1
|
Ferjancic Z, Bihelovic F, Vulovic B, Matovic R, Trmcic M, Jankovic A, Pavlovic M, Djurkovic F, Prodanovic R, Djurdjevic Djelmas A, Kalicanin N, Zlatovic M, Sladic D, Vallet T, Vignuzzi M, Saicic RN. Development of iminosugar-based glycosidase inhibitors as drug candidates for SARS-CoV-2 virus via molecular modelling and in vitro studies. J Enzyme Inhib Med Chem 2024; 39:2289007. [PMID: 38086763 DOI: 10.1080/14756366.2023.2289007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
We developed new iminosugar-based glycosidase inhibitors against SARS-CoV-2. Known drugs (miglustat, migalastat, miglitol, and swainsonine) were chosen as lead compounds to develop three classes of glycosidase inhibitors (α-glucosidase, α-galactosidase, and mannosidase). Molecular modelling of the lead compounds, synthesis of the compounds with the highest docking scores, enzyme inhibition tests, and in vitro antiviral assays afforded rationally designed inhibitors. Two highly active α-glucosidase inhibitors were discovered, where one of them is the most potent iminosugar-based anti-SARS-CoV-2 agent to date (EC90 = 1.94 µM in A549-ACE2 cells against Omicron BA.1 strain). However, galactosidase inhibitors did not exhibit antiviral activity, whereas mannosidase inhibitors were both active and cytotoxic. As our iminosugar-based drug candidates act by a host-directed mechanism, they should be more resilient to drug resistance. Moreover, this strategy could be extended to identify potential drug candidates for other viral infections.
Collapse
Affiliation(s)
| | - Filip Bihelovic
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Bojan Vulovic
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Radomir Matovic
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Belgrade, Serbia
| | - Milena Trmcic
- Innovation Centre of the Faculty of Chemistry, Belgrade, Serbia
| | - Aleksandar Jankovic
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Belgrade, Serbia
| | - Milos Pavlovic
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Filip Djurkovic
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | | | | | - Nevena Kalicanin
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Belgrade, Serbia
| | - Mario Zlatovic
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Dusan Sladic
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Thomas Vallet
- Institut Pasteur, Center for the Viral Populations and Pathogenesis, Paris, France
| | - Marco Vignuzzi
- Institut Pasteur, Center for the Viral Populations and Pathogenesis, Paris, France
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Radomir N Saicic
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
2
|
Trajkovic M, Pavlovic M, Bihelovic F, Ferjancic Z, Saicic RN. Total Synthesis of ( + )-Swainsonine, (–)- Swainsonine, ( + )-8- epi- Swainsonine and ( + )- Dideoxy-Imino-Lyxitol by an Organocatalyzed Aldolization/Reductive Amination Sequence. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221091672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A tactical combination of either ( S)- or ( R)-proline catalyzed aldol reaction followed by intramolecular reductive amination enabled the synthesis of a chiral pyrrolidine derivative with 3 contiguous stereocenters in only 2 synthetic steps, starting from achiral precursors. This product, obtainable in both enantiomeric forms, was further exploited as a common intermediate in total syntheses of the biologically active iminosugars: ( + )-swainsonine, (–)-swainsonine, ( + )-8- epi-swainsonine, and ( + )-dideoxy-imino-lyxitol.
Collapse
Affiliation(s)
- Milos Trajkovic
- University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | - Milos Pavlovic
- University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | - Filip Bihelovic
- University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | | | - Radomir N Saicic
- University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
3
|
Ferjancic Z, Saicic RN. Combining Organocatalyzed Aldolization and Reductive Amination: An Efficient Reaction Sequence for the Synthesis of Iminosugars. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zorana Ferjancic
- University of Belgrade – Faculty of Chemistry Studentski trg 16, POB 51 11158 Belgrade 118 Serbia
| | - Radomir N. Saicic
- University of Belgrade – Faculty of Chemistry Studentski trg 16, POB 51 11158 Belgrade 118 Serbia
- Serbian Academy of Sciences and Arts Kneza Mihaila 35 11 000 Belgrade Serbia
| |
Collapse
|