1
|
Jiménez R, Constantinescu A, Yazir M, Alfonso-Triguero P, Pequerul R, Parés X, Pérez-Alea M, Candiota AP, Farrés J, Lorenzo J. Targeting Retinaldehyde Dehydrogenases to Enhance Temozolomide Therapy in Glioblastoma. Int J Mol Sci 2024; 25:11512. [PMID: 39519068 PMCID: PMC11546810 DOI: 10.3390/ijms252111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Glioblastoma (GB) is an aggressive malignant central nervous system tumor that is currently incurable. One of the main pitfalls of GB treatment is resistance to the chemotherapeutic standard of care, temozolomide (TMZ). The role of aldehyde dehydrogenases (ALDHs) in the glioma stem cell (GSC) subpopulation has been related to chemoresistance. ALDHs take part in processes such as cell proliferation, differentiation, invasiveness or metastasis and have been studied as pharmacological targets in cancer treatment. In the present work, three novel α,β-acetylenic amino thiolester compounds, with demonstrated efficacy as ALDH inhibitors, were tested in vitro on a panel of six human GB cell lines and one murine GB cell line. Firstly, the expression of the ALDH1A isoforms was assessed, and then inhibitors were tested for their cytotoxicity and their ability to inhibit cellular ALDH activity. Drug combination assays with TMZ were performed, as well as an assessment of the cell death mechanism and generation of ROS. A knockout of several ALDH genes was carried out in one of the human GB cell lines, allowing us to discuss their role in cell proliferation, migration capacity and resistance to treatment. Our results strongly suggest that ALDH inhibitors could be an interesting approach in the treatment of GB, with EC50 values in the order of micromolar, decreasing ALDH activity in GB cell lines to 40-50%.
Collapse
Affiliation(s)
- Rafael Jiménez
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Andrada Constantinescu
- Unit of Research in Cellular and Molecular Biology, Advanced BioDesign, Saint-Priest, 69800 Lyon, France; (A.C.); (M.Y.); (M.P.-A.)
| | - Muhube Yazir
- Unit of Research in Cellular and Molecular Biology, Advanced BioDesign, Saint-Priest, 69800 Lyon, France; (A.C.); (M.Y.); (M.P.-A.)
| | - Paula Alfonso-Triguero
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, E-08193 Bellaterra, Spain
| | - Raquel Pequerul
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
- Unit of Research in Cellular and Molecular Biology, Advanced BioDesign, Saint-Priest, 69800 Lyon, France; (A.C.); (M.Y.); (M.P.-A.)
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
| | - Mileidys Pérez-Alea
- Unit of Research in Cellular and Molecular Biology, Advanced BioDesign, Saint-Priest, 69800 Lyon, France; (A.C.); (M.Y.); (M.P.-A.)
| | - Ana Paula Candiota
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, E-08913 Bellaterra, Spain
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
| | - Julia Lorenzo
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, E-08913 Bellaterra, Spain
| |
Collapse
|
2
|
Kaczanowska K, Trzaskowski B, Peszczyńska A, Tracz A, Gawin R, Olszewski TK, Skowerski K. Cross metathesis with acrylates:
N
‐heterocyclic carbene (NHC)‐
versus
cyclic alkyl amino carbene (CAAC)‐based ruthenium catalysts, an unanticipated influence of the carbene type on efficiency and selectivity of the reaction. ChemCatChem 2020. [DOI: 10.1002/cctc.202001268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | - Bartosz Trzaskowski
- Centre of New Technologies University of Warsaw Banacha 2c 02-097 Warszawa Poland
| | | | | | - Rafał Gawin
- Apeiron Synthesis SA Duńska 9 54-427 Wrocław Poland
| | - Tomasz K. Olszewski
- Wroclaw University of Science and Technology Faculty of Chemistry Wybrzeze Wyspianskiego 29 50-370 Wroclaw Poland
| | | |
Collapse
|
3
|
Rivas A, Pequerul R, Barracco V, Domínguez M, López S, Jiménez R, Parés X, Alvarez R, Farrés J, de Lera AR. Synthesis of C11-to-C14 methyl-shifted all-trans-retinal analogues and their activities on human aldo-keto reductases. Org Biomol Chem 2020; 18:4788-4801. [PMID: 32530010 DOI: 10.1039/d0ob01084g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human aldo-keto reductases (AKRs) are enzymes involved in the reduction, among other substrates, of all-trans-retinal to all-trans-retinol (vitamin A), thus contributing to the control of the levels of retinoids in organisms. Structure-activity relationship studies of a series of C11-to-C14 methyl-shifted (relative to natural C13-methyl) all-trans-retinal analogues as putative substrates of AKRs have been reported. The synthesis of these retinoids was based on the formation of a C10-C11 single bond of the pentaene skeleton starting from a trienyl iodide and the corresponding dienylstannanes and dienylsilanes, using the Stille-Kosugi-Migita and Hiyama-Denmark cross-coupling reactions, respectively. Since these reagents differ by the location and presence of methyl groups at the dienylorganometallic fragment, the study also provided insights into the ability of the different positional isomers to undergo cross-coupling and the sensitivity of these processes to steric hindrance. The resulting C11-to-C14 methyl-shifted all-trans-retinal analogues were found to be active substrates when tested with AKR1B1 and AKR1B10 enzymes, although relevant differences in substrate specificities were noted. For AKR1B1, all analogues exhibited higher catalytic efficiency (kcat/Km) than parent all-trans-retinal. In addition, only all-trans-11-methylretinal, the most hydrophobic derivative, showed a higher value of kcat/Km = 106 000 ± 23 200 mM-1 min-1 for AKR1B10, which is in fact the highest value from all known retinoid substrates of this enzyme. The novel structures, identified as efficient AKR substrates, may serve in the design of selective inhibitors with potential pharmacological interest.
Collapse
Affiliation(s)
- Aurea Rivas
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IIS Galicia Sur, Universidade de Vigo, E-36310 Vigo, Spain.
| | - Raquel Pequerul
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | - Vito Barracco
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain and Department of Biology, Biochemistry Unit, University of Pisa, I-56126 Pisa, Italy
| | - Marta Domínguez
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IIS Galicia Sur, Universidade de Vigo, E-36310 Vigo, Spain.
| | - Susana López
- Departamento de Química Orgánica, Facultade de Química, Universidade de Santiago de Compostela, E-15782 Santiago, Spain
| | - Rafael Jiménez
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | - Rosana Alvarez
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IIS Galicia Sur, Universidade de Vigo, E-36310 Vigo, Spain.
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IIS Galicia Sur, Universidade de Vigo, E-36310 Vigo, Spain.
| |
Collapse
|
4
|
Okitsu T, Yamano Y, Shen YC, Sasaki T, Kobayashi Y, Morisawa S, Yamashita T, Imamoto Y, Shichida Y, Wada A. Synthesis of One Double Bond-Inserted Retinal Analogs and Their Binding Experiments with Opsins: Preparation of Novel Red-Shifted Channelrhodopsin Variants. Chem Pharm Bull (Tokyo) 2020; 68:265-272. [PMID: 32115534 DOI: 10.1248/cpb.c19-01005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In optogenetics, red-shifted channelrhodopsins (ChRs) are eagerly sought. We prepared six kinds of new chromophores with one double bond inserted into the polyene side chain of retinal (A1) or 3,4-didehydroretinal (A2), and examined their binding efficiency with opsins (ReaChR and ChrimsonR). All analogs bound with opsins to afford new ChRs. Among them, A2-10ex (an extra double bond is inserted at the C10-C11 position of A2) showed the greatest red-shift in the absorption spectrum of ChrimsonR, with a maximum absorbance at 654 nm (67 nm red-shifted from that of A1-ChrimsonR). Moreover, a long-wavelength spectral boundary of A2-10ex-ChrimsonR was extended to 756 nm, which reached into the far-red region (710-850 nm).
Collapse
Affiliation(s)
- Takashi Okitsu
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University
| | - Yumiko Yamano
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University
| | - Yi-Chung Shen
- Department of Biophysics, Graduate School of Science, Kyoto University
| | - Toshikazu Sasaki
- Department of Biophysics, Graduate School of Science, Kyoto University
| | - Yuka Kobayashi
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University
| | - Shoko Morisawa
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University
| | | | - Yasushi Imamoto
- Department of Biophysics, Graduate School of Science, Kyoto University
| | | | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University
| |
Collapse
|
5
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Jiménez R, Pequerul R, Amor A, Lorenzo J, Metwally K, Avilés FX, Parés X, Farrés J. Inhibitors of aldehyde dehydrogenases of the 1A subfamily as putative anticancer agents: Kinetic characterization and effect on human cancer cells. Chem Biol Interact 2019; 306:123-130. [DOI: 10.1016/j.cbi.2019.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 12/17/2022]
|
7
|
Giménez-Dejoz J, Weber S, Fernández-Pardo Á, Möller G, Adamski J, Porté S, Parés X, Farrés J. Engineering aldo-keto reductase 1B10 to mimic the distinct 1B15 topology and specificity towards inhibitors and substrates, including retinoids and steroids. Chem Biol Interact 2019; 307:186-194. [PMID: 31028727 DOI: 10.1016/j.cbi.2019.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/27/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022]
Abstract
The aldo-keto reductase (AKR) superfamily comprises NAD(P)H-dependent enzymes that catalyze the reduction of a variety of carbonyl compounds. AKRs are classified in families and subfamilies. Humans exhibit three members of the AKR1B subfamily: AKR1B1 (aldose reductase, participates in diabetes complications), AKR1B10 (overexpressed in several cancer types), and the recently described AKR1B15. AKR1B10 and AKR1B15 share 92% sequence identity, as well as the capability of being active towards retinaldehyde. However, AKR1B10 and AKR1B15 exhibit strong differences in substrate specificity and inhibitor selectivity. Remarkably, their substrate-binding sites are the most divergent parts between them. Out of 27 residue substitutions, six are changes to Phe residues in AKR1B15. To investigate the participation of these structural changes, especially the Phe substitutions, in the functional features of each enzyme, we prepared two AKR1B10 mutants. The AKR1B10 m mutant carries a segment of six AKR1B15 residues (299-304, including three Phe residues) in the respective AKR1B10 region. An additional substitution (Val48Phe) was incorporated in the second mutant, AKR1B10mF48. This resulted in structures with smaller and more hydrophobic binding pockets, more similar to that of AKR1B15. In general, the AKR1B10 mutants mirrored well the specific functional features of AKR1B15, i.e., the different preferences towards the retinaldehyde isomers, the much higher activity with steroids and ketones, and the unique behavior with inhibitors. It can be concluded that the Phe residues of loop C (299-304) contouring the substrate-binding site, in addition to Phe at position 48, strongly contribute to a narrower and more hydrophobic site in AKR1B15, which would account for its functional uniqueness. In addition, we have investigated the AKR1B10 and AKR1B15 activity toward steroids. While AKR1B10 only exhibits residual activity, AKR1B15 is an efficient 17-ketosteroid reductase. Finally, the functional role of AKR1B15 in steroid and retinaldehyde metabolism is discussed.
Collapse
Affiliation(s)
- Joan Giménez-Dejoz
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Susanne Weber
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Álvaro Fernández-Pardo
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Gabriele Möller
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, 85764, Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85356, Freising-Weihenstephan, Germany; German Center for Diabetes Research, 85764, Neuherberg, Germany
| | - Sergio Porté
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|