1
|
Dai S, Teng M, Xu E, Xu M, Luo M, Chen C, Chai H, Chi YR, Wu J, Lv WX. Boronic Acid and Phosphoyl Chloride-Mediated Site-Selective Ketalization of Unprotected Saccharides: In Situ Generation of a Proton Catalyst and Multiple Roles of Reagents. Org Lett 2024; 26:10910-10914. [PMID: 39636696 DOI: 10.1021/acs.orglett.4c04074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
In the chemical synthesis or modification of saccharides, regioselective protection of the many similar OH groups in saccharides is necessary but remains a major challenge. In particular, the regio- and stereoselective conversion of C(1,2)-OH has great synthetic potential in carbohydrate synthesis but has largely remained untapped. Here, an in situ proton-producing system mediated by boronic acid was found and employed for site-selective ketalization of various unprotected saccharides. This strategy is characterized by the controlled production of protons mediated by the dynamic, reversible covalent binding of boronic acid and saccharides. This method provides great convenience for the concise synthesis of complex saccharides, as illustrated by the streamlined degradation and reconstruction of disaccharides.
Collapse
Affiliation(s)
- Shuolu Dai
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guizhou University, Guiyang 550025, China
| | - Minggang Teng
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
- School of Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Erjuan Xu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guizhou University, Guiyang 550025, China
| | - Min Xu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guizhou University, Guiyang 550025, China
| | - Min Luo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guizhou University, Guiyang 550025, China
| | - Chen Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guizhou University, Guiyang 550025, China
| | - Huifang Chai
- School of Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yonggui Robin Chi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guizhou University, Guiyang 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jian Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guizhou University, Guiyang 550025, China
| | - Wen-Xin Lv
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Musa MS, Islam MT, Billah W, Hossain MS, Rahat MSS, Bayil I, Munni YA, Ganguli S. Structure-based virtual screening of Trachyspermum ammi metabolites targeting acetylcholinesterase for Alzheimer's disease treatment. PLoS One 2024; 19:e0311401. [PMID: 39689077 DOI: 10.1371/journal.pone.0311401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/12/2024] [Indexed: 12/19/2024] Open
Abstract
In recent decades, Alzheimer's disease (AD) has garnered significant attention due to its rapid global prevalence. The cholinergic hypothesis posits that the degradation of acetylcholine by acetylcholinesterase (AChE) contributes to AD development. Despite existing anti-AChE drugs, their adverse side effects necessitate new agents. This study analyzed 150 bioactive phytochemicals from Trachyspermum ammi using structure-based drug design and various in-silico tools to identify potent anti-AChE compounds. Compounds were screened for drug-likeness (QEDw ≥50%) and bioavailability (≥55%) and underwent toxicity profiling via the ProTox-II server. Selected compounds were prepared for molecular docking with the human AChE protein as the receptor. Viridifloral, 2-Methyl-3-glucosyloxy-5-isopropyl phenol, Alpha-Curcumene, and Sterol emerged as top candidates with high AChE affinity. These results were validated by molecular dynamics simulations, confirming stable interactions. The hit compounds were further evaluated for drug-likeness using Lipinski's rule and ADMET properties, confirming favorable pharmacokinetic profiles. DFT optimization analyzed frontier molecular orbitals and electrostatic potential, demonstrating favorable chemical reactivity and stability. This study suggests that these identified compounds could be novel nature-derived AChE inhibitors, potentially contributing to AD treatment. However, further in-vitro and in-vivo studies are necessary to confirm their efficacy in biological systems. Future research will focus on developing these compounds into safe and effective drugs to combat Alzheimer's disease.
Collapse
Affiliation(s)
- Mohammed Sakib Musa
- Department of Applied Chemistry and Chemical Engineering, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| | - Md Tahsinul Islam
- Department of Biochemistry and Biotechnology, North South University, Dhaka, Bangladesh
| | - Wasif Billah
- Department of Pharmacy, Faculty of Basic Medicine and Pharmaceutical Science, University of Science and Technology Chittagong, Chittagong, Bangladesh
| | - Md Siam Hossain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - Imren Bayil
- Department of Bioinformatics and Computational Biology, Gaziantep University, Gaziantep, Turkey
| | - Yeasmin Akter Munni
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju, Seoul, Republic of Korea
| | - Sumon Ganguli
- Department of Applied Chemistry and Chemical Engineering, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| |
Collapse
|
3
|
Pooladian F, Das A, Wise JW, Demchenko AV. Synthesis of regioselectively protected building blocks of benzyl β-d-glucopyranoside. Carbohydr Res 2024; 544:109250. [PMID: 39214041 PMCID: PMC11391699 DOI: 10.1016/j.carres.2024.109250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Reported herein is the synthesis of benzyl β-d-glucopyranoside and its derivatives that provide straightforward access to 3,4-branched glycans. Modes to diversify the synthetic intermediates via introduction of various temporary protecting groups have been demonstrated.
Collapse
Affiliation(s)
- Faranak Pooladian
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| | - Anupama Das
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| | - Joseph W Wise
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| | - Alexei V Demchenko
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA.
| |
Collapse
|
4
|
Dey K, Jayaraman N. Trivalent dialkylaminopyridine-catalyzed site-selective mono- O-acylation of partially-protected pyranosides. Org Biomol Chem 2024; 22:5134-5149. [PMID: 38847370 DOI: 10.1039/d4ob00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
This work demonstrates trivalent tris-(3-N-methyl-N-pyridyl propyl)amine (1) catalyzing the site-selective mono-O-acylation of glycopyranosides. Different acid anhydrides were used for the acylation of monosaccharides, mediated by catalyst 1, at a loading of 1.5 mol%; the extent of site-selectivity and the yields of mono-O-acylation products were assessed. The reactions were performed between 2 and 10 h, depending on the nature of the acid anhydride, where the bulkier pivalic anhydride required a longer duration for acylation. The glycopyranosides are maintained as diols and triols, and from a set of experiments, the site-selectivity of acylations was observed to follow the intrinsic reactivities and stereochemistry of hydroxy functionalities. The trivalent catalyst 1 mediates the reactions with excellent site-selectivities for mono-O-acylation product formation in the studied glycopyranosides, in comparison to the monovalent N,N-dimethylamino pyridine (DMAP) catalyst. This study illustrates the benefits of the multivalency of catalytic moieties in catalysis.
Collapse
Affiliation(s)
- Kalyan Dey
- Indian Institute of Science, Bangalore 560012, India.
| | | |
Collapse
|
5
|
Guo H, Kirchhoff JL, Strohmann C, Grabe B, Loh CCJ. Asymmetric Pd/Organoboron-Catalyzed Site-Selective Carbohydrate Functionalization with Alkoxyallenes Involving Noncovalent Stereocontrol. Angew Chem Int Ed Engl 2024; 63:e202400912. [PMID: 38530140 DOI: 10.1002/anie.202400912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Herein, we demonstrate the robustness of a synergistic chiral Pd/organoboron system in tackling a challenging suite of site-, regio-, enantio- and diastereoselectivity issues across a considerable palette of biologically relevant carbohydrate polyols, when prochiral alkoxyallenes were employed as electrophiles. In view of the burgeoning role of noncovalent interactions (NCIs) in stereoselective carbohydrate synthesis, our mechanistic experiments and DFT modeling of the reaction path unexpectedly revealed that NCIs such as hydrogen bonding and CH-π interactions between the resting states of the Pd-π-allyl complex and the borinate saccharide are critically involved in the stereoselectivity control. Our strategy thus illuminates the untapped potential of harnessing NCIs in the context of transition metal catalysis to tackle stereoselectivity challenges in carbohydrate functionalization.
Collapse
Affiliation(s)
- Hao Guo
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Jan-Lukas Kirchhoff
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie Anorganische Chemie, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Carsten Strohmann
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie Anorganische Chemie, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Bastian Grabe
- NMR Department Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Charles C J Loh
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| |
Collapse
|
6
|
Gormand P, Pichette A, Legault J, Alsarraf J. Synthesis and Cytotoxicity of Monomethylated Betulinic Acid 3- O-α-l-Rhamnopyranosides. ACS OMEGA 2023; 8:36118-36125. [PMID: 37810724 PMCID: PMC10552092 DOI: 10.1021/acsomega.3c04301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/11/2023] [Indexed: 10/10/2023]
Abstract
Three original derivatives of the cytotoxic betulinic acid 3-O-α-l-rhamnopyranoside featuring a monomethylated rhamnoside residue were synthesized. An improved catalytic procedure was involved to functionalize the O-3 position of the monosaccharide in a site-selective fashion. The cytotoxicity of the novel compounds was evaluated in vitro to highlight the moderate impact of carbohydrate monomethylation on the biological activity of betulinic acid 3-O-α-l-rhamnopyranoside.
Collapse
Affiliation(s)
- Paul Gormand
- Centre de recherche sur la
boréalie (CREB), Laboratoire d’analyse et de séparation
des essences végétales (LASEVE), Université du Québec à Chicoutimi, 555 boulevard de l’Université, Chicoutimi G7H 2B1, QC, Canada
| | - André Pichette
- Centre de recherche sur la
boréalie (CREB), Laboratoire d’analyse et de séparation
des essences végétales (LASEVE), Université du Québec à Chicoutimi, 555 boulevard de l’Université, Chicoutimi G7H 2B1, QC, Canada
| | - Jean Legault
- Centre de recherche sur la
boréalie (CREB), Laboratoire d’analyse et de séparation
des essences végétales (LASEVE), Université du Québec à Chicoutimi, 555 boulevard de l’Université, Chicoutimi G7H 2B1, QC, Canada
| | - Jérôme Alsarraf
- Centre de recherche sur la
boréalie (CREB), Laboratoire d’analyse et de séparation
des essences végétales (LASEVE), Université du Québec à Chicoutimi, 555 boulevard de l’Université, Chicoutimi G7H 2B1, QC, Canada
| |
Collapse
|
7
|
Yamatsugu K, Kanai M. Catalytic Approaches to Chemo- and Site-Selective Transformation of Carbohydrates. Chem Rev 2023; 123:6793-6838. [PMID: 37126370 DOI: 10.1021/acs.chemrev.2c00892] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Carbohydrates are a fundamental unit playing pivotal roles in all the biological processes. It is thus essential to develop methods for synthesizing, functionalizing, and manipulating carbohydrates for further understanding of their functions and the creation of sugar-based functional materials. It is, however, not trivial to develop such methods, since carbohydrates are densely decorated with polar and similarly reactive hydroxy groups in a stereodefined manner. New approaches to chemo- and site-selective transformations of carbohydrates are, therefore, of great significance for revolutionizing sugar chemistry to enable easier access to sugars of interest. This review begins with a brief overview of the innate reactivity of hydroxy groups of carbohydrates. It is followed by discussions about catalytic approaches to enhance, override, or be orthogonal to the innate reactivity for the transformation of carbohydrates. This review avoids making a list of chemo- and site-selective reactions, but rather focuses on summarizing the concept behind each reported transformation. The literature references were sorted into sections based on the underlying ideas of the catalytic approaches, which we hope will help readers have a better sense of the current state of chemistry and develop innovative ideas for the field.
Collapse
Affiliation(s)
- Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
8
|
Wang M, Zhang L, Li Y, Gu L. Imidazole Promoted Efficient Anomerization of β‐D‐Glucose Pentaacetate in Solid State and Reaction Mechanism. ChemistrySelect 2022. [DOI: 10.1002/slct.202202508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Meifeng Wang
- Department of Biomedical Engineering Jinan University; #601 Huangpu Avenue West Guangzhou China
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources Hunan University of Science and Engineering Yongzhou 425199 China
- Department of Chemistry Jinan University, #601, Huangpu Avenue West Guangzhou China
| | - Liyin Zhang
- Department of Biomedical Engineering Jinan University; #601 Huangpu Avenue West Guangzhou China
| | - Yiqun Li
- Department of Chemistry Jinan University, #601, Huangpu Avenue West Guangzhou China
| | - Liuqun Gu
- Department of Biomedical Engineering Jinan University; #601 Huangpu Avenue West Guangzhou China
| |
Collapse
|
9
|
Synthesis, Pass Predication of Antimicrobial Activity and Pharmacokinetic Properties of Hexanoyl Galactopyranosides and Experimental Evaluation of their Action against Four Human Pathogenic Bacteria and Four Fungal Strains. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02687-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Matin P, Hanee U, Alam MS, Jeong JE, Matin MM, Rahman MR, Mahmud S, Alshahrani MM, Kim B. Novel Galactopyranoside Esters: Synthesis, Mechanism, In Vitro Antimicrobial Evaluation and Molecular Docking Studies. Molecules 2022; 27:molecules27134125. [PMID: 35807371 PMCID: PMC9268324 DOI: 10.3390/molecules27134125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
One-step direct unimolar valeroylation of methyl α-D-galactopyranoside (MDG) mainly furnished the corresponding 6-O-valeroate. However, DMAP catalyzed a similar reaction that produced 2,6-di-O-valeroate and 6-O-valeroate, with the reactivity sequence as 6-OH > 2-OH > 3-OH,4-OH. To obtain novel antimicrobial agents, 6-O- and 2,6-di-O-valeroate were converted into several 2,3,4-tri-O- and 3,4-di-O-acyl esters, respectively, with other acylating agents in good yields. The PASS activity spectra along with in vitro antimicrobial evaluation clearly indicated that these MDG esters had better antifungal activities than antibacterial agents. To rationalize higher antifungal potentiality, molecular docking was conducted with sterol 14α-demethylase (PDB ID: 4UYL, Aspergillus fumigatus), which clearly supported the in vitro antifungal results. In particular, MDG ester 7−12 showed higher binding energy than the antifungal drug, fluconazole. Additionally, these compounds were found to have more promising binding energy with the SARS-CoV-2 main protease (6LU7) than tetracycline, fluconazole, and native inhibitor N3. Detailed investigation of Ki values, absorption, distribution, metabolism, excretion, and toxicity (ADMET), and the drug-likeness profile indicated that most of these compounds satisfy the drug-likeness evaluation, bioavailability, and safety tests, and hence, these synthetic novel MDG esters could be new antifungal and antiviral drugs.
Collapse
Affiliation(s)
- Priyanka Matin
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh; (P.M.); (U.H.)
| | - Umme Hanee
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh; (P.M.); (U.H.)
| | - Muhammad Shaiful Alam
- Department of Pharmacy, University of Science and Technology Chittagong, Chittagong 4202, Bangladesh;
| | - Jae Eon Jeong
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Mohammed Mahbubul Matin
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh; (P.M.); (U.H.)
- Correspondence: (M.M.M.); (B.K.); Tel.: +880-1716-839689 (M.M.M.)
| | - Md. Rezaur Rahman
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia;
| | - Shafi Mahmud
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia;
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Correspondence: (M.M.M.); (B.K.); Tel.: +880-1716-839689 (M.M.M.)
| |
Collapse
|
11
|
Kim T, Bell MR, Thota VN, Lowary TL. One-Pot Regioselective Diacylation of Pyranoside 1,2- cis Diols. J Org Chem 2022; 87:4894-4907. [PMID: 35290061 DOI: 10.1021/acs.joc.2c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A one-pot strategy for functionalizing pyranoside 1,2-cis-diols with two different ester protecting groups is reported. The approach employs regioselective acylation via orthoester hydrolysis promoted by a carboxylic acid, e.g., levulinic acid, acetic acid, benzoic acid, or chloroacetic acid. Upon removal of water and introduction of a coupling agent, the carboxylic acid is esterified to the hydroxyl group liberated during hydrolysis. Although applied to 1,2-cis-diols on pyranoside scaffolds, the method should be applicable to such motifs on any six-membered ring.
Collapse
Affiliation(s)
- Taeok Kim
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Michael R Bell
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - V Narasimharao Thota
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2.,Institute of Biological Chemistry, Academia Sinica, Academia Road, Section 2, #128, Nangang, Taipei, 11529, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Roosevelt Road, Section 4, #1, Taipei, 10617, Taiwan
| |
Collapse
|
12
|
Abronina PI, Podvalnyy NM, Kononov LO. The use of silyl groups in the synthesis of arabinofuranosides. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3371-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Abstract
Relative rates for the Lewis base-catalyzed acylation of aryl-substituted 1,2-diols with anhydrides differing in size have been determined by turnover-limited competition experiments and absolute kinetics measurements. Depending on the structure of the anhydride reagent, the secondary hydroxyl group of the 1,2-diol reacts faster than the primary one. This preference towards the secondary hydroxyl group is boosted in the second acylation step from the monoesters to the diester through size and additional steric effects. In absolute terms the first acylation step is found to be up to 35 times faster than the second one for the primary alcohols due to neighboring group effects.
Collapse
Affiliation(s)
- Stefanie Mayr
- Department of ChemistryLMU MünchenButenandtstr. 5–1381366MünchenGermany
| | - Hendrik Zipse
- Department of ChemistryLMU MünchenButenandtstr. 5–1381366MünchenGermany
| |
Collapse
|
14
|
New Ag(I) and Pd(II) complexes derived from symmetrical and asymmetrical NHC precursors: Synthesis, Characterization, Antibacterial activity, and Theoretical calculations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Wang S, Zhelavskyi O, Lee J, Argüelles AJ, Khomutnyk YY, Mensah E, Guo H, Hourani R, Zimmerman PM, Nagorny P. Studies of Catalyst-Controlled Regioselective Acetalization and Its Application to Single-Pot Synthesis of Differentially Protected Saccharides. J Am Chem Soc 2021; 143:18592-18604. [PMID: 34705439 PMCID: PMC8585716 DOI: 10.1021/jacs.1c08448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This article describes studies on the regioselective acetal protection of monosaccharide-based diols using chiral phosphoric acids (CPAs) and their immobilized polymeric variants, (R)-Ad-TRIP-PS and (S)-SPINOL-PS, as the catalysts. These catalyst-controlled regioselective acetalizations were found to proceed with high regioselectivities (up to >25:1 rr) on various d-glucose-, d-galactose-, d-mannose-, and l-fucose-derived 1,2-diols and could be carried out in a regiodivergent fashion depending on the choice of chiral catalyst. The polymeric catalysts were conveniently recycled and reused multiple times for gram-scale functionalizations with catalytic loadings as low as 0.1 mol %, and their performance was often found to be superior to the performance of their monomeric variants. These regioselective CPA-catalyzed acetalizations were successfully combined with common hydroxyl group functionalizations as single-pot telescoped procedures to produce 32 regioisomerically pure differentially protected mono- and disaccharide derivatives. To further demonstrate the utility of the polymeric catalysts, the same batch of (R)-Ad-TRIP-PS catalyst was recycled and reused to accomplish single-pot gram-scale syntheses of 6 differentially protected d-glucose derivatives. The subsequent exploration of the reaction mechanism using NMR studies of deuterated and nondeuterated substrates revealed that low-temperature acetalizations happen via a syn-addition mechanism and that the reaction regioselectivity exhibits strong dependence on the temperature. The computational studies indicate a complex temperature-dependent interplay of two reaction mechanisms, one involving an anomeric phosphate intermediate and another via concerted asynchronous formation of an acetal, that results in syn-addition products. The computational models also explain the steric factors responsible for the observed C2 selectivities and are consistent with experimentally observed selectivity trends.
Collapse
Affiliation(s)
- Sibin Wang
- Chemistry Department, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Oleksii Zhelavskyi
- Chemistry Department, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Jeonghyo Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Alonso J. Argüelles
- Synthetic Molecule Design and Development, Lilly Research Laboratories, Eli Lilly and Company, 307 E. Merrill St. Indianapolis, IN 46225
| | | | - Enoch Mensah
- Chemistry Department, Indiana University Southeast, 4201 Grant Line Rd. New Albany, IN 47150
| | - Hao Guo
- Deparment of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015
| | - Rami Hourani
- Chemistry Department, Stanford University, 333 Campus Drive, Stanford, CA 94305-5080
| | - Paul M. Zimmerman
- Chemistry Department, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Pavel Nagorny
- Chemistry Department, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| |
Collapse
|
16
|
Exploiting non-covalent interactions in selective carbohydrate synthesis. Nat Rev Chem 2021; 5:792-815. [PMID: 37117666 DOI: 10.1038/s41570-021-00324-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
Non-covalent interactions (NCIs) are a vital component of biological bond-forming events, and have found important applications in multiple branches of chemistry. In recent years, the biomimetic exploitation of NCIs in challenging glycosidic bond formation and glycofunctionalizations has attracted significant interest across diverse communities of organic and carbohydrate chemists. This emerging theme is a major new direction in contemporary carbohydrate chemistry, and is rapidly gaining traction as a robust strategy to tackle long-standing issues such as anomeric and site selectivity. This Review thus seeks to provide a bird's-eye view of wide-ranging advances in harnessing NCIs within the broad field of synthetic carbohydrate chemistry. These include the exploitation of NCIs in non-covalent catalysed glycosylations, in non-covalent catalysed glycofunctionalizations, in aglycone delivery, in stabilization of intermediates and transition states, in the existence of intramolecular hydrogen bonding networks and in aggregation by hydrogen bonds. In addition, recent emerging opportunities in exploiting halogen bonding and other unconventional NCIs, such as CH-π, cation-π and cation-n interactions, in various aspects of carbohydrate chemistry are also examined.
Collapse
|
17
|
DEVİ P, MATİN MM, BHUİYAN MMH, HOSSAİN ME. Synthesis, and Spectral Characterization of 6-O-Octanoyl-1,2-O-isopropylidene-α-D-glucofuranose Derivatives. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.929996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
18
|
Formation of Amphiphilic Molecules from the Most Common Marine Polysaccharides, toward a Sustainable Alternative? Molecules 2021; 26:molecules26154445. [PMID: 34361598 PMCID: PMC8371489 DOI: 10.3390/molecules26154445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 01/17/2023] Open
Abstract
Marine polysaccharides are part of the huge seaweeds resources and present many applications for several industries. In order to widen their potential as additives or bioactive compounds, some structural modifications have been studied. Among them, simple hydrophobization reactions have been developed in order to yield to grafted polysaccharides bearing acyl-, aryl-, alkyl-, and alkenyl-groups or fatty acid chains. The resulting polymers are able to present modified physicochemical and/or biological properties of interest in the current pharmaceutical, cosmetics, or food fields. This review covers the chemical structures of the main marine polysaccharides, and then focuses on their structural modifications, and especially on hydrophobization reactions mainly esterification, acylation, alkylation, amidation, or even cross-linking reaction on native hydroxyl-, amine, or carboxylic acid functions. Finally, the question of the necessary requirement for more sustainable processes around these structural modulations of marine polysaccharides is addressed, considering the development of greener technologies applied to traditional polysaccharides.
Collapse
|
19
|
Alsarraf J, Petitpoisson L, Pichette A. Catalytic Site-Selective Carbamoylation of Pyranosides. Org Lett 2021; 23:6052-6056. [PMID: 34283624 DOI: 10.1021/acs.orglett.1c02116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carbamate-bearing carbohydrates contribute to the pharmacological properties of various natural glycosides. The catalytic site-selective carbamoylation of minimally protected pyranosides was achieved for the first time to bypass protection/deprotection sequences. 1-Carbamoylimidazoles were used as the carbamoylation reagents to circumvent the harmful and unstable phosgene and isocyanates. This borinic acid catalyzed transformation granted an expedient access to the tumor cell-binding carbamoylmannoside moiety of bleomycins and analogs in yields of 56% to 89%.
Collapse
Affiliation(s)
- Jérôme Alsarraf
- Centre de recherche sur la boréalie (CREB), Laboratoire d'analyse et de séparation des essences végétales (LASEVE), Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi G7H 2B1, Québec, Canada
| | - Lucas Petitpoisson
- Centre de recherche sur la boréalie (CREB), Laboratoire d'analyse et de séparation des essences végétales (LASEVE), Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi G7H 2B1, Québec, Canada
| | - André Pichette
- Centre de recherche sur la boréalie (CREB), Laboratoire d'analyse et de séparation des essences végétales (LASEVE), Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi G7H 2B1, Québec, Canada
| |
Collapse
|
20
|
Studzian M, Pérez ME, Arias-Pérez MS. Experimental observations on the reductive cleavage of endo and exo 3,4-O-benzylidene fucopyranoside derivatives. Carbohydr Res 2021; 505:108338. [PMID: 34023694 DOI: 10.1016/j.carres.2021.108338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Reductive cleavage of methyl 3,4-O-benzylidene-α-L-fucopyranosides with BH3·THF-TfOH and NaCNBH3-TfOH systems resulted in enhanced reaction rates and selectivity compared to BH3·THF-Bu2BOTf. With this latter system, the nature of the O-2 substituent exerted a clear control on the reactivity but practically did not affect the regioselectivity. With TfOH the direction of cleavage was determined, as expected, by the configuration of the acetal carbon atom, but slightly influenced by its competitive epimerization. Protic conditions provided higher regioselectivity in the openings of the exo isomers, affording a useful approach to the practical synthesis of 3-O-benzyl ethers.
Collapse
Affiliation(s)
- Maciej Studzian
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| | - María-Elena Pérez
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| | - María-Selma Arias-Pérez
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
21
|
Shimada N, Sugimoto T, Noguchi M, Ohira C, Kuwashima Y, Takahashi N, Sato N, Makino K. Boronic Acid-Catalyzed Regioselective Koenigs-Knorr-Type Glycosylation. J Org Chem 2021; 86:5973-5982. [PMID: 33829786 DOI: 10.1021/acs.joc.1c00130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Boronic acid-catalyzed regioselective Koenigs-Knorr-type glycosylation is presented. The reaction of an unprotected or partially protected glycosyl acceptor with a glycosyl halide donor in the presence of silver oxide and a low catalytic amount of imidazole-containing boronic acid was found to proceed smoothly, which enables construction of a 1,2-trans glycosidic linkage with high regioselectivities. This is the first example of the use of a boronic acid catalyst to initiate regioselective glycosylation via the activation of cis-vicinal diols in glycosyl acceptors.
Collapse
Affiliation(s)
- Naoyuki Shimada
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Tomoya Sugimoto
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Mao Noguchi
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Chikako Ohira
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Yutaro Kuwashima
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Naoya Takahashi
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Noriko Sato
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kazuishi Makino
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| |
Collapse
|
22
|
Seitz A, Wende RC, Roesner E, Niedek D, Topp C, Colgan AC, McGarrigle EM, Schreiner PR. Site-Selective Acylation of Pyranosides with Oligopeptide Catalysts. J Org Chem 2021; 86:3907-3922. [PMID: 33617252 DOI: 10.1021/acs.joc.0c02772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Herein, we report the oligopeptide-catalyzed site-selective acylation of partially protected monosaccharides. We identified catalysts that invert site-selectivity compared to N-methylimidazole, which was used to determine the intrinsic reactivity, for 4,6-O-protected glucopyranosides (trans-diols) as well as 4,6-O-protected mannopyranosides (cis-diols). The reaction yields up to 81% of the inherently unfavored 2-O-acetylated products with selectivities up to 15:1 using mild reaction conditions. We also determined the influence of protecting groups on the reaction and demonstrate that our protocol is suitable for one-pot reactions with multiple consecutive protection steps.
Collapse
Affiliation(s)
- Alexander Seitz
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Raffael C Wende
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Emily Roesner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Dominik Niedek
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Christopher Topp
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Avene C Colgan
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoghan M McGarrigle
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
23
|
Nakamura Y, Ochiai T, Makino K, Shimada N. Boronic Acid-Catalyzed Final-Stage Site-Selective Acylation for the Total Syntheses of O-3'-Acyl Bisabolol β-D-Fucopyranoside Natural Products and Their Analogues. Chem Pharm Bull (Tokyo) 2021; 69:281-285. [PMID: 33642477 DOI: 10.1248/cpb.c20-00834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The first concise total syntheses of O-3'-senecioyl α-bisabolol β-D-fucopyranoside (4a) and O-3'-isovaleroyl α-bisabolol β-D-fucopyranoside (4b) were achieved through final-stage site-selective acylation via the activation of cis-vicinal diols by imidazole-containing boronic acid catalysts as a key step. This synthetic method was also effective for the syntheses of unnatural analogues with modified acyl side chains or carbohydrate moiety.
Collapse
Affiliation(s)
- Yuki Nakamura
- Laboratory of Organic Chemistry for Drug Development and Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University
| | - Takayuki Ochiai
- Laboratory of Organic Chemistry for Drug Development and Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University
| | - Kazuishi Makino
- Laboratory of Organic Chemistry for Drug Development and Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University
| | - Naoyuki Shimada
- Laboratory of Organic Chemistry for Drug Development and Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University
| |
Collapse
|
24
|
Wan IC(S, Hamlin TA, Eisink NNHM, Marinus N, Boer C, Vis CA, Codée JDC, Witte MD, Minnaard AJ, Bickelhaupt FM. On the Origin of Regioselectivity in Palladium‐Catalyzed Oxidation of Glucosides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ieng Chim (Steven) Wan
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 7 9747 AG Groningen, The Netherlands
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Institution Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam, The Netherlands
| | - Trevor A. Hamlin
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Institution Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam, The Netherlands
| | - Niek N. H. M. Eisink
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 7 9747 AG Groningen, The Netherlands
| | - Nittert Marinus
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 7 9747 AG Groningen, The Netherlands
| | - Casper Boer
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden, The Netherlands
| | - Christopher A. Vis
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden, The Netherlands
| | - Jeroen D. C. Codée
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden, The Netherlands
| | - Martin D. Witte
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 7 9747 AG Groningen, The Netherlands
| | - Adriaan J. Minnaard
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 7 9747 AG Groningen, The Netherlands
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Institution Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam, The Netherlands
- Institute for Molecules and Materials (IMM) Radboud University Heyendaalseweg 135 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
25
|
Song G, Jeong KS. Aromatic Helical Foldamers as Nucleophilic Catalysts for the Regioselective Acetylation of Octyl β-d-Glucopyranoside. Chempluschem 2020; 85:2475-2481. [PMID: 33206472 DOI: 10.1002/cplu.202000685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/03/2020] [Indexed: 12/31/2022]
Abstract
Two indolocarbazole-naphthyridine foldamers 2 and 3 that fold into helical conformations were prepared. The 4-(N,N-dimethylamino)pyridine (DMAP) moiety was introduced at one end of the foldamer strands to develop foldamer-based catalysts for the site-selective acylation of polyols. These foldamers adopt helical conformations containing internal cavities capable of binding octyl β-d-glucopyranoside. The association constants were determined to be 1.9 (±0.1)×105 M-1 for 2 and 2.1 (±0.1)×105 M-1 for 3 in CH2 Cl2 at 25 °C. In the presence of DMAP, 2 or 3 as the catalysts, octyl β-d-glucopyranoside was subjected to acetylation under identical reaction conditions. The DMAP-catalysed reaction afforded the random distribution of the monoacetylates (6-OAc : 4-OAc : 3-OAc : 2-OAc=33 : 24 : 41 : 2). In contrast, foldamers 2 and 3 led to the predominant formation of 6-OAc. The relative distributions were estimated to be 6-OAc : 4-OAc : 3-OAc=88 : 4 : 6 : ∼0 with 2 and 6-OAc : 4-OAc : 3-OAc : 2-OAc=90 : 3 : 6 : 1 with 3.
Collapse
Affiliation(s)
- Geunmoo Song
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyu-Sung Jeong
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
26
|
Su X, Dohle W, Mills SJ, Watt JM, Rossi AM, Taylor CW, Potter BVL. Inositol Adenophostin: Convergent Synthesis of a Potent Agonist of d- myo-Inositol 1,4,5-Trisphosphate Receptors. ACS OMEGA 2020; 5:28793-28811. [PMID: 33195933 PMCID: PMC7659177 DOI: 10.1021/acsomega.0c04145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
d-myo-Inositol 1,4,5-trisphosphate receptors (IP3Rs) are Ca2+ channels activated by the intracellular messenger inositol 1,4,5-trisphosphate (IP3, 1). The glyconucleotide adenophostin A (AdA, 2) is a potent agonist of IP3Rs. A recent synthesis of d-chiro-inositol adenophostin (InsAdA, 5) employed suitably protected chiral building blocks and replaced the d-glucose core by d-chiro-inositol. An alternative approach to fully chiral material is now reported using intrinsic sugar chirality to avoid early isomer resolution, involving the coupling of a protected and activated racemic myo-inositol derivative to a d-ribose derivative. Diastereoisomer separation was achieved after trans-isopropylidene group removal and the absolute ribose-inositol conjugate stereochemistry assigned with reference to the earlier synthesis. Optimization of stannylene-mediated regiospecific benzylation was explored using the model 1,2-O-isopropylidene-3,6-di-O-benzyl-myo-inositol and conditions successfully transferred to one conjugate diastereoisomer with 3:1 selectivity. However, only roughly 1:1 regiospecificity was achieved on the required diastereoisomer. The conjugate regioisomers of benzyl derivatives 39 and 40 were successfully separated and 39 was transformed subsequently to InsAdA after amination, pan-phosphorylation, and deprotection. InsAdA from this synthetic route bound with greater affinity than AdA to IP3R1 and was more potent in releasing Ca2+ from intracellular stores through IP3Rs. It is the most potent full agonist of IP3R1 known and .equipotent with material from the fully chiral synthetic route.
Collapse
Affiliation(s)
- Xiangdong Su
- Medicinal
Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Wolfgang Dohle
- Medicinal
Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Stephen J. Mills
- Medicinal
Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Joanna M. Watt
- Medicinal
Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
- Wolfson
Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Ana M. Rossi
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K.
| | - Colin W. Taylor
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K.
| | - Barry V. L. Potter
- Medicinal
Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| |
Collapse
|
27
|
Synthesis, PASS Predication, Antimicrobial, DFT, and ADMET Studies of Some Novel Mannopyranoside Esters. JOURNAL OF APPLIED SCIENCE & PROCESS ENGINEERING 2020. [DOI: 10.33736/jaspe.2603.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Due to the biodegradability and drug-likeness properties sugar esters (SEs) are getting especial attention to the synthetic and bioorganic chemists. In this context, we have synthesized several 6-O-pentanoyl mannopyranoside esters (5-9) with alkanoyl and sylfonyl chains reasonably in good yields. Both the prediction of activity spectra for substances (PASS) and in vitro tests indicated that these mannopyranoside esters possess better potentiality against fungal pathogens than the bacterial organisms. These SEs were also optimized with quantum chemical density functional theory (DFT), and various thermodynamic properties like frontier molecular orbital, and molecular electrostatic potential (MEP) were calculated and discussed. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) calculations indicated that these SEs can pass through blood brain barrier and less toxic. Drug-likeness results indicated good conditions for alkanoyl esters rather than sulfonyl esters despite their promising antifungal results. All the in vitro and in silico results indicated that the combination of pentanoyl (C5) and lauroyl (C12) chains in mannopyranoside framework, as in 9, might be a potential candidate for novel antifungal agent.
Collapse
|
28
|
Matin MM, Chakraborty P, Alam MS, Islam MM, Hanee U. Novel mannopyranoside esters as sterol 14α-demethylase inhibitors: Synthesis, PASS predication, molecular docking, and pharmacokinetic studies. Carbohydr Res 2020; 496:108130. [PMID: 32863019 PMCID: PMC7427576 DOI: 10.1016/j.carres.2020.108130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/02/2020] [Accepted: 08/09/2020] [Indexed: 12/18/2022]
Abstract
Direct unimolar one-step valeroylation of methyl α-d-mannopyranoside (MDM) furnished mainly 6-O-valeroate. However, similar reaction catalyzed by DMAP resulted 3,6-di-O-valeroate (21%) and 6-O-valeroate (47%) indicating reactivity sequence as 6-OH>3-OH>2-OH,4-OH. To get potential antimicrobial agents, 6-O-valeroate was converted into four 2,3,4-di-O-acyl esters, and 3,6-di-O-valeroate was converted into 2,4-di-O-acetate. Direct tetra-O-valeroylation of MDM gave a mixture of 2,3,4,6-tetra-O-valeroate and 2,3,6-tri-O-valeroate indicating that the C2-OH is more reactive than the equatorial C4-OH. The activity spectra analysis along with in vitro antimicrobial evaluation clearly indicated that these novel MDM esters had better antifungal activities over antibacterial agents. In this connection, molecular docking indicated that these MDM esters acted as competitive inhibitors of sterol 14α-demethylase (CYP51), an essential enzyme for clinical target to cure several infectious diseases. Furthermore, pharmacokinetic studies revealed that these MDM esters may be worth considering as potent candidates for oral and topical administration. Structure activity relationship (SAR) affirmed that saturated valeric chain (C5) in combination with caprylic (C8) chains was more promising CYP51 inhibitor over conventional antifungal antibiotics.
Collapse
Affiliation(s)
- Mohammed M Matin
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chattogram, 4331, Bangladesh.
| | - Priyanka Chakraborty
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Muhammad S Alam
- Molecular Modeling & Drug Design Laboratory, Bangladesh Council of Scientific & Industrial Research (BCSIR) Laboratories, Chattogram, 4220, Bangladesh
| | - Mohammad M Islam
- Department of Biochemistry and Molecular Biology, Faculty of Biological Science, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Umme Hanee
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chattogram, 4331, Bangladesh
| |
Collapse
|
29
|
Niedek D, Erb FR, Topp C, Seitz A, Wende RC, Eckhardt AK, Kind J, Herold D, Thiele CM, Schreiner PR. In Situ Switching of Site-Selectivity with Light in the Acetylation of Sugars with Azopeptide Catalysts. J Org Chem 2020; 85:1835-1846. [PMID: 31763833 DOI: 10.1021/acs.joc.9b01913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We present a novel concept for the in situ control of site-selectivity of catalytic acetylations of partially protected sugars using light as external stimulus and oligopeptide catalysts equipped with an azobenzene moiety. The isomerizable azobenzene-peptide backbone defines the size and shape of the catalytic pocket, while the π-methyl-l-histidine (Pmh) moiety transfers the electrophile. Photoisomerization of the E- to the Z-azobenzene catalyst (monitored via NMR) with an LED (λ = 365 nm) drastically changes the chemical environment around the catalytically active Pmh moiety, so that the light-induced change in the catalyst shape alters site-selectivity. As a proof of principle, we employed (4,6-O-benzylidene)methyl-α-d-pyranosides, which provide a change in regioselectivity from 2:1 (E) to 1:5 (Z) for the monoacetylated products at room temperature. The validity of this new catalyst-design concept is further demonstrated with the regioselective acetylation of the natural product quercetin. In situ irradiation NMR spectroscopy was used to quantify photostationary states under continuous irradiation with UV light.
Collapse
Affiliation(s)
- Dominik Niedek
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Frederik R Erb
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Christopher Topp
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Alexander Seitz
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Raffael C Wende
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - André K Eckhardt
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Jonas Kind
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie , Technische Universität Darmstadt , Alarich-Weiss-Str. 16 , 64287 Darmstadt , Germany
| | - Dominik Herold
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie , Technische Universität Darmstadt , Alarich-Weiss-Str. 16 , 64287 Darmstadt , Germany
| | - Christina M Thiele
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie , Technische Universität Darmstadt , Alarich-Weiss-Str. 16 , 64287 Darmstadt , Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| |
Collapse
|
30
|
Seifried BM, Qi W, Yang YJ, Mai DJ, Puryear WB, Runstadler JA, Chen G, Olsen BD. Glycoprotein Mimics with Tunable Functionalization through Global Amino Acid Substitution and Copper Click Chemistry. Bioconjug Chem 2020; 31:554-566. [PMID: 32078297 DOI: 10.1021/acs.bioconjchem.9b00601] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glycoproteins and their mimics are challenging to produce because of their large number of polysaccharide side chains that form a densely grafted protein-polysaccharide brush architecture. Herein a new approach to protein bioconjugate synthesis is demonstrated that can approach the functionalization densities of natural glycoproteins through oligosaccharide grafting. Global amino acid substitution is used to replace the methionine residues in a methionine-enriched elastin-like polypeptide with homopropargylglycine (HPG); the substitution was found to replace 93% of the 41 methionines in the protein sequence as well as broaden and increase the thermoresponsive transition. A series of saccharides were conjugated to the recombinant protein backbones through copper(I)-catalyzed alkyne-azide cycloaddition to determine reactivity trends, with 83-100% glycosylation of HPGs. Only an acetyl-protected sialyllactose moiety showed a lower level of 42% HPG glycosylation that is attributed to steric hindrance. The recombinant glycoproteins reproduced the key biofunctional properties of their natural counterparts such as viral inhibition and lectin binding.
Collapse
Affiliation(s)
- Brian M Seifried
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wenjing Qi
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200000, China
| | - Yun Jung Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Danielle J Mai
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wendy B Puryear
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts 01536, United States
| | - Jonathan A Runstadler
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts 01536, United States
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200000, China
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Macromolecular Science, Fudan University, Shanghai 200000, China
| |
Collapse
|
31
|
Vaugenot J, El Harras A, Tasseau O, Marchal R, Legentil L, Le Guennic B, Benvegnu T, Ferrières V. 6-Deoxy-6-fluoro galactofuranosides: regioselective glycosylation, unexpected reactivity, and anti-leishmanial activity. Org Biomol Chem 2020; 18:1462-1475. [PMID: 32025679 DOI: 10.1039/c9ob02596k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Selective glycosylation of the C-6 fluorinated galactofuranosyl acceptor 2 was studied with four galactofuranosyl donors. It was highlighted that this electron-withdrawing atom strongly impacted the behavior of the acceptor, thus leading to unprecedented glycosylation pathways. Competition between expected glycosylation of 2, ring expansion of this acceptor and furanosylation, and intermolecular aglycon transfer was observed. Further investigation of the fluorinated synthetic compounds showed that the presence of fluorine atom contributed to increase the inhibition of the growth of Leishmania tarentolae, a non-pathogenic strain of Leishmania.
Collapse
Affiliation(s)
- Jeane Vaugenot
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Abderrafek El Harras
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Olivier Tasseau
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Rémi Marchal
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Laurent Legentil
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Boris Le Guennic
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Thierry Benvegnu
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Vincent Ferrières
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
32
|
Ding Y, Vara Prasad CVNS, Wang B. Glycosylation on Unprotected or Partially Protected Acceptors. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yili Ding
- Life Science Department; Foshan University; 528000 Foshan Guangdong China
| | | | - Bingyun Wang
- Life Science Department; Foshan University; 528000 Foshan Guangdong China
| |
Collapse
|
33
|
Sivets GG. Regioselective and stereocontrolled syntheses of protected L-glycosides from L-arabinofuranosides. Carbohydr Res 2020; 488:107901. [DOI: 10.1016/j.carres.2019.107901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 11/28/2022]
|
34
|
Del Vigo EA, Stortz CA, Marino C. Regioselectivity of glycosylation reactions of galactose acceptors: an experimental and theoretical study. Beilstein J Org Chem 2019; 15:2982-2989. [PMID: 31921370 PMCID: PMC6941450 DOI: 10.3762/bjoc.15.294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/06/2019] [Indexed: 11/23/2022] Open
Abstract
Regioselective glycosylations allow planning simpler strategies for the synthesis of oligosaccharides, and thus reducing the need of using protecting groups. With the idea of gaining further understanding of such regioselectivity, we analyzed the relative reactivity of the OH-3 and OH-4 groups of 2,6-diprotected methyl α- and β-galactopyranoside derivatives in glycosylation reactions. The glycosyl acceptors were efficiently prepared by simple methodologies, and glycosyl donors with different reactivities were assessed. High regioselectivities were achieved in favor of the 1→3 products due to the equatorial orientation of the OH-3 group. A molecular modeling approach endorsed this general trend of favoring O-3 substitution, although it showed some failures to explain subtler factors governing the difference in regioselectivity between some of the acceptors. However, the Galp-(β1→3)-Galp linkage could be regioselectively installed by using some of the acceptors assayed herein.
Collapse
Affiliation(s)
- Enrique A Del Vigo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Departamento de Química Orgánica, Pab. 2, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Carlos A Stortz
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Departamento de Química Orgánica, Pab. 2, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Carla Marino
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Departamento de Química Orgánica, Pab. 2, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| |
Collapse
|
35
|
Cai L, Zeng J, Li T, Xiao Y, Ma X, Xiao X, Zhang Q, Meng L, Wan Q. Dehydrative Glycosylation Enabled by a Comproportionation Reaction of 2‐Aryl‐1,3‐dithiane 1‐Oxide
†. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lei Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Ting Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Ying Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Xiang Ma
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Xiong Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Qin Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
- Institute of Brain Research, Huazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| |
Collapse
|
36
|
Pawar NJ, Wang L, Higo T, Bhattacharya C, Kancharla PK, Zhang F, Baryal K, Huo C, Liu J, Linhardt RJ, Huang X, Hsieh‐Wilson LC. Expedient Synthesis of Core Disaccharide Building Blocks from Natural Polysaccharides for Heparan Sulfate Oligosaccharide Assembly. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Nitin J. Pawar
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Lei Wang
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Takuya Higo
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Chandrabali Bhattacharya
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Pavan K. Kancharla
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Fuming Zhang
- Departments of Chemistry and Chemical Biology and Chemical and Biological EngineeringCenter for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic Institute Troy NY 12180 USA
| | - Kedar Baryal
- Departments of Chemistry and Biomedical EngineeringMichigan State University East Lansing MI 48824 USA
| | - Chang‐Xin Huo
- Departments of Chemistry and Biomedical EngineeringMichigan State University East Lansing MI 48824 USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal ChemistryEshelman School of PharmacyUniversity of North Carolina Chapel Hill NC 27599 USA
| | - Robert J. Linhardt
- Departments of Chemistry and Chemical Biology and Chemical and Biological EngineeringCenter for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic Institute Troy NY 12180 USA
| | - Xuefei Huang
- Departments of Chemistry and Biomedical EngineeringMichigan State University East Lansing MI 48824 USA
| | - Linda C. Hsieh‐Wilson
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| |
Collapse
|
37
|
Pawar NJ, Wang L, Higo T, Bhattacharya C, Kancharla PK, Zhang F, Baryal K, Huo CX, Liu J, Linhardt RJ, Huang X, Hsieh-Wilson LC. Expedient Synthesis of Core Disaccharide Building Blocks from Natural Polysaccharides for Heparan Sulfate Oligosaccharide Assembly. Angew Chem Int Ed Engl 2019; 58:18577-18583. [PMID: 31553820 DOI: 10.1002/anie.201908805] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/22/2019] [Indexed: 12/23/2022]
Abstract
The complex sulfation motifs of heparan sulfate glycosaminoglycans (HS GAGs) play critical roles in many important biological processes. However, an understanding of their specific functions has been hampered by an inability to synthesize large numbers of diverse, yet defined, HS structures. Herein, we describe a new approach to access the four core disaccharides required for HS/heparin oligosaccharide assembly from natural polysaccharides. The use of disaccharides rather than monosaccharides as minimal precursors greatly accelerates the synthesis of HS GAGs, providing key disaccharide and tetrasaccharide intermediates in about half the number of steps compared to traditional strategies. Rapid access to such versatile intermediates will enable the generation of comprehensive libraries of sulfated oligosaccharides for unlocking the "sulfation code" and understanding the roles of specific GAG structures in physiology and disease.
Collapse
Affiliation(s)
- Nitin J Pawar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Lei Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Takuya Higo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Chandrabali Bhattacharya
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Pavan K Kancharla
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Fuming Zhang
- Departments of Chemistry and Chemical Biology and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Kedar Baryal
- Departments of Chemistry and Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Chang-Xin Huo
- Departments of Chemistry and Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robert J Linhardt
- Departments of Chemistry and Chemical Biology and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Xuefei Huang
- Departments of Chemistry and Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Linda C Hsieh-Wilson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
38
|
Matin MM, Bhuiyan MM, Kabir E, Sanaullah AF, Rahman MA, Hossain ME, Uzzaman M. Synthesis, characterization, ADMET, PASS predication, and antimicrobial study of 6-O-lauroyl mannopyranosides. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Takemoto K, Nishikawa Y, Moriguchi S, Hori Y, Kamezawa Y, Matsui T, Hara O. Site-Selective Esterifications of Polyol β-Hydroxyamides and Applications to Serine-Selective Glycopeptide Modifications. Org Lett 2019; 21:7534-7538. [PMID: 31498646 DOI: 10.1021/acs.orglett.9b02809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The site-selective acylations of β-hydroxyamides in the presence of other hydroxyl groups are described. Central to the success of this modification is the metal-template-driven acylation using pyridine ketoxime esters as acylating reagents in combination with CuOTf. This strategy enables β-hydroxyl groups to be site-selectively acylated in various derivatives, including sterically hindered secondary β-alcohol. The utility of this methodology is showcased by the serine-selective modification of a glycopeptide with unprotected sugar.
Collapse
Affiliation(s)
- Kohei Takemoto
- Faculty of Pharmacy , Meijo University , 150 Yagotoyama, Tempaku-ku , Nagoya , Aichi 468-8503 , Japan
| | - Yasuhiro Nishikawa
- Faculty of Pharmacy , Meijo University , 150 Yagotoyama, Tempaku-ku , Nagoya , Aichi 468-8503 , Japan
| | - Shohei Moriguchi
- Faculty of Pharmacy , Meijo University , 150 Yagotoyama, Tempaku-ku , Nagoya , Aichi 468-8503 , Japan
| | - Yuna Hori
- Faculty of Pharmacy , Meijo University , 150 Yagotoyama, Tempaku-ku , Nagoya , Aichi 468-8503 , Japan
| | - Yuki Kamezawa
- Faculty of Pharmacy , Meijo University , 150 Yagotoyama, Tempaku-ku , Nagoya , Aichi 468-8503 , Japan
| | - Takami Matsui
- Faculty of Pharmacy , Meijo University , 150 Yagotoyama, Tempaku-ku , Nagoya , Aichi 468-8503 , Japan
| | - Osamu Hara
- Faculty of Pharmacy , Meijo University , 150 Yagotoyama, Tempaku-ku , Nagoya , Aichi 468-8503 , Japan
| |
Collapse
|
40
|
Synthesis, PASS predication, in vitro antimicrobial evaluation and pharmacokinetic study of novel n-octyl glucopyranoside esters. Carbohydr Res 2019; 485:107812. [PMID: 31585251 DOI: 10.1016/j.carres.2019.107812] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/30/2019] [Accepted: 09/08/2019] [Indexed: 11/21/2022]
Abstract
Octyl β-d-glucopyranoside (OBG), prepared from d-glucose and octan-1-ol employing MW method, was subjected to direct dimolar valeroylation in pyridine at room temperature (25 °C) with valeroyl chloride. This mainly furnished the corresponding 3,6-di-O-valeroate in 57% yield indicating the regioselectivity at C-6 and C-3 positions. For structural elucidation and to get newer glucopyranosides of potential antimicrobial 3,6-di-O-valeroate was further converted into four novel 2,4-di-O-acyl esters reasonably in good yields. Per-O-acetate and per-O-benzoate of OBG were also prepared for SAR study. PASS predication and in vitro antimicrobial studies established them as better antifungal agent than that of antibacterial. SAR study along with AdmetSAR and SwissADME suggested that incorporation of alkanoyl and aromatic ester groups on octyl glucopyranoside core increase antimicrobial potentiality in very low concentration (10 μgmL-1). Molecular docking revealed that novel 2,4-di-O-tosyl ester and 2,3,4,6-tetra-O-benzoyl ester may act as competitive inhibitors of lanosterol 14-alpha demethylase.
Collapse
|
41
|
Position of acetyl groups on anhydroglucose unit in acetylated starches with intermediate degrees of substitution. Carbohydr Polym 2019; 220:118-125. [DOI: 10.1016/j.carbpol.2019.05.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 11/20/2022]
|
42
|
Blaszczyk SA, Xiao G, Wen P, Hao H, Wu J, Wang B, Carattino F, Li Z, Glazier DA, McCarty BJ, Liu P, Tang W. S
‐Adamantyl Group Directed Site‐Selective Acylation: Applications in Streamlined Assembly of Oligosaccharides. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stephanie A. Blaszczyk
- School of PharmacyUniversity of Wisconsin-Madison 777 Highland Avenue Madison WI 53705 USA
- Department of ChemistryUniversity of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - Guozhi Xiao
- School of PharmacyUniversity of Wisconsin-Madison 777 Highland Avenue Madison WI 53705 USA
| | - Peng Wen
- School of PharmacyUniversity of Wisconsin-Madison 777 Highland Avenue Madison WI 53705 USA
| | - Hua Hao
- Department of ChemistryUniversity of Pittsburgh 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Jessica Wu
- School of PharmacyUniversity of Wisconsin-Madison 777 Highland Avenue Madison WI 53705 USA
| | - Bo Wang
- School of PharmacyUniversity of Wisconsin-Madison 777 Highland Avenue Madison WI 53705 USA
| | - Francisco Carattino
- Department of ChemistryUniversity of Pittsburgh 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Ziyuan Li
- School of PharmacyUniversity of Wisconsin-Madison 777 Highland Avenue Madison WI 53705 USA
| | - Daniel A. Glazier
- Department of ChemistryUniversity of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - Bethany J. McCarty
- Department of ChemistryUniversity of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - Peng Liu
- Department of ChemistryUniversity of Pittsburgh 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Weiping Tang
- School of PharmacyUniversity of Wisconsin-Madison 777 Highland Avenue Madison WI 53705 USA
- Department of ChemistryUniversity of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| |
Collapse
|
43
|
Blaszczyk SA, Xiao G, Wen P, Hao H, Wu J, Wang B, Carattino F, Li Z, Glazier DA, McCarty BJ, Liu P, Tang W. S-Adamantyl Group Directed Site-Selective Acylation: Applications in Streamlined Assembly of Oligosaccharides. Angew Chem Int Ed Engl 2019; 58:9542-9546. [PMID: 31066162 PMCID: PMC6663581 DOI: 10.1002/anie.201903587] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/03/2019] [Indexed: 12/15/2022]
Abstract
The site-selective functionalization of carbohydrates is an active area of research. Reported here is the surprising observation that the sterically encumbered adamantyl group directed site-selective acylation at the C2 position of S-glycosides through dispersion interactions between the adamantyl C-H bonds and the π system of the cationic acylated catalyst, which may have broad implications in many other chemical reactions. Because of their stability, chemical orthogonality, and ease of activation for glycosylation, the site-selective acylation of S-glycosides streamlines oligosaccharide synthesis and will have wide applications in complex carbohydrate synthesis.
Collapse
Affiliation(s)
- Stephanie A Blaszczyk
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - Guozhi Xiao
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
| | - Peng Wen
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
| | - Hua Hao
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Jessica Wu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
| | - Bo Wang
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
| | - Francisco Carattino
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Ziyuan Li
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
| | - Daniel A Glazier
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - Bethany J McCarty
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| |
Collapse
|
44
|
Fang J, Zeng J, Sun J, Zhang S, Xiao X, Lu Z, Meng L, Wan Q. Total Syntheses of Resin Glycosides Murucoidins IV and V. Org Lett 2019; 21:6213-6216. [PMID: 31247754 DOI: 10.1021/acs.orglett.9b02004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Murucoidins IV and V, two bioactive resin glycosides with complex yet similar structures isolated from the morning glory family, were synthesized in a convergent manner. All of the glycosylations in these syntheses including the key [3 + 2] coupling were achieved by our recently developed interrupted Pummerer reaction mediated (IPRm) glycosylations. The broad functional group compatibility of IPRm glycosylation allowed us to employ a latent-active concept and a single-pot transient protection-glycosylation-deprotection strategy which significantly improved the global synthetic efficiency.
Collapse
Affiliation(s)
- Jing Fang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , P.R. China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , P.R. China
| | - Jiuchang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , P.R. China
| | - Shuxin Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , P.R. China
| | - Xiong Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , P.R. China
| | - Zimin Lu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , P.R. China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , P.R. China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , P.R. China
| |
Collapse
|
45
|
Shimada N, Nakamura Y, Ochiai T, Makino K. Catalytic Activation of Cis-Vicinal Diols by Boronic Acids: Site-Selective Acylation of Carbohydrates. Org Lett 2019; 21:3789-3794. [DOI: 10.1021/acs.orglett.9b01231] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Naoyuki Shimada
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Yuki Nakamura
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Takayuki Ochiai
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kazuishi Makino
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| |
Collapse
|
46
|
Wang T, Demchenko AV. Synthesis of carbohydrate building blocks via regioselective uniform protection/deprotection strategies. Org Biomol Chem 2019; 17:4934-4950. [PMID: 31044205 DOI: 10.1039/c9ob00573k] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Discussed herein is the synthesis of partially protected carbohydrates by manipulating only one type of a protecting group for a given substrate. The first focus of this review is the uniform protection of an unprotected starting material in a way that only one (or two) hydroxyl group remains unprotected. The second focus involves regioselective partial deprotection of uniformly protected compounds in a way that only one (or two) hydroxyl group becomes liberated.
Collapse
Affiliation(s)
- Tinghua Wang
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, Missouri 63121, USA.
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, Missouri 63121, USA.
| |
Collapse
|
47
|
Vucko T, Pellegrini Moïse N, Lamandé-Langle S. Value-added carbohydrate building blocks by regioselective O-alkylation of C-glucosyl compounds. Carbohydr Res 2019; 477:1-10. [DOI: 10.1016/j.carres.2019.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
|
48
|
Sivets GG, Amblard F, Schinazi RF. Synthesis of 2-fluoro-substituted and 2,6-modified purine 2',3'-dideoxy-2',3'-difluoro-d-arabinofuranosyl nucleosides from d-xylose. Tetrahedron 2019; 75:2037-2046. [PMID: 34316083 PMCID: PMC8313018 DOI: 10.1016/j.tet.2019.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A series of novel purine-modified 2',3'-dideoxy-2',3'-difluro-D-arabinonucleosides, including fluorinated analogs of fludarabine and nelarabine, have been prepared via anion glycosylation reactions of salts of 2-fluoropurine derivatives with the glycosyl bromide. A short and efficient synthetic route to the carbohydrate precursor 5-O-benzoyl-2,3-difluoro-α-d-arabinofuranosyl bromide was developed in five steps from d-xylose. Improved synthesis of methyl 5-O-benzoyl-2,3-difluoro-α-d-arabinofuranoside based upon the study of diethylaminosulfur trifluoride (DAST)-reactions with 5-O-protected methyl D-xylosides was explored using mild reaction conditions on the key step. New peculiarities for selective fluorinations of 5-O-benzoylated α- and β-D-pentofuranosides with DAST leading to the formation of mono and difluoro-furanoside derivatives are reported.
Collapse
Affiliation(s)
- Grigorii G. Sivets
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 5/2 Acad. Kuprevicha, Minsk, 220141, Belarus
| | - Franck Amblard
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Raymond F. Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
49
|
Abstract
The translation of biological glycosylation in humans to the clinical applications involves systematic studies using homogeneous samples of oligosaccharides and glycoconjugates, which could be accessed by chemical, enzymatic or other biological methods. However, the structural complexity and wide-range variations of glycans and their conjugates represent a major challenge in the synthesis of this class of biomolecules. To help navigate within many methods of oligosaccharide synthesis, this Perspective offers a critical assessment of the most promising synthetic strategies with an eye on the therapeutically relevant targets.
Collapse
Affiliation(s)
- Larissa Krasnova
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Chi-Huey Wong
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States.,Genomics Research Center, Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
50
|
Wang T, Nigudkar SS, Yasomanee JP, Rath NP, Stine KJ, Demchenko AV. Glycosyl nitrates in synthesis: streamlined access to glucopyranose building blocks differentiated at C-2. Org Biomol Chem 2019; 16:3596-3604. [PMID: 29693690 DOI: 10.1039/c8ob00477c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In an attempt to refine a CAN-mediated synthesis of 1,3,4,6-tetra-O-acetyl-α-d-glucopyranose (2-OH glucose) we unexpectedly discovered that this reaction proceeds via the intermediacy of glycosyl nitrates. Improved mechanistic understanding of this reaction led to the development of a more versatile synthesis of 2-OH glucose from a variety of precursors. Also demonstrated is the conversion of 2-OH glucose into a variety of building blocks differentially protected at C-2, a position that is generally hard to protect regioselectively in the glucopyranose series.
Collapse
Affiliation(s)
- Tinghua Wang
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA.
| | | | | | | | | | | |
Collapse
|