1
|
Chillal AS, Maurya C, Kshirsagar UA. Micelle-Assisted C(sp 2)-H Functionalization for C-Se and C-X Bond Formation in the Aqueous Medium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23445-23457. [PMID: 39433481 DOI: 10.1021/acs.langmuir.4c03052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
An environmentally sustainable, versatile, and cost-effective approach for C-Se and C-X (X = I, Br, and Cl) bond formation through C-H functionalization assisted by micellar catalysis in water is developed. The reaction utilizes a minimum amount of diorganyl diselenides and potassium halides for the respective functionalizations. The present protocol was suitable for scale-up synthesis, which directly provided the desired selenylated products without the need for chromatographic purification, in sufficient purity. The aqueous micellar catalysis system was reusable for up to 5 reaction cycles without compromising the reaction yield.
Collapse
Affiliation(s)
- Abhinay S Chillal
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| | - Chandani Maurya
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| | - Umesh A Kshirsagar
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| |
Collapse
|
2
|
Zhou J, Han JY, Yu X, Yang L, Jiang M, Li YM, Cui HL. CuI-Catalyzed Selenylation of Pyrrolo[2,1- a]isoquinolines and Other Electron-Rich Heteroarenes. J Org Chem 2024; 89:14050-14060. [PMID: 39323329 DOI: 10.1021/acs.joc.4c01462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
We have established a mild CuI-catalyzed selenylation of pyrrolo[2,1-a]isoquinoline derivatives in the presence of mCPBA (m-chloroperoxybenzoic acid) at ambient temperature. Corresponding organoselenides have been prepared readily in 53-92% yields. This process can also be expanded to the modification of pyrroles, azaindole, and indoles, delivering the desired heterocyclic selenides in moderate to good yields.
Collapse
Affiliation(s)
- Jing Zhou
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P.R. China
| | - Jia-Yi Han
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P.R. China
| | - Xin Yu
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P.R. China
| | - Liu Yang
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P.R. China
| | - Man Jiang
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P.R. China
| | - Yun-Meng Li
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P.R. China
| | - Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P.R. China
| |
Collapse
|
3
|
Kumar P, Bhalla A. Reaction Pattern and Mechanistic Aspects of Iodine and Iodine-Based Reagents in Selenylation of Aliphatic, Aromatic, and (Hetero)Cyclic Systems. Top Curr Chem (Cham) 2024; 382:12. [PMID: 38589598 DOI: 10.1007/s41061-024-00459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/15/2024] [Indexed: 04/10/2024]
Abstract
Organoselenium compounds have been the subject of extensive research since the discovery of the biologically active compound ebselen. Ebselen has recently been found to show activity against the main protease of the virus responsible for COVID-19. Other organoselenium compounds are also well-known for their diverse biological activities, with such compounds exhibiting interesting physical properties relevant to the fields of electronics, materials, and polymer chemistry. In addition, the incorporation of selenium into various organic molecules has garnered significant attention due to the potential of selenium to enhance the biological activity of these molecules, particularly in conjunction with bioactive heterocycles. Iodine and iodine-based reagents play a prominent role in the synthesis of organoselenium compounds, being valued for their cost-effectiveness, non-toxicity, and ease of handling. These reagents efficiently selenylate a broad range of organic substrates, encompassing alkenes, alkynes, and cyclic, aromatic, and heterocyclic molecules. They serve as catalysts, additives, inducers, and oxidizing agents, facilitating the introduction of different functional groups at alternate positions in the molecules, thereby allowing for regioselective and stereoselective approaches. Specific iodine reagents and their combinations can be tailored to follow the desired reaction pathways. Here, we present a comprehensive review of the progress in the selenylation of organic molecules using iodine reagents over the past decade, with a focus on reaction patterns, solvent effects, heating, microwave, and ultrasonic conditions. Detailed discussions on mechanistic aspects, such as electrophilic, nucleophilic, radical, electrochemical, and ring expansion reactions via selenylation, multiselenylation, and difunctionalization, are included. The review also highlights the formation of various cyclic, heterocyclic, and heteroarenes resulting from the in situ generation of selenium intermediates, encompassing cyclic ketones, cyclic ethers, cyclic lactones, selenophenes, chromones, pyrazolines, pyrrolidines, piperidines, indolines, oxazolines, isooxazolines, lactones, dihydrofurans, and isoxazolidines. To enhance the reader's interest, the review is structured into different sections covering the selenylation of aliphatic sp2/sp carbon and cyclic sp2 carbon, and then is further subdivided into various heterocyclic molecules.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, UT, 160014, India
| | - Aman Bhalla
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, UT, 160014, India.
| |
Collapse
|
4
|
Ghosh P, Chhetri G, Mandal A, Chen Y, Hersh WH, Das S. C(sp 2)-H selenylation of substituted benzo[4,5]imidazo[2,1- b]thiazoles using phenyliodine(iii)bis(trifluoroacetate) as a mediator. RSC Adv 2024; 14:4462-4470. [PMID: 38312731 PMCID: PMC10835571 DOI: 10.1039/d4ra00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
Herein, an expeditious metal-free regioselective C-H selenylation of substituted benzo[4,5]imidazo[2,1-b]thiazole derivatives was devised to synthesize structurally orchestrated selenoethers with good to excellent yields. This PIFA [bis(trifluoroacetoxy)iodobenzene]-mediated protocol operates under mild conditions and offers broad functional group tolerance. In-depth mechanistic investigation supports the involvement of radical pathways. Furthermore, the synthetic utility of this methodology is portrayed through gram-scale synthesis.
Collapse
Affiliation(s)
- Prasanjit Ghosh
- Department of Chemistry, University of North Bengal Darjeeling-734013 India
| | - Gautam Chhetri
- Department of Chemistry, University of North Bengal Darjeeling-734013 India
| | - Anirban Mandal
- Department of Chemistry, University of North Bengal Darjeeling-734013 India
| | - Yu Chen
- Department of Chemistry and Biochemistry, Queens College and the Graduate Centre of City University of New York Flushing New York 11367-1597 USA
- PhD Program in Chemistry, The Graduate Center of the City University of New York 365 Fifth Ave. New York 10016 USA
| | - William H Hersh
- Department of Chemistry and Biochemistry, Queens College and the Graduate Centre of City University of New York Flushing New York 11367-1597 USA
- PhD Program in Chemistry, The Graduate Center of the City University of New York 365 Fifth Ave. New York 10016 USA
| | - Sajal Das
- Department of Chemistry, University of North Bengal Darjeeling-734013 India
| |
Collapse
|
5
|
Wang CS, Xu Y, Wang SP, Zheng CL, Wang G, Sun Q. Recent advances in selective mono-/dichalcogenation and exclusive dichalcogenation of C(sp 2)-H and C(sp 3)-H bonds. Org Biomol Chem 2024; 22:645-681. [PMID: 38180073 DOI: 10.1039/d3ob01847d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Organochalcogen compounds are prevalent in numerous natural products, pharmaceuticals, agrochemicals, polymers, biological molecules and synthetic intermediates. Direct chalcogenation of C-H bonds has evolved as a step- and atom-economical method for the synthesis of chalcogen-bearing compounds. Nevertheless, direct C-H chalcogenation severely lags behind C-C, C-N and C-O bond formations. Moreover, compared with the C-H monochalcogenation, reports of selective mono-/dichalcogenation and exclusive dichalcogenation of C-H bonds are relatively scarce. The past decade has witnessed significant advancements in selective mono-/dichalcogenation and exclusive dichalcogenation of various C(sp2)-H and C(sp3)-H bonds via transition-metal-catalyzed/mediated, photocatalytic, electrochemical or metal-free approaches. In light of the significance of both mono- and dichalcogen-containing compounds in various fields of chemical science and the critical issue of chemoselectivity in organic synthesis, the present review systematically summarizes the advances in these research fields, with a special focus on elucidating scopes and mechanistic aspects. Moreover, the synthetic limitations, applications of some of these processes, the current challenges and our own perspectives on these highly active research fields are also discussed. Based on the substrate types and C-H bonds being chalcogenated, the present review is organized into four sections: (1) transition-metal-catalyzed/mediated chelation-assisted selective C-H mono-/dichalcogenation or exclusive dichalcogenation of (hetero)arenes; (2) directing group-free selective C-H mono-/dichalcogenation or exclusive dichalcogenation of electron-rich (hetero)arenes; (3) C(sp3)-H dichalcogenation; (4) dichalcogenation of both C(sp2)-H and C(sp3)-H bonds. We believe the present review will serve as an invaluable resource for future innovations and drug discovery.
Collapse
Affiliation(s)
- Chang-Sheng Wang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Yuan Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371, Singapore.
| | - Shao-Peng Wang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Chun-Ling Zheng
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Guowei Wang
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Qiao Sun
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| |
Collapse
|
6
|
Moraes CO, Santos RBC, Cavalcante MFO, Guilhermi JS, Ali MA, Botteselle GV, Frizon TEA, Shah MIA, Lião LM, Beatriz A, Saba S, Rafique J. Urea Hydrogen Peroxide and Ethyl Lactate, an Eco-Friendly Combo System in the Direct C(sp 2)-H Bond Selenylation of Imidazo[2,1- b]thiazole and Related Structures. ACS OMEGA 2023; 8:39535-39545. [PMID: 37901565 PMCID: PMC10600889 DOI: 10.1021/acsomega.3c05338] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023]
Abstract
Herein, we describe a urea hydrogen peroxide-mediated sustainable protocol for the synthesis of selenylated imidazo[2,1-b]thiazole by using half molar equivalent diorganyl diselenides in ethyl lactate as a greener solvent. The reaction features high yields, easy performance on gram scale, metal-free conditions, as well as applicability to imidazopyridine and imidazopyrimidine.
Collapse
Affiliation(s)
- Cassio
A. O. Moraes
- Instituto
de Química, Universidade Federal
do Mato Grosso do Sul, Campo
Grande, Mato Grosso do Sul 79074-460, Brazil
| | - Rafaely B. C. Santos
- Instituto
de Química, Universidade Federal
do Mato Grosso do Sul, Campo
Grande, Mato Grosso do Sul 79074-460, Brazil
| | - Marcos F. O. Cavalcante
- LABSO,
Instituto de Química, Universidade
Federal de Goiás—UFG, Goiânia, Goiás 74690-900, Brazil
| | - Jhefferson S. Guilhermi
- LABSO,
Instituto de Química, Universidade
Federal de Goiás—UFG, Goiânia, Goiás 74690-900, Brazil
| | - Muhammad A. Ali
- Institute
of Chemistry (ICS), University of Peshawar—UOP, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Giancarlo V. Botteselle
- Departamento
de Química, Universidade Estadual
do Centro-Oeste—UNICENTRO, Guarapuava, Paraná 85819110, Brazil
| | - Tiago E. A. Frizon
- Universidade
Federal de Santa Catarina—UFSC, Campus Araranguá, Araranguá, Santa Catarina 88905120, Brazil
| | - Muhammad I. A. Shah
- Department
of Chemistry, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Luciano M. Lião
- LABSO,
Instituto de Química, Universidade
Federal de Goiás—UFG, Goiânia, Goiás 74690-900, Brazil
| | - Adilson Beatriz
- Instituto
de Química, Universidade Federal
do Mato Grosso do Sul, Campo
Grande, Mato Grosso do Sul 79074-460, Brazil
| | - Sumbal Saba
- LABSO,
Instituto de Química, Universidade
Federal de Goiás—UFG, Goiânia, Goiás 74690-900, Brazil
| | - Jamal Rafique
- Instituto
de Química, Universidade Federal
do Mato Grosso do Sul, Campo
Grande, Mato Grosso do Sul 79074-460, Brazil
- LABSO,
Instituto de Química, Universidade
Federal de Goiás—UFG, Goiânia, Goiás 74690-900, Brazil
| |
Collapse
|
7
|
Gomes GB, Zubieta CS, Guilhermi JDS, Toffoli-Kadri MC, Beatriz A, Rafique J, Parisotto EB, Saba S, Perdomo RT. Selenylated Imidazo [1,2- a]pyridine Induces Apoptosis and Oxidative Stress in 2D and 3D Models of Colon Cancer Cells. Pharmaceuticals (Basel) 2023; 16:814. [PMID: 37375763 DOI: 10.3390/ph16060814] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Colon cancer incidence rates are increasing annually, a scenario aggravated by genetic and epigenetic alterations that promote drug resistance. Recent studies showed that novel synthetic selenium compounds are more efficient and less toxic than conventional drugs, demonstrating biocompatibility and pro-oxidant effects on tumor cells. This study aimed to investigate the cytotoxic effect of MRK-107, an imidazo [1,2- a]pyridine derivative, in 2D and 3D cell culture models of colon cancer (Caco-2 and HT-29). Sulforhodamine B results revealed a GI50 of 2.4 µM for Caco-2, 1.1 µM for HT-29, and 22.19 µM for NIH/3T3 in 2D cultures after 48 h of treatment. Cell recovery, migration, clonogenic, and Ki-67 results corroborated that MRK-107 inhibits cell proliferation and prevents cell regeneration and metastatic transition by selectively reducing migratory and clonogenic capacity; non-tumor cells (NIH/3T3) re-established proliferation in less than 18 h. The oxidative stress markers DCFH-DA and TBARS revealed increased ROS generation and oxidative damage. Caspases-3/7 are activated and induce apoptosis as the main mode of cell death in both cell models, as assessed by annexin V-FITC and acridine orange/ethidium bromide staining. MRK-107 is a selective, redox-active compound with pro-oxidant and pro-apoptotic properties and the capacity to activate antiproliferative pathways, showing promise in anticancer drug research.
Collapse
Affiliation(s)
- Giovana Bicudo Gomes
- Postgraduate Course in Pharmaceutical Sciences, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
| | - Claudia Stutz Zubieta
- Postgraduate Course in Pharmaceutical Sciences, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
| | | | - Mônica Cristina Toffoli-Kadri
- Postgraduate Course in Pharmaceutical Sciences, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
| | - Adilson Beatriz
- Laboratory of Synthesis and Transformation of Organic Molecules (SINTMOL), Institute of Chemistry (INQUI), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79074-460, Brazil
| | - Jamal Rafique
- Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Goiania 74690-900, Brazil
- Laboratory of Synthesis and Transformation of Organic Molecules (SINTMOL), Institute of Chemistry (INQUI), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79074-460, Brazil
| | - Eduardo Benedetti Parisotto
- Postgraduate Course in Pharmaceutical Sciences, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
| | - Sumbal Saba
- Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Goiania 74690-900, Brazil
| | - Renata Trentin Perdomo
- Postgraduate Course in Pharmaceutical Sciences, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
| |
Collapse
|
8
|
Selenium-containing azoles: synthesis and possibilities of application. Chem Heterocycl Compd (N Y) 2023. [DOI: 10.1007/s10593-023-03156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
9
|
Selenylated Imidazo[1,2 -a]pyridine Induces Cell Senescence and Oxidative Stress in Chronic Myeloid Leukemia Cells. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020893. [PMID: 36677949 PMCID: PMC9860887 DOI: 10.3390/molecules28020893] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/24/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
Imidazo[1,2-a]pyridines (IPs) have been studied regarding drug development. The objective of this work was to evaluate the antileukemic capacity of IP derivatives by screening their ability as a pro-oxidant. IP derivatives were synthesized and oral bioavailability and toxicity were analyzed in silico. Redox screening was performed on human Kasumi, KG-1, K562, and Jurkat leukemia cells. The IP derivative and the most responsive leukemic cell were selected for cytotoxicity, cell proliferation, cell senescence, and oxidative stress assays. The predictive toxicity analysis showed a possible effect on the reproductive system, but without mutagenic, carcinogenic, or irritability effects. MRK-107 against K562 cells was the compound that showed the best redox profile. MRK-107 did not induce cell death in K562 and monocyte cells. However, this compound was able to decrease cell proliferation and increase cell senescence after 48 and 72 h. Furthermore, MRK-107 induced oxidative stress in K562 cells after 72 h, increasing lipid peroxidation and decreasing reduced glutathione (GSH) contents. This study demonstrated that MRK-107-induced senescence with the involvement of oxidative stress is a possible mechanism of action, addressing this compound as a potential antitumor drug against chronic myeloid leukemia.
Collapse
|
10
|
Jia X, Ma X, Feng W, Zhang JQ, Zhao Y, Guo B, Tang L, Yang YY. DBU-Catalyzed Aerobic CDC Reaction of Thiophenols. J Org Chem 2022; 87:16492-16505. [PMID: 36473149 DOI: 10.1021/acs.joc.2c02207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A convenient method was developed for the preparation of thiolated compounds via a DBU-catalyzed aerobic cross-dehydrogenative coupling (CDC) reaction. The established protocol is environmentally friendly and operationally simple. Substrates like (hetero)aryl acetates, (hetero)aryl ketones, and indoles could be transformed into the corresponding thiolated products in moderate to high yields and further applied in the preparation of bioactive compounds in a prefunctionalization-free manner.
Collapse
Affiliation(s)
- Xuemin Jia
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Xiao Ma
- Department of Pharmacy, Guiyang Maternal and Child Health Care Hospital, 550003 Guiyang, P. R. China
| | - Wei Feng
- BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian, 518083 Shenzhen, China
| | - Ji-Quan Zhang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Yonglong Zhao
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 550004 Guiyang, P. R. China
| | - Lei Tang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Yuan-Yong Yang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| |
Collapse
|
11
|
Zhong Z, Ma J, Xu P, Zhou A. Selenium Dioxide as a Source to make Se‐Containing Imidazoheterocycle or Aniline Derivatives. ChemistrySelect 2022. [DOI: 10.1002/slct.202204176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zijian Zhong
- School of Pharmacy Jiangsu University Zhenjiang 212013 China
| | - Jinfeng Ma
- School of Pharmacy Jiangsu University Zhenjiang 212013 China
| | - Pan Xu
- School of Pharmacy Jiangsu University Zhenjiang 212013 China
| | - Aihua Zhou
- School of Pharmacy Jiangsu University Zhenjiang 212013 China
| |
Collapse
|
12
|
Sen PP, Roy VJ, Raha Roy S. Electrochemical Activation of the C-X Bond on Demand: Access to the Atom Economic Group Transfer Reaction Triggered by Noncovalent Interaction. J Org Chem 2022; 87:9551-9564. [PMID: 35816013 DOI: 10.1021/acs.joc.2c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An atom economic method demonstrates the involvement of noncovalent interaction via hydrogen or halogen bonding interaction in triggering paired electrolysis for the group transfer reactions. Specifically, this method demonstrated the bromination of several aromatic and heteroaromatic compounds through the activation of the C(sp3)-Br bond of organic-bromo derivatives on demand. This electrochemical protocol is mild, and mostly no additional electrolyte is needed, which makes the workup process straightforward. Unlike the existing regioselective monobromination methods, this work utilizes a relatively small amount (1.2 equiv) of bromine surrogates that releases bromine on demand under the electrochemical condition and after completion of the reaction generates acetophenone as a useful byproduct. Green metrics indicate this protocol has a very good atom efficiency with an E-factor of 26.86 kg of waste/1 kg of product. In addition to the scale-up process, this strategy could be extended to the transfer of chlorine and thioaryl units. An extensive mechanistic study is accomplished to validate the hypothesis of noncovalent interaction using computational, spectroscopic, and cyclic voltammetry studies. Finally, the applicability of this newly developed nonbonding interaction to trigger paired electrolysis was extended to the chemoselective debromination of several dihalo organic compounds.
Collapse
Affiliation(s)
- Partha Pratim Sen
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vishal Jyoti Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
13
|
Mal S, Jana M. Sulfonyl hydrazide induced sulfenylation of imidazoheteroarenes: A ‘catalyst and solvent free’ protocol. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2069506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sourav Mal
- Department of Chemistry, University of Kalyani, Nadia, India
| | - Manoranjan Jana
- Department of Chemistry, University of Kalyani, Nadia, India
| |
Collapse
|
14
|
Recent advances in transition-metal-free C–H functionalization of imidazo[1,2-a]pyridines. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
15
|
Kianmehr E, Bari B, Jafarzadeh M, Rostami A, Golshani M, Foroumadi A. Reaction of imidazo[1,2- a]pyridines with coumarin-3-carboxylic acids: a domino Michael addition/decarboxylation/oxidation/annulation. NEW J CHEM 2022. [DOI: 10.1039/d2nj02706b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A palladium-catalyzed decarboxylative domino reaction of imidazo[1,2-a]pyridines and coumarin-3-carboxylic acids has been developed, which provides access to dibenzoisochromenoimidazo[1,2-a]pyridin-6-ones possessing six fused rings.
Collapse
Affiliation(s)
- Ebrahim Kianmehr
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran
| | - Bahareh Bari
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran
| | - Mahdi Jafarzadeh
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran
| | - Ali Rostami
- Natural and Medical Sciences Research Center (NMSRC), University of Nizwa, Nizwa 616, Sultanate of Oman
| | - Mostafa Golshani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Mulina OM, Ilovaisky AI, Terent'ev AO. Sulfenylation of Indoles Mediated by Iodine and Its Compounds. ChemistrySelect 2021. [DOI: 10.1002/slct.202102227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Olga M. Mulina
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Alexey I. Ilovaisky
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect 119991 Moscow Russian Federation
- All Russian Research Institute for Phytopathology B. Vyazyomy 143050 Moscow Region Russian Federation
| | - Alexander O. Terent'ev
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect 119991 Moscow Russian Federation
| |
Collapse
|
17
|
Sonawane AD, Sonawane RA, Ninomiya M, Koketsu M. Diorganyl diselenides: a powerful tool for the construction of selenium containing scaffolds. Dalton Trans 2021; 50:12764-12790. [PMID: 34581339 DOI: 10.1039/d1dt01982a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Organoselenium compounds find versatile applications in organic synthesis, materials synthesis, and ligand chemistry. Organoselenium heterocycles are widely studied agents with diverse applications in various biological processes. This review highlights the recent progress in the synthesis of selenium heterocycles using diorganyl diselenides with keen attention on green synthetic approaches, scopes, C-H selanylation, the mechanisms of different reactions and insights into the formation of metal complexes. The C-H selanylation using diorganyl diselenides with different catalysts, bases, transition metals, iodine salts, NIS, hypervalent iodine, and other reagents is summarised. Finally, the diverse binding modes of bis(2/4-pyridyl)diselenide with different metal complexes are also summarised.
Collapse
Affiliation(s)
- Amol D Sonawane
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Rohini A Sonawane
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Masayuki Ninomiya
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
18
|
Franco MS, Saba S, Rafique J, Braga AL. KIO
4
‐mediated Selective Hydroxymethylation/Methylenation of Imidazo‐Heteroarenes: A Greener Approach. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marcelo Straesser Franco
- Departamento de Química Universidade Federal de Santa Catarina—UFSC Florianópolis 88040-900 SC-Brazil
| | - Sumbal Saba
- Instituto de Química Universidade Federal de Goiás—UFG Goiânia 74690-900 GO-Brazil
| | - Jamal Rafique
- Instituto de Química, Universidade Federal do Mato Grosso do Sul—UFMS Campo Grande 79074-460 MS-Brazil
| | - Antonio Luiz Braga
- Departamento de Química Universidade Federal de Santa Catarina—UFSC Florianópolis 88040-900 SC-Brazil
- Department of Chemical Sciences Faculty of Science University of Johannesburg Doornfontein 2028 South Africa
| |
Collapse
|
19
|
Scheide MR, Schneider AR, Jardim GAM, Martins GM, Durigon DC, Saba S, Rafique J, Braga AL. Electrochemical synthesis of selenyl-dihydrofurans via anodic selenofunctionalization of allyl-naphthol/phenol derivatives and their anti-Alzheimer activity. Org Biomol Chem 2021; 18:4916-4921. [PMID: 32353091 DOI: 10.1039/d0ob00629g] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, we report an eco-friendly, electrosynthetic approach for the intramolecular oxyselenylation of allyl-naphthol/phenol derivatives. This reaction proceeds with 0.2 equiv. of nBu4NClO4 as an electrolyte and Pt working electrodes in an undivided cell, resulting in the selenyl-dihydrofurans in good to excellent yields. Furthermore, several of the synthesized products presented a high percentage of acetylcholinesterase (AChE) inhibition, highlighting their potential anti-Alzheimer activity.
Collapse
Affiliation(s)
- Marcos R Scheide
- Departamento de Química, Universidade Federal de Santa Catarina - UFSC, Florianopolis, 88040-900, SC, Brazil.
| | - Alex R Schneider
- Departamento de Química, Universidade Federal de Santa Catarina - UFSC, Florianopolis, 88040-900, SC, Brazil.
| | - Guilherme A M Jardim
- Departamento de Química, Universidade Federal de Santa Catarina - UFSC, Florianopolis, 88040-900, SC, Brazil.
| | - Guilherme M Martins
- Departamento de Química, Universidade Federal de Santa Catarina - UFSC, Florianopolis, 88040-900, SC, Brazil.
| | - Daniele C Durigon
- Departamento de Química, Universidade Federal de Santa Catarina - UFSC, Florianopolis, 88040-900, SC, Brazil.
| | - Sumbal Saba
- Centro de Ciências Naturais e Humanas-CCNH, Universidade Federal do ABC - UFABC, Santo André, 09210-580, SP, Brazil
| | - Jamal Rafique
- Instituto de Química, Universidade Federal do Mato Grosso do Sul - UFMS, Campo Grande, 79074-460, MS, Brazil
| | - Antonio L Braga
- Departamento de Química, Universidade Federal de Santa Catarina - UFSC, Florianopolis, 88040-900, SC, Brazil.
| |
Collapse
|
20
|
Franco MS, Saba S, Rafique J, Braga AL. KIO 4 -mediated Selective Hydroxymethylation/Methylenation of Imidazo-Heteroarenes: A Greener Approach. Angew Chem Int Ed Engl 2021; 60:18454-18460. [PMID: 34097781 DOI: 10.1002/anie.202104503] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/14/2021] [Indexed: 02/06/2023]
Abstract
Herein, we report a KIO4 -mediated, sustainable and chemoselective approach for the one-pot C(sp2 )-H bond hydroxymethylation or methylenation of imidazo-heteroarenes with formaldehyde, generated in situ via the oxidative cleavage of ethylene glycol or glycerol (renewable reagents) through the Malaprade reaction. In the presence of ethylene glycol, a series of 3-hydroxymethyl-imidazo-heteroarenes was obtained in good to excellent yields. These compounds are important intermediates to access pharmaceutical drugs, e.g., Zolpidem. Furthermore, by using glycerol, bis(imidazo[1,2-a]pyridin-3-yl)methane derivatives were selectively obtained in good to excellent yields.
Collapse
Affiliation(s)
- Marcelo Straesser Franco
- Departamento de Química, Universidade Federal de Santa Catarina-UFSC, Florianópolis, 88040-900, SC-Brazil
| | - Sumbal Saba
- Instituto de Química, Universidade Federal de Goiás-UFG, Goiânia, 74690-900, GO-Brazil
| | - Jamal Rafique
- Instituto de Química, Universidade, Federal do Mato Grosso do Sul-UFMS, Campo Grande, 79074-460, MS-Brazil
| | - Antonio Luiz Braga
- Departamento de Química, Universidade Federal de Santa Catarina-UFSC, Florianópolis, 88040-900, SC-Brazil.,Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein, 2028, South Africa
| |
Collapse
|
21
|
Veloso IC, Delanogare E, Machado AE, Braga SP, Rosa GK, De Bem AF, Rafique J, Saba S, da Trindade RN, Galetto FZ, Moreira ELG. A selanylimidazopyridine (3-SePh-IP) reverses the prodepressant- and anxiogenic-like effects of a high-fat/high-fructose diet in mice. J Pharm Pharmacol 2021; 73:673-681. [PMID: 33772293 DOI: 10.1093/jpp/rgaa070] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/23/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE While chronic feeding with high-fat or high-sugar diets is known related to obesity and type 2 diabetes, later data have indicated that it is also related to depression and anxiety appearance. In this regard, multi-target drugs raise considerable interest as promising therapeutic solutions to complex diseases. Considering the pharmacological effects of the imidazopyridine-derivative moiety imidazo[1,2-a]pyridine and the organoselenium molecules, the combination of both could be a feasible strategy to develop efficient drugs to handle obesity and related comorbidities, for example dyslipidemia and mood disorders. METHODS The antidepressant- and anxiolytic-like properties of a selanylimidazopyridine compound, 2-Phenyl-3-(phenylselanyl)imidazo[1,2-a]pyridine (3-SePh-IP), were evaluated on high-fat/high-fructose diet (HFFD)-fed female Swiss mice. KEY FINDINGS Our results showed that a short-term HFFD (16 days) could promote a significant body weight gain, hypercholesterolemia, glucose intolerance, and anxiety- and depressive-like behaviour in mice. Concomitant treatment with 3-SePh-IP (10 mg/kg; i.p.) attenuated the HFFD-induced increase in cholesterol levels and blunted the anxiety- and depressive-like behaviour in mice. CONCLUSIONS 3-SePh-IP holds multimodal pharmacological properties, which provide a rationale for further studies, for example to assess the underlying mechanisms linked to its anxiolytic- and antidepressive-like activities.
Collapse
Affiliation(s)
- Izolene Corrêa Veloso
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Eslen Delanogare
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Adriano Emanuel Machado
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Sara Pereira Braga
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Giovana Karoline Rosa
- Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Andreza Fabro De Bem
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Jamal Rafique
- Instituto de Química, Universidade Federal do Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Sumbal Saba
- Centro de Ciências Naturais e Humanas - CCNH, Universidade Federal do ABC, Santo André, SP, Brazil
| | | | - Fábio Zazyki Galetto
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Eduardo Luiz Gasnhar Moreira
- Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.,Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.,Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
22
|
Kundu D. Synthetic strategies for aryl/heterocyclic selenides and tellurides under transition-metal-catalyst free conditions. RSC Adv 2021; 11:6682-6698. [PMID: 35423206 PMCID: PMC8694912 DOI: 10.1039/d0ra10629a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/29/2021] [Indexed: 02/03/2023] Open
Abstract
Aryl and heteroaryl selenides and tellurides are found to have broad applications in the diverse fields such as medicine, biology, materials science, pharmaceutical etc. and thus their synthesis remains a challenging field for synthetic chemists in last decade. Although a large no of methodologies have been developed based on metal catalyzed C-Se/Te coupling, a large number of researches has been focused on developing metal catalyst free protocols due to their sustainability in recent times. This review covers all the recent developments in last decade on their synthesis under metal catalyst free conditions by using different sustainable techniques e.g. greener reagents and solvents, ball milling, visible light photocatalysis, microwave, ultrasound etc.
Collapse
Affiliation(s)
- Debasish Kundu
- Department of Chemistry, Government General Degree College at Mangalkote (Affiliated to The University of Burdwan) Khudrun, Purba Bardhaman 713143 India
| |
Collapse
|
23
|
Mu Y, Yang M, Li F, Iqbal Z, Jiang R, Hou J, Guo X, Yang Z, Tang D. Iodine-catalyzed sulfuration of isoquinolin-1(2 H)-ones applying ethyl sulfinates. NEW J CHEM 2021. [DOI: 10.1039/d1nj00390a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Sulfuration of isoquinolin-1(2H)-ones at the C-4 position by employing ethyl sulfonates.
Collapse
Affiliation(s)
- Yangxiu Mu
- Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry Science
- Yinchuan 750002
- P. R. China
| | - Minghua Yang
- Department of Chemistry
- Lishui University
- Lishui
- P. R. China
| | - Fengxia Li
- Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry Science
- Yinchuan 750002
- P. R. China
| | - Zafar Iqbal
- Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry Science
- Yinchuan 750002
- P. R. China
| | - Rui Jiang
- Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry Science
- Yinchuan 750002
- P. R. China
| | - Jing Hou
- Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry Science
- Yinchuan 750002
- P. R. China
| | - Xin Guo
- Department of Pharmaceutical Engineering
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan 750002
- P. R. China
| | - Zhixiang Yang
- Department of Chemistry
- Lishui University
- Lishui
- P. R. China
| | - Dong Tang
- Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry Science
- Yinchuan 750002
- P. R. China
- Department of Chemistry
- Lishui University
| |
Collapse
|
24
|
Gao F, Sun K, Chen XL, Shi T, Li XY, Qu LB, Zhao YF, Yu B. Visible-Light-Induced Phosphorylation of Imidazo-Fused Heterocycles under Metal-Free Conditions. J Org Chem 2020; 85:14744-14752. [PMID: 33136392 DOI: 10.1021/acs.joc.0c02107] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A metal-free and base-free procedure for the phosphorylation of imidazo[1,2-a]pyridines with phosphine oxides under the irradiation of visible light at room temperature in green solvent was reported, featuring mild and sustainable conditions, convenient operation, as well as good functional group compatibility.
Collapse
Affiliation(s)
- Fan Gao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Kai Sun
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Tao Shi
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Xiao-Yun Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Ling-Bo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Yu-Fen Zhao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China.,Institute Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| |
Collapse
|
25
|
Rafique J, Farias G, Saba S, Zapp E, Bellettini IC, Momoli Salla CA, Bechtold IH, Scheide MR, Santos Neto JS, Monteiro de Souza Junior D, de Campos Braga H, Ribeiro LFB, Gastaldon F, Pich CT, Frizon TEA. Selenylated-oxadiazoles as promising DNA intercalators: Synthesis, electronic structure, DNA interaction and cleavage. DYES AND PIGMENTS : AN INTERNATIONAL JOURNAL 2020; 180:108519. [PMID: 32382200 PMCID: PMC7204724 DOI: 10.1016/j.dyepig.2020.108519] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 05/09/2023]
Abstract
A series of selenylated-oxadiazoles were prepared and their interaction with DNA was investigated. The photophysical studies showed that all the selenylated compounds presented absorption between 270 and 329 nm, assigned to combined n→π* and π→π* transitions, and an intense blue emission (325-380 nm) with quantum yield in the range of Φ F = 0.1-0.4. DFT and TD-DFT calculations were also performed to study the likely geometry and the excited state of these compounds. Electrochemical studies revealed the ionization potential energies (-5.13 to -6.01 eV) and electron affinity energies (-2.25 to -2.83 eV), depending directly on the electronic effect (electron-donating or electron-withdrawing) of the substituent attached to the product. Finally, the UV-Vis DNA interaction experiments indicated that the compounds can interact with the DNA molecule due to intercalation, except for 3g (which interacted via electrostatic interaction). Plasmid cleavage assay presented positive results only for 3f that presented the strongest interaction results. These results made the tested selenylated-oxadiazoles as suitable structures for the development of drugs and the design of structurally-related therapeutics.
Collapse
Affiliation(s)
- Jamal Rafique
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
- Corresponding author.;
| | - Giliandro Farias
- Chemistry Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Sumbal Saba
- Center for Natural and Human Sciences-CCNH, Federal University of ABC, Santo André, SP, Brazil
- Corresponding author.;
| | - Eduardo Zapp
- Department of Exact Sciences and Education, Federal University of Santa Catarina, Blumenau, SC, Brazil
| | | | | | | | | | | | | | - Hugo de Campos Braga
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, SP, Brazil
| | | | - Francine Gastaldon
- Department of Energy and Sustainability, Federal University of Santa Catarina, Araranguá, SC, Brazil
| | - Claus Tröger Pich
- Department of Energy and Sustainability, Federal University of Santa Catarina, Araranguá, SC, Brazil
| | - Tiago Elias Allievi Frizon
- Department of Energy and Sustainability, Federal University of Santa Catarina, Araranguá, SC, Brazil
- Corresponding author.
| |
Collapse
|
26
|
Song WH, Shi J, Chen X, Song G. Silver-Catalyzed Remote C5–H Selenylation of Indoles. J Org Chem 2020; 85:11104-11115. [DOI: 10.1021/acs.joc.0c00921] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei-Hong Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing 100083, P. R. China
| | - Jia Shi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing 100083, P. R. China
| | - Xiaohong Chen
- Center for Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, No. 1 Qinggongyuan, Dalian 116034, Liaoning, P. R. China
| | - Guoyong Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing 100083, P. R. China
| |
Collapse
|
27
|
Ghosh S, Mondal S, Hajra A. Direct Catalytic Functionalization of Indazole Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000423] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Susmita Mondal
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Alakananda Hajra
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| |
Collapse
|
28
|
Wang S, Luo R, Guo L, Zhu T, Chen X, Liu W. Microwave-assisted and catalyst-free sulfenylation of imidazo[2,1- b]thiazoles with sulfonyl hydrazides in water. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2020.1768537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Shaohua Wang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, P.R. of China
- Guangdong Cosmetics Engineering & Technology Research Center, Guangzhou, P.R. of China
| | - Run Luo
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, P.R. of China
| | - Lina Guo
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, P.R. of China
| | - Tianxi Zhu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, P.R. of China
| | - Xu Chen
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, P.R. of China
| | - Wenjie Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, P.R. of China
- Guangdong Cosmetics Engineering & Technology Research Center, Guangzhou, P.R. of China
| |
Collapse
|
29
|
Guo T, Wei XN, Zhang M, Liu Y, Zhu LM, Zhao YH. Catalyst and additive-free oxidative dual C-H sulfenylation of imidazoheterocycles with elemental sulfur using DMSO as a solvent and an oxidant. Chem Commun (Camb) 2020; 56:5751-5754. [PMID: 32319979 DOI: 10.1039/d0cc00043d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dual C-H sulfenylation was used to obtain 3-vulcanized imidazoheterocycles using odorless elemental sulfur under catalyst- and additive-free conditions. C-H activation of both imidazoheterocycles and arylamines/arenols/indoles was realized by a practical protocol in which DMSO served as both a solvent and an internal oxidant.
Collapse
Affiliation(s)
- Tao Guo
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China.
| | - Xu-Ning Wei
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China.
| | - Miao Zhang
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yu Liu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China.
| | - Li-Min Zhu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China.
| | - Yun-Hui Zhao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China.
| |
Collapse
|
30
|
Synthesis of Novel Selenocyanates and Evaluation of Their Effect in Cultured Mouse Neurons Submitted to Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5417024. [PMID: 33093936 PMCID: PMC7275203 DOI: 10.1155/2020/5417024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Abstract
Herein, we report the synthesis of novel selenocyanates and assessment of their effect on the oxidative challenge elicited by hydrogen peroxide (H2O2) in cultured mouse neurons. First, α-methylene-β-hydroxy esters were prepared as precursors of allylic bromides. A reaction involving the generated bromides and sodium selenocyanate was conducted to produce the desired selenocyanates (3a-f). We next prepared cultures of neurons from 7-day-old mice (n = 36). H2O2 (10-5 M) was added into the culture flasks as an oxidative stress inducer, alone or combined with one of each designed compounds. (PhSe)2 was used as a positive control. It was carried out assessment of lipid (thiobarbituric acid reactive species, 4-hydroxy-2'-nonenal, 8-isoprostane), DNA (8-hydroxy-2'-deoxyguanosine), and protein (carbonyl) modification parameters. Finally, catalase and superoxide dismutase activities were also evaluated. Among the compounds, 3b, 3d, and 3f exhibited the most pronounced pattern of antioxidant activity, similar to (PhSe)2. These novel aromatic selenocyanates could be promising to be tried in most sophisticated in vitro studies or even at the preclinical level.
Collapse
|
31
|
Frizon TEA, Vieira AA, da Silva FN, Saba S, Farias G, de Souza B, Zapp E, Lôpo MN, Braga HDC, Grillo F, Curcio SF, Cazati T, Rafique J. Synthesis of 2,1,3-Benzoxadiazole Derivatives as New Fluorophores-Combined Experimental, Optical, Electro, and Theoretical Study. Front Chem 2020; 8:360. [PMID: 32478032 PMCID: PMC7235381 DOI: 10.3389/fchem.2020.00360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/07/2020] [Indexed: 01/04/2023] Open
Abstract
Herein, we report the synthesis and characterization of fluorophores containing a 2,1,3-benzoxadiazole unit associated with a π-conjugated system (D-π-A-π-D). These new fluorophores in solution exhibited an absorption maximum at around ~419 nm (visible region), as expected for electronic transitions of the π-π* type (ε ~2.7 × 107 L mol-1 cm-1), and strong solvent-dependent fluorescence emission (ΦFL ~0.5) located in the bluish-green region. The Stokes' shift of these compounds is ca. 3,779 cm-1, which was attributed to an intramolecular charge transfer (ICT) state. In CHCl3 solution, the compounds exhibited longer and shorter lifetimes, which was attributed to the emission of monomeric and aggregated molecules, respectively. Density functional theory was used to model the electronic structure of the compounds 9a-d in their excited and ground electronic states. The simulated emission spectra are consistent with the experimental results, with different solvents leading to a shift in the emission peak and the attribution of a π-π* state with the characteristics of a charge transfer excitation. The thermal properties were analyzed by thermogravimetric analysis, and a high maximum degradation rate occurred at around 300°C. Electrochemical studies were also performed in order to determine the band gaps of the molecules. The electrochemical band gaps (2.48-2.70 eV) showed strong correlations with the optical band gaps (2.64-2.67 eV).
Collapse
Affiliation(s)
- Tiago E. A. Frizon
- Department of Energy and Sustainability, Federal University of Santa Catarina, Araranguá, Brazil
| | - André A. Vieira
- Institute of Chemistry, Federal University of Bahia, Salvador, Brazil
| | | | - Sumbal Saba
- Center for Natural and Human Sciences-CCNH, Federal University of ABC, Santo André, Brazil
| | - Giliandro Farias
- Chemistry Department, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Bernardo de Souza
- Chemistry Department, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Eduardo Zapp
- Department of Exact Sciences and Education, Federal University of Santa Catarina, Blumenau, Brazil
| | - Michell N. Lôpo
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Hugo de C. Braga
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Felipe Grillo
- Department of Materials and Metallurgy, Federal Institute of Espírito Santo, Vitória, Brazil
| | - Sergio F. Curcio
- Physics Department, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Thiago Cazati
- Physics Department, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Jamal Rafique
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| |
Collapse
|
32
|
Le Bescont J, Breton-Patient C, Piguel S. Unconventional Reactivity with DABCO-Bis
(sulfur dioxide): C-H Bond Sulfenylation of Imidazopyridines. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Julie Le Bescont
- CNRS, Inserm; Université Paris-Saclay; 91405 Orsay France
- CNRS, Inserm; Institut Curie; 91402 Orsay France
| | - Chloé Breton-Patient
- CNRS, Inserm; Université Paris-Saclay; 91405 Orsay France
- CNRS, Inserm; Institut Curie; 91402 Orsay France
| | - Sandrine Piguel
- CNRS, Inserm; Université Paris-Saclay; 91405 Orsay France
- CNRS, Inserm; Institut Curie; 91402 Orsay France
| |
Collapse
|
33
|
Saba S, Dos Santos CR, Zavarise BR, Naujorks AAS, Franco MS, Schneider AR, Scheide MR, Affeldt RF, Rafique J, Braga AL. Photoinduced, Direct C(sp
2
)−H Bond Azo Coupling of Imidazoheteroarenes and Imidazoanilines with Aryl Diazonium Salts Catalyzed by Eosin Y. Chemistry 2020; 26:4461-4466. [DOI: 10.1002/chem.201905308] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/07/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Sumbal Saba
- Centro de Ciências Naturais e Humanas-CCNHUniversidade Federal do ABC Santo André 09210-580 SP Brazil
| | - Caio R. Dos Santos
- Departamento de QuímicaUniversidade Federal de Santa Catarina-UFSC Florianópolis 88040-900 SC Brazil
| | - Bruno R. Zavarise
- Departamento de QuímicaUniversidade Federal de Santa Catarina-UFSC Florianópolis 88040-900 SC Brazil
| | - Aline A. S. Naujorks
- Instituto de QuímicaUniversidade Federal do Mato Grosso do Sul-UFMS Campo Grande 79074-460 MS Brazil
| | - Marcelo S. Franco
- Departamento de QuímicaUniversidade Federal de Santa Catarina-UFSC Florianópolis 88040-900 SC Brazil
| | - Alex R. Schneider
- Departamento de QuímicaUniversidade Federal de Santa Catarina-UFSC Florianópolis 88040-900 SC Brazil
| | - Marcos R. Scheide
- Departamento de QuímicaUniversidade Federal de Santa Catarina-UFSC Florianópolis 88040-900 SC Brazil
| | - Ricardo F. Affeldt
- Departamento de QuímicaUniversidade Federal de Santa Catarina-UFSC Florianópolis 88040-900 SC Brazil
| | - Jamal Rafique
- Instituto de QuímicaUniversidade Federal do Mato Grosso do Sul-UFMS Campo Grande 79074-460 MS Brazil
| | - Antonio L. Braga
- Departamento de QuímicaUniversidade Federal de Santa Catarina-UFSC Florianópolis 88040-900 SC Brazil
| |
Collapse
|
34
|
Yi R, Liu S, Gao H, Liang Z, Xu X, Li N. Iodine-promoted direct thiolation (selenylation) of imidazole with disulfides (diselenide): A convenient and metal-free protocol for the synthesis of 2-arylthio(seleno)imidazole. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.130951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Obah Kosso AR, Kabri Y, Broggi J, Redon S, Vanelle P. Sequential Regioselective Diorganochalcogenations of Imidazo[1,2-a]pyrimidines Using I2/H3PO4 in Dimethylsulfoxide. J Org Chem 2020; 85:3071-3081. [DOI: 10.1021/acs.joc.9b02963] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Anne Roly Obah Kosso
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Youssef Kabri
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Julie Broggi
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Sébastien Redon
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Patrice Vanelle
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille, France
| |
Collapse
|
36
|
Abenante L, Padilha NB, Anghinoni JM, Penteado F, Rosati O, Santi C, Silva MS, Lenardão EJ. Arylseleninic acid as a green, bench-stable selenylating agent: synthesis of selanylanilines and 3-selanylindoles. Org Biomol Chem 2020; 18:5210-5217. [DOI: 10.1039/d0ob01073a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
C–Se bonds in electron-rich arenes are easily formed by the reaction of bench-stable arylseleninic acids as an electrophilic selenium source. The only waste in the reaction is water.
Collapse
Affiliation(s)
- Laura Abenante
- LASOL - CCQFA
- Universidade Federal de Pelotas - UFPel
- 96010-900 Pelotas
- Brazil
| | | | - João M. Anghinoni
- LASOL - CCQFA
- Universidade Federal de Pelotas - UFPel
- 96010-900 Pelotas
- Brazil
| | - Filipe Penteado
- LASOL - CCQFA
- Universidade Federal de Pelotas - UFPel
- 96010-900 Pelotas
- Brazil
| | - Ornelio Rosati
- Group of Catalysis
- Synthesis and Organic Green Chemistry
- Department of Pharmaceutical Sciences
- University of Perugia
- 06123 Perugia
| | - Claudio Santi
- Group of Catalysis
- Synthesis and Organic Green Chemistry
- Department of Pharmaceutical Sciences
- University of Perugia
- 06123 Perugia
| | - Marcio S. Silva
- LASOL - CCQFA
- Universidade Federal de Pelotas - UFPel
- 96010-900 Pelotas
- Brazil
| | - Eder J. Lenardão
- LASOL - CCQFA
- Universidade Federal de Pelotas - UFPel
- 96010-900 Pelotas
- Brazil
| |
Collapse
|
37
|
Wang J, Zhu J, Zhou A. One-pot synthesis of imidazo[1,2-α]pyridine thioethers using imidazo[1,2-α]pyridines, arylsulfonyl chlorides and hydrazine. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2019.1686376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jin Wang
- Department of Pharmaceutical Engineering, Pharmacy School, Jiangsu University, Zhenjiang City, Jiangsu, China
| | - Jie Zhu
- Department of Pharmaceutical Engineering, Pharmacy School, Jiangsu University, Zhenjiang City, Jiangsu, China
| | - Aihua Zhou
- Department of Pharmaceutical Engineering, Pharmacy School, Jiangsu University, Zhenjiang City, Jiangsu, China
| |
Collapse
|
38
|
Sharma P, Jain N. S-Aryl Arenesulfonothioate and Copper Acetate Mediated Arylthiolation of 2-Arylpyridines and Heteroarenes. J Org Chem 2019; 84:13045-13052. [DOI: 10.1021/acs.joc.9b01954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Poonam Sharma
- Department of Chemistry, Indian Institute of Technology, New Delhi110016, India
| | - Nidhi Jain
- Department of Chemistry, Indian Institute of Technology, New Delhi110016, India
| |
Collapse
|
39
|
|
40
|
|
41
|
Zeng X, Chen L. Organo-selenium mediated regio- and stereoselective iodoselenylation of alkynes in an aqueous medium: simple access to (E)-β-iodoalkenyl selenides. Org Biomol Chem 2019; 17:3338-3342. [DOI: 10.1039/c9ob00524b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method for the simple, efficient, and atom economical iodoselenylation of simple alkynes under mild conditions using molecular iodine (I2) and 1,2-diselanes as starting materials was developed.
Collapse
Affiliation(s)
- Xianghua Zeng
- College of Biological
- Chemical Science and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Lu Chen
- School of Biotechnology and Health Science
- Wuyi University
- Jiangmen
- China
| |
Collapse
|
42
|
Lemir ID, Castro-Godoy WD, Heredia AA, Schmidt LC, Argüello JE. Metal- and photocatalyst-free synthesis of 3-selenylindoles and asymmetric diarylselenides promoted by visible light. RSC Adv 2019; 9:22685-22694. [PMID: 35519497 PMCID: PMC9067025 DOI: 10.1039/c9ra03642c] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/09/2019] [Indexed: 12/30/2022] Open
Abstract
A novel and sustainable procedure was developed for the synthesis of 3-selenylindoles employing diorganyl diselenides and indoles or electron-rich arenes as starting materials. Visible blue light was used to promote the reaction without employing transition metal complexes or organic photocatalysts as sensitizers. Additives such as strong oxidants or bases were not required. Moreover, ethanol was employed as a benign solvent under mild reaction conditions. Through this easy and eco-friendly approach, several 3-selenylindoles and a number of asymmetric diarylselenides were obtained in good to excellent isolated yields. A novel and sustainable procedure for the synthesis of 3-selenylindoles employing diorganyl diselenides and indoles or electron-rich arenes and promoted by visible light was developed.![]()
Collapse
Affiliation(s)
- Ignacio D. Lemir
- INFIQC-CONICET-UNC
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Ciudad Universitaria
| | - Willber D. Castro-Godoy
- INFIQC-CONICET-UNC
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Ciudad Universitaria
| | - Adrián A. Heredia
- INFIQC-CONICET-UNC
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Ciudad Universitaria
| | - Luciana C. Schmidt
- INFIQC-CONICET-UNC
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Ciudad Universitaria
| | - Juan E. Argüello
- INFIQC-CONICET-UNC
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Ciudad Universitaria
| |
Collapse
|
43
|
Peterle MM, Scheide MR, Silva LT, Saba S, Rafique J, Braga AL. Copper‐Catalyzed Three‐Component Reaction of Oxadiazoles, Elemental Se/S and Aryl Iodides: Synthesis of Chalcogenyl (Se/S)‐Oxadiazoles. ChemistrySelect 2018. [DOI: 10.1002/slct.201801213] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Marcos M. Peterle
- LabselenDepartamento de QuímicaUniversidade Federal de Santa Catarina, Florianopolis 88040-900 SC-Brazil
| | - Marcos R. Scheide
- LabselenDepartamento de QuímicaUniversidade Federal de Santa Catarina, Florianopolis 88040-900 SC-Brazil
| | - Lais T. Silva
- LabselenDepartamento de QuímicaUniversidade Federal de Santa Catarina, Florianopolis 88040-900 SC-Brazil
| | - Sumbal Saba
- LabselenDepartamento de QuímicaUniversidade Federal de Santa Catarina, Florianopolis 88040-900 SC-Brazil
| | - Jamal Rafique
- LabselenDepartamento de QuímicaUniversidade Federal de Santa Catarina, Florianopolis 88040-900 SC-Brazil
- Instituto de QuímicaUniversidade Federal do Mato Grosso do Sul, Campo Grande 79074-460 MS-Brazil
| | - Antonio L. Braga
- LabselenDepartamento de QuímicaUniversidade Federal de Santa Catarina, Florianopolis 88040-900 SC-Brazil
| |
Collapse
|