1
|
Thrinadh Kumar R, Mulani SC, Anwar S, Kottalanka RK. Design, synthesis, and apoptotic evaluation of spiro[indoline-3,3'-pyrazolo[1,2- a]indazole] derivatives via [3 + 2] N, N-cycloaddition. Org Biomol Chem 2025; 23:3583-3589. [PMID: 40104845 DOI: 10.1039/d5ob00049a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
An efficient protocol for the synthesis of spiro[indoline-3,3'-pyrazolo[1,2-a]indazole] derivatives was developed via a [3 + 2] N,N-cycloaddition strategy, utilizing substituted 2-(2-oxoindolin-3-ylidene)malononitrile derivatives and 1,2-dihydro-3H-indazol-3-one under mild conditions, yielding excellent results (3a-3l). Furthermore, selected derivatives (3e and 3h-3l) were evaluated for cytotoxicity against various cancer cell lines, including MCF-7 (breast cancer), A549 (lung cancer), Colo-205 (colon cancer), and A2780 (ovarian cancer). The IC50 values ranged from 1.34 ± 0.21 μM (for 3l against MCF-7) to 8.53 ± 1.49 μM (for 3h against A2780). Notably, derivative 3l demonstrated the most potent apoptotic activity, exhibiting the lowest IC50 values across all four cancer cell lines. Additionally, molecular docking studies corroborated the observed biological activity, suggesting that these compounds may interact with relevant cellular targets, potentially accounting for their cytotoxic effects.
Collapse
Affiliation(s)
- Rapeti Thrinadh Kumar
- Department of Chemistry, School of Applied Science and Humanities, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh 522213, India.
- Aragen Life Sciences Pvt. Ltd, 28A, IDA Nacharam, Hyderabad, Telangana-500076, India
| | - Sohel C Mulani
- Aragen Life Sciences Pvt. Ltd, 28A, IDA Nacharam, Hyderabad, Telangana-500076, India
| | - Shaik Anwar
- Department of Chemistry, School of Applied Science and Humanities, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh 522213, India.
| | - Ravi K Kottalanka
- Department of Chemistry, School of Applied Science and Humanities, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh 522213, India.
| |
Collapse
|
2
|
Maiti S, Parui N, Halder J, Dash J. Synthesis of triazole-fused tetracyclic spirooxindole derivatives via metal-free Huisgen cycloaddition. Chem Commun (Camb) 2024; 60:10009-10012. [PMID: 39177038 DOI: 10.1039/d4cc02534b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
We report an efficient, metal free method for synthesizing tetracyclic spirooxindole derivatives from N-protected isatins and propargyl bromide via Huisgen cycloaddition. This simple and practicle method provides access to spirooxindoles containing five-, six-, or seven-membered rings fused to a triazole ring.
Collapse
Affiliation(s)
- Sandip Maiti
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata-7000032, India.
| | - Nabin Parui
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata-7000032, India.
| | - Joydev Halder
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata-7000032, India.
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata-7000032, India.
| |
Collapse
|
3
|
Said MF, Marie SM, Mohamed NM, Mahrouse MA, Moussa BA. Insight on novel oxindole conjugates adopting different anti-inflammatory investigations and quantitative evaluation. Future Med Chem 2024; 16:817-842. [PMID: 38634318 PMCID: PMC11249151 DOI: 10.4155/fmc-2023-0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
Background: A dual COX/5-LOX strategy was adopted to develop new oxindole derivatives with superior anti-inflammatory activity. Methods: Three series of oxindoles - esters 4a-p, 6a-l and imines 7a-o - were synthesized and evaluated for their anti-inflammatory and analgesic activities. Molecular docking and predicted pharmacokinetic parameters were done for the most active compounds. A new LC-MS/MS method was developed and validated for the quantification of 4h in rat plasma. Results: Compounds 4h, 6d, 6f, 6j and 7m revealed % edema inhibition up to 100.00%; also, 4l and 7j showed 100.00% writhing protection. Compound 4h showed dual inhibitory activity with IC50 = 0.0533 and 0.4195 μM for COX-2 and 5-LOX, respectively. Molecular docking rationalized the obtained biological activity. The pharmacokinetic parameters of 4h from rat plasma were obtained.
Collapse
Affiliation(s)
- Mona F Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, PO Box 11562, Cairo, Egypt
| | - Sarah M Marie
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, PO Box 11562, Cairo, Egypt
| | - Nada M Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Modern University for Technology & Information (MTI), Cairo, 11585, Egypt
| | - Marianne A Mahrouse
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, PO Box 11562, Cairo, Egypt
| | - Bahia A Moussa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, PO Box 11562, Cairo, Egypt
| |
Collapse
|
4
|
Yang Y, Wang X, Ye X, Wang B, Bao X, Wang H. Advances of α-activated cyclic isothiocyanate for the enantioselective construction of spirocycles. Org Biomol Chem 2021; 19:4610-4621. [PMID: 33949598 DOI: 10.1039/d1ob00564b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The efficient and enantioselective synthesis of pharmaceutically important spirocycles has attracted the focus of organic and medicinal chemists. In this context, with the excellent reactivity of α-activated isothiocyanate as formal 1,3-dipoles in the (3 + 2) cyclization process, the cyclic isothiocyanates featuring important pharmacophores, such as oxindole, pyrazolone, and indanone moieties, have emerged as powerful precursors to access a variety of spirocycles with highly structural diversities. In addition, the facile transformations of these spirocycles have shown potential applications in drug design. This review will cover the recent advances of α-activated cyclic isothiocyanates in the enantioselective construction of spirocycles since 2015, and the applications of corresponding products in organic and medicinal chemistry.
Collapse
Affiliation(s)
- Yang Yang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xingyue Wang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 112024, China
| | - Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
5
|
Wang Y, Cobo AA, Franz AK. Recent advances in organocatalytic asymmetric multicomponent cascade reactions for enantioselective synthesis of spirooxindoles. Org Chem Front 2021. [DOI: 10.1039/d1qo00220a] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Catalytic asymmetric MCCRs for enantioselective synthesis of spirooxindoles by using chiral phosphoric acids, amines, bifunctional thiourea/squaramides and metal-based reagents as catalysts.
Collapse
Affiliation(s)
- Yongchao Wang
- Colleage of Vocational and Technical Education
- Yunnan Normal University
- Kunming 650092
- P. R. China
| | - Angel A. Cobo
- Department of Chemistry
- University of California
- Davis
- USA
| | | |
Collapse
|
6
|
Abstract
This review summaries recent synthetic developments towards spirocyclic oxindoles and applications as valuable medicinal and synthetic targets.
Collapse
Affiliation(s)
- Alexander J. Boddy
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| | - James A. Bull
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| |
Collapse
|
7
|
Abstract
Arylidene-Δ2-pyrrolin-4-ones undergo organocatalyzed double spirocyclization with 3-isothiocianato oxindoles in a domino 1,4/1,2-addition sequence. The products contain three contiguous stereocenters (ee up to 98%, dr up to 99:1, 12 examples). The absolute configuration of the major diastereomer was determined by single crystal X-ray analysis. Along with heterocyclic Michael acceptors based on oxazolone, isoxazolone, thiazolidinone, pyrazolone, and pyrimidinedione, the reported results display the applicability of unsaturated Δ2-pyrrolin-4-ones (pyrrolones) for the organocatalyzed construction of 3D-rich pyrrolone-containing heterocycles.
Collapse
|
8
|
Sansinenea E, Martínez EF, Ortiz A. Organocatalytic Synthesis of Chiral Spirooxindoles with Quaternary Stereogenic Centers. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000470] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Estibaliz Sansinenea
- Facultad de Ciencias Químicas Benemérita Universidad Autónoma de Puebla Puebla México
| | | | - Aurelio Ortiz
- Facultad de Ciencias Químicas Benemérita Universidad Autónoma de Puebla Puebla México
| |
Collapse
|