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Manauli PO
- India
| | - S. S. V. Ramasastry
- Organic Synthesis and Catalysis Lab
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Manauli PO
- India
| |
Collapse
|