1
|
Li CT, Qi LJ, Liu LG, Ge C, Lu X, Ye LW, Zhou B. Asymmetric formal C-C bond insertion into aldehydes via copper-catalyzed diyne cyclization. Nat Commun 2023; 14:7058. [PMID: 37923708 PMCID: PMC10624849 DOI: 10.1038/s41467-023-42805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
The formal C-C bond insertion into aldehydes is an attractive methodology for the assembly of homologated carbonyl compounds. However, the homologation of aldehydes has been limited to diazo approach and the enantioselective reaction was rarely developed. Herein, we report an asymmetric formal C-C bond insertion into aldehydes through diyne cyclization strategy. In the presence of Cu(I)/SaBOX catalyst, this method leads to the efficient construction of versatile axially chiral naphthylpyrroles in moderate to excellent yields with good to excellent enantioselectivities. This protocol represents a rare example of asymmetric formal C-C bond insertion into aldehydes using non-diazo approach. The combined experimental and computational mechanistic studies reveal the reaction mechanism, origin of regioselectivity and stereoselectivity. Notably, the chiral phosphine ligand derived from synthesized axially chiral skeleton was proven to be applicable to asymmetric catalysis.
Collapse
Affiliation(s)
- Cui-Ting Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lin-Jun Qi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Li-Gao Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chang Ge
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
2
|
Wang YX, Chen LP, Cao FD, Zhao B, Li ZP, Li XF, Huang LJ. A New Pathway for the Synthesis of Ketones from Aldehydes and Sulfonylhydrazones: Is Diazo the Key Intermediate? Chemistry 2023; 29:e202301569. [PMID: 37394679 DOI: 10.1002/chem.202301569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
A new pathway via a cyclic intermediate for the synthesis of ketones from aldehydes and sulfonylhydrazone derivatives under basic conditions is proposed. Several control experiments were performed along with analysis of the mass spectra and in-situ IR spectra of the reaction mixture. Inspired by the new mechanism, an efficient and scalable method for homologation of aldehydes to ketones was developed. A wide variety of target ketones were obtained in yields of 42-95 % by simply heating the 3-(trifluoromethyl)benzene sulfonylhydrazones (3-(Tfsyl)hydrazone) for 2 h at 110 °C with aldehydes and with K2 CO3 and DMSO as base and solvent, respectively.
Collapse
Affiliation(s)
- Yue-Xing Wang
- State Key Laboratory Base for Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science and Technology, 266042, Qingdao, Shandong, P. R. China
| | - Li-Ping Chen
- State Key Laboratory Base for Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science and Technology, 266042, Qingdao, Shandong, P. R. China
| | - Feng-de Cao
- State Key Laboratory Base for Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science and Technology, 266042, Qingdao, Shandong, P. R. China
| | - Bin Zhao
- State Key Laboratory Base for Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science and Technology, 266042, Qingdao, Shandong, P. R. China
| | - Zhen-Peng Li
- State Key Laboratory Base for Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science and Technology, 266042, Qingdao, Shandong, P. R. China
| | - Xiu-Fen Li
- State Key Laboratory Base for Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science and Technology, 266042, Qingdao, Shandong, P. R. China
| | - Long-Jiang Huang
- State Key Laboratory Base for Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science and Technology, 266042, Qingdao, Shandong, P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, P. R. China
| |
Collapse
|
3
|
Wang H, Wang S, George V, Llorente G, König B. Photo‐Induced Homologation of Carbonyl Compounds for Iterative Syntheses. Angew Chem Int Ed Engl 2022; 61:e202211578. [PMID: 36226924 PMCID: PMC10099875 DOI: 10.1002/anie.202211578] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Indexed: 11/12/2022]
Abstract
We describe a photo-induced reaction for the in situ generation of highly reactive alkyl diazo species from carbonyl precursors via photo-excitation of N-tosylhydrazone anions. The diazo intermediates undergo efficient C-H insertion of aldehydes, leading to the productive synthesis of aldehydes and ketones. The method is applicable to the iterative synthesis of densely functionalized carbonyl compounds through sequential trapping of the diazo species with various aldehydes. The reaction proceeds without the need of any catalyst by light irradiation and features high functional group tolerance. More than 70 examples, some performed on a gram-scale, demonstrate the broad applicability of this reaction sequence in synthesis.
Collapse
Affiliation(s)
- Hua Wang
- Faculty of Chemistry and Pharmacy University Regensburg 93040 Regensburg Germany
- Department of Chemistry, School of Pharmacy The Fourth Military Medical University Xi'an 710032 P. R. China
| | - Shun Wang
- Faculty of Chemistry and Pharmacy University Regensburg 93040 Regensburg Germany
| | - Vincent George
- Faculty of Chemistry and Pharmacy University Regensburg 93040 Regensburg Germany
| | - Galder Llorente
- Faculty of Chemistry and Pharmacy University Regensburg 93040 Regensburg Germany
| | - Burkhard König
- Faculty of Chemistry and Pharmacy University Regensburg 93040 Regensburg Germany
| |
Collapse
|
4
|
Huang J, Zhang R, Wu X, Dong G, Xia Y. Intramolecular One-Carbon Homologation of Unstrained Ketones via C-C Activation-Enabled 1,1-Insertion of Alkenes. Org Lett 2022; 24:2436-2440. [PMID: 35302376 DOI: 10.1021/acs.orglett.2c00716] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Here, we describe the development of a Rh-catalyzed intramolecular one-carbon homologation of unstrained aryl ketones through a formal 1,1-insertion process of olefins, enabled by temporary directing group (TDG)-aided C-C activation. The reaction provides a distinct approach to access various substituted 1-indanones. Computational mechanistic studies reveal that the formal 1,1-insertion is realized by a selective C(sp2)-C(sp3) activation and turnover limiting 2,1-insertion into the alkene, followed by a facile β-H elimination and reinsertion process.
Collapse
Affiliation(s)
- Jiangkun Huang
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Rui Zhang
- Department of Chemistry, University of Chicago, Chicago 60637, United States
| | - Xiuli Wu
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago 60637, United States
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Muthusamy S, Prabu A. BF 3·OEt 2 catalyzed decarbonylative arylation/C-H functionalization of diazoamides with arylaldehydes: synthesis of substituted 3-aryloxindoles. Org Biomol Chem 2022; 20:2209-2216. [PMID: 35229865 DOI: 10.1039/d2ob00003b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free BF3·OEt2 catalyzed direct decarbonylative arylation of diazoamides with readily accessible aryl aldehydes under an open-air atmosphere was developed to afford 3-aryloxindoles via 1,2-aryl migration with high selectivity. The reaction offers an efficient pathway for 3-arylation of diazoamides under relatively mild conditions, which shows a high level of functional group tolerance of both electron-donating and electron-withdrawing groups with a broad substrate scope. 3-Aryloxindoles were also obtained by a substituent-controlled chemo- and site-selective C-H bond functionalization of unprotected salicylaldehyde derivatives.
Collapse
Affiliation(s)
| | - Ammasi Prabu
- School of Chemistry, Bharathidasan University, Tiruchirappalli-620 024, India.
| |
Collapse
|
6
|
Modak A, Alegre-Requena JV, de Lescure L, Rynders KJ, Paton RS, Race NJ. Homologation of Electron-Rich Benzyl Bromide Derivatives via Diazo C-C Bond Insertion. J Am Chem Soc 2022; 144:86-92. [PMID: 34898193 PMCID: PMC8755606 DOI: 10.1021/jacs.1c11503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ability to manipulate C-C bonds for selective chemical transformations is challenging and represents a growing area of research. Here, we report a formal insertion of diazo compounds into the "unactivated" C-C bond of benzyl bromide derivatives catalyzed by a simple Lewis acid. The homologation reaction proceeds via the intermediacy of a phenonium ion, and the products contain benzylic quaternary centers and an alkyl bromide amenable to further derivatization. Computational analysis provides critical insight into the reaction mechanism, in particular the key selectivity-determining step.
Collapse
Affiliation(s)
- Atanu Modak
- Department of Chemistry, University of Minnesota─Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Juan V Alegre-Requena
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Louis de Lescure
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Kathryn J Rynders
- Department of Chemistry, University of Minnesota─Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Nicholas J Race
- Department of Chemistry, University of Minnesota─Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
He H, Yan Z, Wang J, Yan Q, Wang W, Wang H, Chen F. A solvent controlled three-component reaction of diazo compounds for the synthesis of hydrazone compounds under Brønsted acid catalysis. NEW J CHEM 2022. [DOI: 10.1039/d2nj04983j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A novel Brønsted acid catalyzed three-component reaction of diazo compounds has been achieved from α-diazo ester, N-aminophthalimide and a solvent.
Collapse
Affiliation(s)
- Hangli He
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhewei Yan
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Junyong Wang
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Qiongjiao Yan
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wei Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Haifeng Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fener Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
8
|
Muthusamy S, Prabu A. BF 3·OEt 2 catalyzed chemoselective CC bond cleavage of α,β-enones: an unexpected synthesis of 3-alkylated oxindoles and spiro-indolooxiranes. Org Biomol Chem 2021; 20:558-564. [PMID: 34939633 DOI: 10.1039/d1ob02002a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A BF3·OEt2 catalyzed highly chemoselective formal CC double bond cleavage reaction of α,β-enones with diazoamides for the synthesis of 3-alkylated oxindoles is developed. Boron trifluoride etherate is found to be an effective catalyst for the chemoselective Cα-Cβ cleavage of enones to obtain 3-alkylated oxindoles. The product formation indicates a selective β-carbon elimination pathway of α,β-enones using the inexpensive BF3·OEt2 as a catalyst, transition metal-free conditions, an open-air environment, good functional tolerance and broad substrate scope. The synthetic utility of this protocol is highlighted by synthesizing spiro-indolooxiranes.
Collapse
Affiliation(s)
| | - Ammasi Prabu
- School of Chemistry, Bharathidasan University, Tiruchirappalli-620 024, India.
| |
Collapse
|
9
|
Jha N, Khot NP, Kapur M. Transition-Metal-Catalyzed C-H Bond Functionalization of Arenes/Heteroarenes via Tandem C-H Activation and Subsequent Carbene Migratory Insertion Strategy. CHEM REC 2021; 21:4088-4122. [PMID: 34647679 DOI: 10.1002/tcr.202100193] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
The past decade has witnessed tremendous developments in transition-metal-catalyzed C-H bond activation and subsequent carbene migratory insertion reactions, thus assisting in the construction of diverse arene/heteroarene scaffolds. Various transition-metal catalysts serve this purpose and provide efficient pathways for an easy access to substituted heterocycles. A brief introduction to metal-carbenes has been provided along with key mechanistic pathways underlying the coupling reactions. The purpose of this review is to provide a concise knowledge about diverse directing group-assisted coupling of varied arenes/heteroarenes and acceptor-acceptor/donor-acceptor diazo compounds. The review also highlights the synthesis of various carbocycles and fused heterocycles through diazo insertion pathways, via C-C, C-N and C-O bond forming reactions. The mechanism usually involves a C-H activation process, followed by diazo insertion leading to subsequent coupling.
Collapse
Affiliation(s)
- Neha Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Nandkishor Prakash Khot
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
10
|
Tan F, Pu M, He J, Li J, Yang J, Dong S, Liu X, Wu YD, Feng X. Catalytic Asymmetric Homologation of Ketones with α-Alkyl α-Diazo Esters. J Am Chem Soc 2021; 143:2394-2402. [PMID: 33507075 DOI: 10.1021/jacs.0c12683] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The homologation of ketones with diazo compounds is a useful strategy to synthesize one-carbon chain-extended acyclic ketones or ring-expanded cyclic ketones. However, the asymmetric homologation of acyclic ketones with α-diazo esters remains a challenge due to the lower reactivity and complicated selectivity. Herein, we report the enantioselective catalytic homologation of acetophenone and related derivatives with α-alkyl α-diazo esters utilizing a chiral scandium(III) N,N'-dioxide as the Lewis acid catalyst. This reaction supplies a highly chemo-, regio-, and enantioselective pathway for the synthesis of optically active β-keto esters with an all-carbon quaternary center through highly selective alkyl-group migration of the ketones. Moreover, the ring expansion of cyclic ketones was accomplished under slightly modified conditions, affording a series of enantioenriched cyclic β-keto esters. Density functional theory calculations have been carried out to elucidate the reaction pathway and possible working models that can explain the observed regio- and enantioselectivity.
Collapse
Affiliation(s)
- Fei Tan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Maoping Pu
- Shenzhen Bay Laboratory, Shenzhen 518055, People's Republic of China
| | - Jun He
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Jinzhao Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Jian Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Shenzhen 518055, People's Republic of China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
11
|
Day DP, Vargas JAM, Burtoloso ACB. Synthetic Routes Towards the Synthesis of Geminal α-Difunctionalized Ketones. CHEM REC 2021; 21:2837-2854. [PMID: 33533538 DOI: 10.1002/tcr.202000176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/11/2021] [Indexed: 12/25/2022]
Abstract
The importance of gem-difunctionalized ketones is represented by their broad applications across chemical boundaries over recent years. The interesting reactivities that this class of compounds possess have made them ideal building blocks to access high-value organic molecules. Furthermore, the gem-difunctionalized ketone moiety has featured in numerous bioactive molecules. For these reasons, a plethora of routes to access such significant molecules have been developed by research groups worldwide - this account looks at delineating the synthesis of gem-difunctionalized ketones from carbonyl substrates, diazo compounds, sulfur ylides and alkynyl reactants.
Collapse
Affiliation(s)
- David P Day
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brasil
| | - Jorge A M Vargas
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brasil.,Facultad de Ciencias Básicas, Universidad Santiago de Cali, Calle 5 # 62-00 Campus Pampalinda, Santiago de Cali, Colombia
| | - Antonio C B Burtoloso
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brasil
| |
Collapse
|
12
|
Xue Z, Li Y, Luo S. Chiral Primary Amine-Catalyzed Divergent Coupling of α-Substituted Acrylaldehydes with α-Diazoesters. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zaikun Xue
- Key Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100490, China
| | - Yao Li
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Sanzhong Luo
- Key Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100490, China
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Ramakrishna K, Jayarani A, Koothradan FF, Sivasankar C. An efficient method to prepare sulfoxonium ylides and their reactivity studies using copper powder and Sc(III) as catalysts: Molecular and electronic structure analysis. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kankanala Ramakrishna
- Catalysis and Energy Laboratory, Department of ChemistryPondicherry University (A Central University) Puducherry 605014 India
| | - Arumugam Jayarani
- Catalysis and Energy Laboratory, Department of ChemistryPondicherry University (A Central University) Puducherry 605014 India
| | - Fathima Febin Koothradan
- Catalysis and Energy Laboratory, Department of ChemistryPondicherry University (A Central University) Puducherry 605014 India
| | - Chinnappan Sivasankar
- Catalysis and Energy Laboratory, Department of ChemistryPondicherry University (A Central University) Puducherry 605014 India
| |
Collapse
|
14
|
Transition metal-free strategies for the stereoselective construction of spirocyclopropyl oxindoles. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Rhodium-catalyzed synthesis of C4-chalcogenoalkylated oxindoles via Sommelet-Hauser type rearrangement of 3-diazoindolin-2-ones. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1711-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Nagode SB, Kant R, Rastogi N. Hantzsch Ester-Mediated Benzannulation of Diazo Compounds under Visible Light Irradiation. Org Lett 2019; 21:6249-6254. [DOI: 10.1021/acs.orglett.9b02135] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Savita B. Nagode
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| | | | - Namrata Rastogi
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| |
Collapse
|
17
|
Xiang Y, Wang C, Ding Q, Peng Y. Diazo Compounds: Versatile Synthons for the Synthesis of Nitrogen Heterocycles via
Transition Metal-Catalyzed Cascade C-H Activation/Carbene Insertion/Annulation Reactions. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800960] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yunyu Xiang
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry; Jiangxi Normal University; Nanchang, Jiangxi 330022 People's Republic of China
| | - Cong Wang
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry; Jiangxi Normal University; Nanchang, Jiangxi 330022 People's Republic of China
| | - Qiuping Ding
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry; Jiangxi Normal University; Nanchang, Jiangxi 330022 People's Republic of China
| | - Yiyuan Peng
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry; Jiangxi Normal University; Nanchang, Jiangxi 330022 People's Republic of China
| |
Collapse
|
18
|
Chen Y, Leonardi M, Dingwall P, Labes R, Pasau P, Blakemore DC, Ley SV. Photochemical Homologation for the Preparation of Aliphatic Aldehydes in Flow. J Org Chem 2018; 83:15558-15568. [DOI: 10.1021/acs.joc.8b02721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yiding Chen
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Marco Leonardi
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Departmento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - Paul Dingwall
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Ricardo Labes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Patrick Pasau
- UCB Biopharma SPRL, Chemical Research R5, Chemin du Foriest, 1420 Braine-L’Alleud, Belgium
| | - David C. Blakemore
- Medicine Design, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Steven V. Ley
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
19
|
Affiliation(s)
| | - Roald Hoffmann
- Department of Chemistry and Chemical Biology, Cornell University, 162 Sciences Drive, Ithaca, New York 14853, United States
| |
Collapse
|
20
|
Sakthivel S, Balamurugan R. Annulation of a Highly Functionalized Diazo Building Block with Indoles under Sc(OTf)3/Rh2(OAc)4 Multicatalysis through Michael Addition/Cyclization Sequence. J Org Chem 2018; 83:12171-12183. [DOI: 10.1021/acs.joc.8b02127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shanmugam Sakthivel
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | | |
Collapse
|
21
|
Dingwall P, Greb A, Crespin LNS, Labes R, Musio B, Poh JS, Pasau P, Blakemore DC, Ley SV. C–H functionalisation of aldehydes using light generated, non-stabilised diazo compounds in flow. Chem Commun (Camb) 2018; 54:11685-11688. [DOI: 10.1039/c8cc06202a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Here we explore further the use of oxadiazolines, non-stabilised diazo precursors which are bench stable, in direct, non-catalytic, aldehyde C–H functionalisation reactions under UV photolysis in flow and free from additives.
Collapse
Affiliation(s)
- Paul Dingwall
- Department of Chemistry
- University of Cambridge
- Lensfield Road
- Cambridge CB2 1EW
- UK
| | - Andreas Greb
- Department of Chemistry
- University of Cambridge
- Lensfield Road
- Cambridge CB2 1EW
- UK
| | | | - Ricardo Labes
- Department of Chemistry
- University of Cambridge
- Lensfield Road
- Cambridge CB2 1EW
- UK
| | - Biagia Musio
- Department of Chemistry
- University of Cambridge
- Lensfield Road
- Cambridge CB2 1EW
- UK
| | - Jian-Siang Poh
- Department of Chemistry
- University of Cambridge
- Lensfield Road
- Cambridge CB2 1EW
- UK
| | | | | | - Steven V. Ley
- Department of Chemistry
- University of Cambridge
- Lensfield Road
- Cambridge CB2 1EW
- UK
| |
Collapse
|