1
|
Tanini D, Capperucci A, Locuoco M, Ferraroni M, Costantino G, Angeli A, Supuran CT. Benzoselenoates: A novel class of carbonic anhydrase inhibitors. Bioorg Chem 2022; 122:105751. [PMID: 35344894 DOI: 10.1016/j.bioorg.2022.105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/11/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022]
Abstract
A series of benzoselenoates has been prepared and their inhibitory properties against the most relevant human Carbonic Anhydrases (CAs) isoforms, among which hCA I, II, IV, VII, IX, and XII were investigated. These inhibitors were designed considering the carboxylates and mono-/dithiocarbamates as lead and led to the observation that the COSe- is a new zinc-binding group (ZBG) for metalloenzymes possessing zinc ions at their active site. The substitution pattern on aromatic ring of the benzoselenoates is the crucial structural element influencing selectivity towards various isoforms. We elucidated the binding mode of benzoselenoates to hCA I and hCA II by using X-ray crystallography. The negatively charged selenium atom from the new ZBG was observed coordinated to the zinc ion from the CA active site at a distance of 2.30-2.40 Å from it. Overall, these data might be useful for the development of new inhibitors with higher selectivity and efficacy for various hCAs.
Collapse
Affiliation(s)
- Damiano Tanini
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Antonella Capperucci
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Maria Locuoco
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Marta Ferraroni
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Gabriele Costantino
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - Andrea Angeli
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy; NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
2
|
Tanini D, Carradori S, Capperucci A, Lupori L, Zara S, Ferraroni M, Ghelardini C, Mannelli L, Micheli L, Lucarini E, Carta F, Angeli A, Supuran CT. Chalcogenides-incorporating carbonic anhydrase inhibitors concomitantly reverted oxaliplatin-induced neuropathy and enhanced antiproliferative action. Eur J Med Chem 2021; 225:113793. [PMID: 34507012 DOI: 10.1016/j.ejmech.2021.113793] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
Platinum-based chemotherapy is widely used for the treatment of different tumors but is associated with serious side effects, among which neuropathic pain. Carbonic anhydrase (CA, EC 4.2.1.1) inhibitors have recently been validated as therapeutic agents in neuropathic pain and as antitumor agents. We report the synthesis of new organochalcogenides bearing the benzensulfonamide moiety acting as potent inhibitors of several human CA isoforms and, in particular, against hCA II and VII endowed with potent neuropathic pain attenuating effects. Moreover, in combination with cisplatin or doxorubicin, some of the new CA inhibitors enhanced the effects of the anticancer drugs capability in counteracting breast cancer MCF7 cell viability. The concomitant anti-neuropathic pain and antiproliferative effects of the new chalcogenide-based CA inhibitors represent an innovative approach for the counteraction and management of side effects associated with clinically platinum drugs as antitumor agents.
Collapse
Affiliation(s)
- Damiano Tanini
- University of Florence, Department of Chemistry "Ugo Schiff", Via Della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Antonella Capperucci
- University of Florence, Department of Chemistry "Ugo Schiff", Via Della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Lucrezia Lupori
- University of Florence, Department of Chemistry "Ugo Schiff", Via Della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Susi Zara
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marta Ferraroni
- University of Florence, Department of Chemistry "Ugo Schiff", Via Della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Carla Ghelardini
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, Firenze, Italy
| | - Ldc Mannelli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, Firenze, Italy
| | - Laura Micheli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, Firenze, Italy
| | - Elena Lucarini
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, Firenze, Italy
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy; Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, "Petru Poni" Institute of Macromolecular Chemistry, 707410, Iasi, Romania.
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
3
|
Capperucci A, Coronnello M, Salvini F, Tanini D, Dei S, Teodori E, Giovannelli L. Synthesis of functionalised organochalcogenides and in vitro evaluation of their antioxidant activity. Bioorg Chem 2021; 110:104812. [PMID: 33744808 DOI: 10.1016/j.bioorg.2021.104812] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/29/2021] [Accepted: 03/05/2021] [Indexed: 11/26/2022]
Abstract
Differently substituted β-hydroxy- and β-amino dialkyl and alkyl-aryl tellurides and selenides have been prepared through ring-opening reactions of epoxides and aziridines with selenium- or tellurium-centered nucleophiles. The antioxidant properties and the cytotoxicity of such compounds have been investigated on normal human dermal fibroblasts. Most of the studied compounds exhibited a low cytotoxicity and a number of them proved to be non-toxic, not showing any effect on cell viability even at the highest concentration used (100 μM). The obtained results showed a significant antioxidant potential of the selected organotellurium compounds, particularly evident under conditions of exogenously induced oxidative stress. The antioxidant activity of selenium-containing analogues of active tellurides has also been evaluated on cells, highlighting that the replacement of Se with Te brought about a significant increase in the peroxidase activity.
Collapse
Affiliation(s)
- Antonella Capperucci
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (Florence), Italy
| | - Marcella Coronnello
- University of Florence, Department of Health Sciences - Section of Clinical Pharmacology and Oncology, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Francesca Salvini
- University of Florence, Department of Health Sciences - Section of Clinical Pharmacology and Oncology, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Damiano Tanini
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (Florence), Italy.
| | - Silvia Dei
- University of Florence, Department of Neurosciences, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, via Ugo Schiff 6, 50019 Sesto Fiorentino (FI), Italy.
| | - Elisabetta Teodori
- University of Florence, Department of Neurosciences, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, via Ugo Schiff 6, 50019 Sesto Fiorentino (FI), Italy
| | - Lisa Giovannelli
- University of Florence, Department of Neurosciences, Psychology, Drug Research and Child's Health - Section of Pharmacology, Viale Pieraccini 6, 50139 Firenze, Italy
| |
Collapse
|
4
|
Irfan M, Rehman R, Razali MR, Shafiq-Ur-Rehman, Ateeq-Ur-Rehman, Iqbal MA. Organotellurium compounds: an overview of synthetic methodologies. REV INORG CHEM 2020. [DOI: 10.1515/revic-2020-0006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
In wake of emerging applications of organotellurium compounds in biological and material science avenues, the current review describes their key synthetic methodologies while focusing the synthesis of organotellurium compounds through five ligand-to-metal linkages including carbon; carbon-oxygen; carbon-nitrogen; carbon-metal; carbon-sulfur to tellurium. In all of these linkages whether tellurium links with ligands through a complicated or simple pathways, it is often governed through electrophilic substitution reactions. The present study encompasses these major synthetic routes so as to acquire comprehensive understanding of synthetic organotellurium compounds.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Chemistry , University of Agriculture , Faisalabad - 38040 , Pakistan
- Organometallic & Coordination Chemistry Laboratory , University of Agriculture , Faisalabad - 38040 , Pakistan
| | - Rabia Rehman
- Institute of Chemistry , University of the Punjab , Lahore - 54590 , Pakistan
| | - Mohd. R. Razali
- School of Chemical Sciences , Universiti Sains Malaysia , 11800-USM , Penang , Malaysia
| | - Shafiq-Ur-Rehman
- Department of Chemistry , University of Agriculture , Faisalabad - 38040 , Pakistan
| | - Ateeq-Ur-Rehman
- Department of Physics , University of Agriculture , Faisalabad - 38040 , Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry , University of Agriculture , Faisalabad - 38040 , Pakistan
- Organometallic & Coordination Chemistry Laboratory , University of Agriculture , Faisalabad - 38040 , Pakistan
| |
Collapse
|
5
|
Unexpected Ethyltellurenylation of Epoxides with Elemental Tellurium under Lithium Triethylborohydride Conditions. CHEMISTRY-SWITZERLAND 2020. [DOI: 10.3390/chemistry2030041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The one-pot multistep ethyltellurenylation reaction of epoxides with elemental tellurium and lithium triethylborohydride is described. The reaction mechanism was experimentally investigated. Dilithium ditelluride and triethyl borane, formed from elemental tellurium and lithium triethylborohydride, were shown to be the key species involved in the reaction mechanism. Epoxides undergo ring-opening reaction with dilithium ditelluride to afford β-hydroxy ditellurides, which are sequentially converted into the corresponding β-hydroxy-alkyl ethyl tellurides by transmetalation with triethyl borane, reasonably proceeding through the SH2 mechanism.
Collapse
|
6
|
Tanini D, Ricci L, Capperucci A. Rongalite‐Promotedon WaterSynthesis of Functionalised Tellurides and Ditellurides. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901536] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Damiano Tanini
- University of FlorenceDepartment of Chemistry “Ugo Schiff” Via della Lastruccia 3–13 I-50019 Sesto Fiorentino Italy
| | - Lorenzo Ricci
- University of FlorenceDepartment of Chemistry “Ugo Schiff” Via della Lastruccia 3–13 I-50019 Sesto Fiorentino Italy
| | - Antonella Capperucci
- University of FlorenceDepartment of Chemistry “Ugo Schiff” Via della Lastruccia 3–13 I-50019 Sesto Fiorentino Italy
| |
Collapse
|
7
|
Direct and straightforward access to substituted alkyl selenols as novel carbonic anhydrase inhibitors. Eur J Med Chem 2020; 185:111811. [DOI: 10.1016/j.ejmech.2019.111811] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 11/21/2022]
|
8
|
Tanini D, Ricci L, Capperucci A, Di Cesare Mannelli L, Ghelardini C, Peat TS, Carta F, Angeli A, Supuran CT. Synthesis of novel tellurides bearing benzensulfonamide moiety as carbonic anhydrase inhibitors with antitumor activity. Eur J Med Chem 2019; 181:111586. [PMID: 31401537 DOI: 10.1016/j.ejmech.2019.111586] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/23/2019] [Accepted: 08/04/2019] [Indexed: 12/30/2022]
Abstract
We have synthetized a novel series of β-hydroxy tellurides bearing the benzenesulfonamide group as potent inhibitors of carbonic anhydrase enzymes. In a one pot procedure, we discovered both the ring opening reaction of the three-membered ring and the cleavage of the sulfonamide protecting moiety at the same time. Moreover, the first X-ray co-crystallographic structure of a β-hydroxy telluride derivative with hCA II is reported. The potent effects of these compounds against the tumor-associated hCA IX with low nanomolar constant inhibition values give the possibility to evaluate their activity in vitro using a breast cancer cell line (MDA-MB-231). Compounds 7e and 7g induced significant toxic effects against tumor cells after 48 h incubation in normoxic conditions killing over 50% of tumor cells at 3 μM, but their efficacy decreased in hypoxic conditions reaching the 50% of the tumor cell viability only at 30 μM. These unusual features make them interesting lead compounds to act as antitumor agents, not only as Carbonic Anhydrase IX inhibitors, but reasonably in different pathways, where hCA IX is not overexpressed.
Collapse
Affiliation(s)
- Damiano Tanini
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Lorenzo Ricci
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Antonella Capperucci
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Lorenzo Di Cesare Mannelli
- NEUROFARBA Department, Section of Pharmacology and Toxicology, Università degli Studi di Firenze, Viale Pieraccini 6, 50139, Florence, Italy
| | - Carla Ghelardini
- NEUROFARBA Department, Section of Pharmacology and Toxicology, Università degli Studi di Firenze, Viale Pieraccini 6, 50139, Florence, Italy
| | - Thomas S Peat
- CSIRO, 343 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Fabrizio Carta
- Department of University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Andrea Angeli
- Department of University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy; Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania.
| | - Claudiu T Supuran
- Department of University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
9
|
Tanini D, Capperucci A, Scopelliti M, Milaneschi A, Angeli A, Supuran CT. Syntesis of thio- and seleno-acetamides bearing benzenesulfonamide as potent inhibitors of human carbonic anhydrase II and XII. Bioorg Chem 2019; 89:102984. [PMID: 31112841 DOI: 10.1016/j.bioorg.2019.102984] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
A novel series of thio- and seleno-acetamides bearing benzenesulfonamide were synthetized and tested as human carbonic anhydrase inhibitors. These compounds were tested for the inhibition of four human (h) isoforms, hCA I, II, IX, and XII, involved in pathologies such as glaucoma (CA II and XII) or cancer (CA IX/XII). Several derivatives showed potent inhibition activity in low nanomolar range such as 3a, 4a, 7a and 8a. Furthermore, based on the tail approach we explain the interesting and selective inhibition profile of compound such as 5a and 9a, which were more selective for hCA I, 9b which was selective for hCA II, 3f selective for hCA IX and finally, 3e and 4b selective for hCA XII, over the other three isoforms. They are interesting leads for the development of more effective and isoform-selective inhibitors.
Collapse
Affiliation(s)
- Damiano Tanini
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy
| | - Antonella Capperucci
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy
| | - Martina Scopelliti
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy
| | - Andrea Milaneschi
- University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Angeli
- University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Claudiu T Supuran
- University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
10
|
Viglianisi C, Vasa K, Tanini D, Capperucci A, Amorati R, Valgimigli L, Baschieri A, Menichetti S. Ditocopheryl Sulfides and Disulfides: Synthesis and Antioxidant Profile. Chemistry 2019; 25:9108-9116. [PMID: 31017702 DOI: 10.1002/chem.201901537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Indexed: 12/14/2022]
Abstract
Symmetrical ditocopheryl disulfides (Toc)2 S2 and symmetrical and unsymmetrical ditocopheryl sulfides (Toc)2 S were simply prepared under remarkably mild conditions with complete control of the regiochemistry by using δ-, γ-, and β-tocopheryl-N-thiophthalimides (Toc-NSPht) as common starting materials. The roles of sulfur atom(s), H-bond and aryl ring substitution pattern on the antioxidant profile of these new compounds, which were assembled by linking together two tocopheryl units, are also discussed.
Collapse
Affiliation(s)
- Caterina Viglianisi
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3-13, Sesto Fiorentino, Firenze, Italy
| | - Kristian Vasa
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3-13, Sesto Fiorentino, Firenze, Italy
| | - Damiano Tanini
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3-13, Sesto Fiorentino, Firenze, Italy
| | - Antonella Capperucci
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3-13, Sesto Fiorentino, Firenze, Italy
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, 40126, Bologna, Italy
| | - Luca Valgimigli
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, 40126, Bologna, Italy
| | - Andrea Baschieri
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, 40126, Bologna, Italy
| | - Stefano Menichetti
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3-13, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
11
|
Sulfur, selenium and tellurium containing amines act as effective carbonic anhydrase activators. Bioorg Chem 2019; 87:516-522. [DOI: 10.1016/j.bioorg.2019.03.062] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/11/2022]
|
12
|
Tanini D, Lupori B, Lo Nostro P, Capperucci A. Synthesis and catalytic antioxidant activity of functionalized chalcogen-containing GPx mimics. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2019.1603233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Damiano Tanini
- Dipartimento di Chimica “Ugo Schiff”, University of Florence, Sesto Fiorentino (FI), Italy
| | - Beatrice Lupori
- Dipartimento di Chimica “Ugo Schiff”, University of Florence, Sesto Fiorentino (FI), Italy
| | - Pierandrea Lo Nostro
- Dipartimento di Chimica “Ugo Schiff”, University of Florence, Sesto Fiorentino (FI), Italy
| | - Antonella Capperucci
- Dipartimento di Chimica “Ugo Schiff”, University of Florence, Sesto Fiorentino (FI), Italy
| |
Collapse
|
13
|
Abstract
A new methodology for the synthesis of small molecules containing the S-Se bond is reported. Aryl- and alkyl-selenols react smoothly with N-thiophthalimides to afford the corresponding selenenylsulfides through a clean SN2 path occurring at the sulfur atom. The reaction proceeds under very mild conditions in DMF in absence of catalysts for most of the substrates. The scope of the reaction was found to be broad, allowing a wide series of selenols and N-thiophtalimides to be efficiently employed in this procedure. Owing to the instability of the S-Se bond, selenenylsulfides exhibited a remarkable tendency to disproportionate to the corresponding symmetric diselenides and disulfides. Preliminary evaluation of the catalytic antioxidant properties of novel selenenylsulfides showed their behaviour as GPx mimics.
Collapse
|
14
|
Tanini D, Borgogni C, Capperucci A. Mild and selective silicon-mediated access to enantioenriched 1,2-mercaptoamines and β-amino arylchalcogenides. NEW J CHEM 2019. [DOI: 10.1039/c9nj00657e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Metal-free ring opening reactions of activated and unactivated aziridines with different silyl chalcogenides are described.
Collapse
Affiliation(s)
- Damiano Tanini
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- Via della Lastruccia 3-13
- 50019 Sesto Fiorentino
- Italy
| | - Cosimo Borgogni
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- Via della Lastruccia 3-13
- 50019 Sesto Fiorentino
- Italy
| | - Antonella Capperucci
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- Via della Lastruccia 3-13
- 50019 Sesto Fiorentino
- Italy
| |
Collapse
|
15
|
Singh GS. Advances in synthesis and chemistry of aziridines. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019. [DOI: 10.1016/bs.aihch.2018.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Tanini D, Capperucci A. Ring opening reactions of heterocycles with selenium and tellurium nucleophiles. NEW J CHEM 2019. [DOI: 10.1039/c9nj02320h] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An overview of the preparation and synthetic potentialities of functionalized organoselenium and organotellurium compounds is presented.
Collapse
Affiliation(s)
- Damiano Tanini
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- 50019 Sesto Fiorentino
- Italy
| | - Antonella Capperucci
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- 50019 Sesto Fiorentino
- Italy
| |
Collapse
|
17
|
Angeli A, Tanini D, Capperucci A, Malevolti G, Turco F, Ferraroni M, Supuran CT. Synthesis of different thio-scaffolds bearing sulfonamide with subnanomolar carbonic anhydrase II and IX inhibitory properties and X-ray investigations for their inhibitory mechanism. Bioorg Chem 2018; 81:642-648. [PMID: 30253337 DOI: 10.1016/j.bioorg.2018.09.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/07/2018] [Accepted: 09/18/2018] [Indexed: 11/28/2022]
Abstract
Several new molecules with different thio-scaffolds were designed, synthesised, and evaluated biologically as inhibitors of Carbonic Anhydrases (CAIs). The structure-activity relationship analysis identified thioether derivatives, here reported, as a potent and selective CAIs against hCA II and hCA IX. High resolution X-ray structure of inhibitor bound hCA II revealed extensive interactions with the hydrophobic pocket of active site and provided molecular insight into the binding properties of these new inhibitors.
Collapse
Affiliation(s)
- Andrea Angeli
- Department of University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Damiano Tanini
- Department of University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy
| | - Antonella Capperucci
- Department of University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy
| | - Gianni Malevolti
- Department of University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy
| | - Francesca Turco
- Department of University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy
| | - Marta Ferraroni
- Department of University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Department of University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy.
| |
Collapse
|
18
|
Angeli A, Tanini D, Capperucci A, Supuran CT. First evaluation of organotellurium derivatives as carbonic anhydrase I, II, IV, VII and IX inhibitors. Bioorg Chem 2018; 76:268-272. [DOI: 10.1016/j.bioorg.2017.12.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/29/2017] [Accepted: 12/03/2017] [Indexed: 11/25/2022]
|
19
|
Tanini D, Grechi A, Ricci L, Dei S, Teodori E, Capperucci A. Novel functionalized organotellurides with enhanced thiol peroxidase catalytic activity. NEW J CHEM 2018. [DOI: 10.1039/c8nj00700d] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Novel tellurium-containing small molecules exhibited remarkable GPx-like activity. Their catalytic properties are strongly influenced by the nature of the β-substituent.
Collapse
Affiliation(s)
- Damiano Tanini
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- 50019 Sesto Fiorentino
- Italy
| | - Anna Grechi
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- 50019 Sesto Fiorentino
- Italy
| | - Lorenzo Ricci
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- 50019 Sesto Fiorentino
- Italy
| | - Silvia Dei
- NEUROFARBA – Dipartimento di Neuroscienze
- Psicologia
- Area del Farmaco e Salute del Bambino
- Sezione Scienze Farmaceutiche e Nutraceutiche
- Università di Firenze
| | - Elisabetta Teodori
- NEUROFARBA – Dipartimento di Neuroscienze
- Psicologia
- Area del Farmaco e Salute del Bambino
- Sezione Scienze Farmaceutiche e Nutraceutiche
- Università di Firenze
| | - Antonella Capperucci
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- 50019 Sesto Fiorentino
- Italy
| |
Collapse
|
20
|
|
21
|
Angeli A, Tanini D, Capperucci A, Supuran CT. Synthesis of Novel Selenides Bearing Benzenesulfonamide Moieties as Carbonic Anhydrase I, II, IV, VII, and IX Inhibitors. ACS Med Chem Lett 2017; 8:1213-1217. [PMID: 29259736 DOI: 10.1021/acsmedchemlett.7b00387] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022] Open
Abstract
A series of novel selenides bearing benzenesulfonamide moieties was synthesized and investigated for the inhibition of five human (h) isoforms of zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), hCA I, II, IV, VII, and IX. These enzymes are involved in a variety of diseases, including glaucoma, retinitis pigmentosa, epilepsy, arthritis, and tumors. The investigated compounds showed potent inhibitory action against hCA II, VII, and IX, in the low nanomolar range, thus making them of interest for the development of isoform-selective inhibitors and as candidates for biomedical applications.
Collapse
Affiliation(s)
- Andrea Angeli
- Department of University of Florence, NEUROFARBA Dept.,
Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Damiano Tanini
- Department of University of Florence, Department of
Chemistry “Ugo Schiff″, Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy
| | - Antonella Capperucci
- Department of University of Florence, Department of
Chemistry “Ugo Schiff″, Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy
| | - Claudiu T. Supuran
- Department of University of Florence, NEUROFARBA Dept.,
Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|