1
|
Fuchs S, Jayaraman A, Krummenacher I, Haley L, Baštovanović M, Fest M, Radacki K, Helten H, Braunschweig H. Diboramacrocycles: reversible borole dimerisation-dissociation systems. Chem Sci 2022; 13:2932-2938. [PMID: 35382462 PMCID: PMC8905844 DOI: 10.1039/d1sc06908j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/16/2022] [Indexed: 12/05/2022] Open
Abstract
We report that the outcome of the tin-boron exchange reaction of a mixed thiophene-benzo-fused stannole with aryldibromoboranes is associated with the steric bulk of the aryl substituent of the borane reagent, leading to either boroles or large diboracycles as products. NMR spectroscopic studies indicate that the two products can reversibly interconvert in solution, and mechanistic density functional theory (DFT) calculations reveal boroles to be intermediates in the formation of the diboracyclic products. The addition of Lewis bases to the diboracycles leads to the corresponding borole adducts, demonstrating that they react as "masked" boroles. Additionally, the reaction of the title compounds with a series of organic azides affords complex heteropropellanes, formally 2 : 1 borole-azide adducts, that deviate from the usual BN aromatic compounds formed via nitrogen atom insertion into the boroles.
Collapse
Affiliation(s)
- Sonja Fuchs
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Arumugam Jayaraman
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Laura Haley
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Marta Baštovanović
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Maximilian Fest
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Krzysztof Radacki
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Holger Helten
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
2
|
Ando N, Yamada T, Narita H, Oehlmann NN, Wagner M, Yamaguchi S. Boron-Doped Polycyclic π-Electron Systems with an Antiaromatic Borole Substructure That Forms Photoresponsive B–P Lewis Adducts. J Am Chem Soc 2021; 143:9944-9951. [DOI: 10.1021/jacs.1c04251] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Naoki Ando
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Takuya Yamada
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Hiroki Narita
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Niels N. Oehlmann
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt (Main), Germany
| | - Matthias Wagner
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt (Main), Germany
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
3
|
Wentz KE, Molino A, Weisflog SL, Kaur A, Dickie DA, Wilson DJD, Gilliard RJ. Stabilization of the Elusive 9-Carbene-9-Borafluorene Monoanion. Angew Chem Int Ed Engl 2021; 60:13065-13072. [PMID: 33780572 DOI: 10.1002/anie.202103628] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Indexed: 01/09/2023]
Abstract
Two-electron reduction of carbene-supported 9-bromo-9-borafluorenes with excess KC8 , Na, or Li-naphthalenide affords six N-heterocyclic carbene (NHC)- or cyclic(alkyl)(amino) carbene (CAAC)-stabilized borafluorene anions (3-8)-the first isolated and structurally authenticated examples of the elusive 9-carbene-9-borafluorene monoanion. The electronic structure, bonding, and aromaticity of the boracyclic anions were comprehensively investigated via computational studies. Compounds 5 and 8 react with metal halides via salt elimination to give new B-E (E=Au, Se, Ge)-containing materials (9-12). Upon reaction with diketones, the carbene ligand cleanly dissociates from 5 or 8 to yield new B-O containing spirocycles (13-14) that cannot be easily obtained using "normal" valent borafluorene compounds. Collectively, these results support the notion that carbene-stabilized monoanionic borafluorenes may serve as a new platform for the one-step construction of higher-value boracyclic materials.
Collapse
Affiliation(s)
- Kelsie E Wentz
- Department of Chemistry, University of Virginia, 409 McCormick Rd./ PO Box 400319, Charlottesville, VA, 22904, USA
| | - Andrew Molino
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, Latrobe University, Melbourne, 3086, Victoria, Australia
| | - Sarah L Weisflog
- Department of Chemistry, University of Virginia, 409 McCormick Rd./ PO Box 400319, Charlottesville, VA, 22904, USA
| | - Aishvaryadeep Kaur
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, Latrobe University, Melbourne, 3086, Victoria, Australia
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Rd./ PO Box 400319, Charlottesville, VA, 22904, USA
| | - David J D Wilson
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, Latrobe University, Melbourne, 3086, Victoria, Australia
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia, 409 McCormick Rd./ PO Box 400319, Charlottesville, VA, 22904, USA
| |
Collapse
|
4
|
Wentz KE, Molino A, Weisflog SL, Kaur A, Dickie DA, Wilson DJD, Gilliard RJ. Stabilization of the Elusive 9‐Carbene‐9‐Borafluorene Monoanion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kelsie E. Wentz
- Department of Chemistry University of Virginia 409 McCormick Rd./ PO Box 400319 Charlottesville VA 22904 USA
| | - Andrew Molino
- Department of Chemistry and Physics La Trobe Institute for Molecular Science Latrobe University Melbourne 3086 Victoria Australia
| | - Sarah L. Weisflog
- Department of Chemistry University of Virginia 409 McCormick Rd./ PO Box 400319 Charlottesville VA 22904 USA
| | - Aishvaryadeep Kaur
- Department of Chemistry and Physics La Trobe Institute for Molecular Science Latrobe University Melbourne 3086 Victoria Australia
| | - Diane A. Dickie
- Department of Chemistry University of Virginia 409 McCormick Rd./ PO Box 400319 Charlottesville VA 22904 USA
| | - David J. D. Wilson
- Department of Chemistry and Physics La Trobe Institute for Molecular Science Latrobe University Melbourne 3086 Victoria Australia
| | - Robert J. Gilliard
- Department of Chemistry University of Virginia 409 McCormick Rd./ PO Box 400319 Charlottesville VA 22904 USA
| |
Collapse
|
5
|
Su X, Bartholome TA, Tidwell JR, Pujol A, Yruegas S, Martinez JJ, Martin CD. 9-Borafluorenes: Synthesis, Properties, and Reactivity. Chem Rev 2021; 121:4147-4192. [DOI: 10.1021/acs.chemrev.0c01068] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiaojun Su
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Tyler A. Bartholome
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - John R. Tidwell
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Alba Pujol
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Sam Yruegas
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Jesse J. Martinez
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Caleb D. Martin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| |
Collapse
|
6
|
Taylor JW, Harman WH. H 2 evolution from H 2O via O-H oxidative addition across a 9,10-diboraanthracene. Chem Commun (Camb) 2020; 56:13804-13807. [PMID: 33078792 DOI: 10.1039/d0cc05261b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The water reactivity of the boroauride complex ([Au(B2P2)][K(18-c-6)]; (B2P2, 9,10-bis(2-(diisopropylphosphino)-phenyl)-9,10-dihydroboranthrene) and its corresponding two-electron oxidized complex, Au(B2P2)Cl, are presented. Au(B2P2)Cl is tolerant to H2O and forms the hydroxide complex Au(B2P2)OH in the presence of H2O and triethylamine. [Au(B2P2)]Cl and [Au(B2P2)]OH are poor Lewis acids as judged by the Gutmann-Becket method, with [Au(B2P2)]OH displaying facile hydroxide exchange between B atoms of the DBA ring as evidenced by variable temperature NMR spectroscopy. The reduced boroauride complex [Au(B2P2)]- reacts with 1 equivalent of H2O to produce a hydride/hydroxide product, [Au(B2P2)(H)(OH)]-, that rapidly evolves H2 upon further H2O reaction to yield the dihydroxide compound, [Au(B2P2)(OH)2]-. [Au(B2P2)]Cl can be regenerated from [Au(B2P2)(OH)2]-via HCl·Et2O, providing a synthetic cycle for H2 evolution from H2O enabled by O-H oxidative addition at a diboraanthracene unit.
Collapse
Affiliation(s)
- Jordan W Taylor
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA.
| | | |
Collapse
|
7
|
Rauch F, Fuchs S, Friedrich A, Sieh D, Krummenacher I, Braunschweig H, Finze M, Marder TB. Highly Stable, Readily Reducible, Fluorescent, Trifluoromethylated 9-Borafluorenes. Chemistry 2020; 26:12794-12808. [PMID: 31999019 PMCID: PMC7589458 DOI: 10.1002/chem.201905559] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 01/29/2023]
Abstract
Three different perfluoroalkylated borafluorenes (F Bf) were prepared and their electronic and photophysical properties were investigated. The systems have four trifluoromethyl moieties on the borafluorene moiety as well as two trifluoromethyl groups at the ortho positions of their exo-aryl moieties. They differ with regard to the para substituents on their exo-aryl moieties, being a proton (F XylF Bf, F Xyl: 2,6-bis(trifluoromethyl)phenyl), a trifluoromethyl group (F MesF Bf, F Mes: 2,4,6-tris(trifluoromethyl)phenyl) or a dimethylamino group (p-NMe2 -F XylF Bf, p-NMe2 -F Xyl: 4-(dimethylamino)-2,6-bis(trifluoromethyl)phenyl), respectively. All derivatives exhibit extraordinarily low reduction potentials, comparable to those of perylenediimides. The most electron-deficient derivative F MesF Bf was also chemically reduced and its radical anion isolated and characterized. Furthermore, all compounds exhibit very long fluorescent lifetimes of about 250 ns up to 1.6 μs; however, the underlying mechanisms responsible for this differ. The donor-substituted derivative p-NMe2 -F XylF Bf exhibits thermally activated delayed fluorescence (TADF) from a charge-transfer (CT) state, whereas the F MesF Bf and F XylF Bf borafluorenes exhibit only weakly allowed locally excited (LE) transitions due to their symmetry and low transition-dipole moments.
Collapse
Affiliation(s)
- Florian Rauch
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Sonja Fuchs
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Daniel Sieh
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Maik Finze
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
8
|
Shimizu T, Kawachi A. Synthesis, reactions, and photophysical properties of o-(alkoxysilyl)(borafluorenyl)benzenes. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
9
|
Su X, Baker JJ, Martin CD. Dimeric boroles: effective sources of monomeric boroles for heterocycle synthesis. Chem Sci 2019; 11:126-131. [PMID: 32110363 PMCID: PMC7012074 DOI: 10.1039/c9sc04053f] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/27/2019] [Indexed: 11/23/2022] Open
Abstract
Dimeric boroles as thermal sources of monomers.
Monomeric boroles have been gaining attention as reagents for the synthesis of heterocycles due to their ability to insert atoms into the BC4 ring in a single step. Although unique boron frameworks can be accessed via this methodology, the products feature aryl substitution on the carbon centers as steric bulk is required to preclude borole dimerization. This work demonstrates that insertion chemistry is possible with Diels–Alder dimeric boroles and that such reactivity is not exclusive to monomeric boroles with bulky groups. With 1-phenyl-2,3,4,5-tetramethylborole dimer, the formal 1,1-insertion of a nitrene and sulfur generate the six-membered aromatic 1,2-azaborine and 1,2-thiaborine, respectively. The isolation of the 1,2-thiaborine enabled the synthesis of an η6-chromium complex. Benzophenone and diphenylketene readily insert a CO unit to generate BOC5 seven-membered rings confirming dimeric boroles can serve as monomeric synthons in 1,2-insertion reactions. An epoxide did not furnish the anticipated eight-membered BOC6 ring, instead provided a bicyclic system with a BOC3 ring. The insertion chemistry was demonstrated with two other borole dimers featuring different substitution with diphenylketene as a substrate. This work elevates borole insertion chemistry to a new level to access products that do not require bulky substitution.
Collapse
Affiliation(s)
- Xiaojun Su
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798 , USA .
| | - J J Baker
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798 , USA .
| | - Caleb D Martin
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798 , USA .
| |
Collapse
|
10
|
Abstract
Most of the chemical and biological processes involving the fixation and transformation of small molecules have long been exclusive for metal complexes. Meanwhile, the last decades have seen a significant advance in main group chemistry that mimics transition-metal complexes, among which various boron-containing systems have been successful in mediating the small molecule activation. In this review, we focus on boron-containing heterocycles enabling the activation of σ- and π-bonds in small molecules, in conjunction with the proposed mechanisms.
Collapse
Affiliation(s)
- Yuanting Su
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, Singapore 637371, Singapore.
| | | |
Collapse
|
11
|
Keck C, Maichle-Mössmer C, Bettinger HF. Photo electron transfer induced desilylation of N,N-bis(trimethylsilyl)aminodibenzoborole to aminodibenzoborole. Chem Commun (Camb) 2019; 55:7470-7473. [DOI: 10.1039/c9cc03415c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoinduced desilylation proceeds by single electron transfer and yields the first example of an unsubstituted aminoborole derivative.
Collapse
Affiliation(s)
- Constanze Keck
- Institut für Organische Chemie
- Universität Tübingen
- 72076 Tübingen
- Germany
| | | | | |
Collapse
|
12
|
Bartholome TA, Bluer KR, Martin CD. Successive carbene insertion into 9-phenyl-9-borafluorene. Dalton Trans 2019; 48:6319-6322. [PMID: 30942222 DOI: 10.1039/c9dt01032g] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The reactions of 9-phenyl-9-borafluorene with trimethylsilyldiazomethane in a 1 : 1 and 1 : 2 stoichiometry furnished the corresponding BC5 and BC6 heterocycles via the formal insertion of one and two carbene units.
Collapse
Affiliation(s)
- Tyler A Bartholome
- Baylor University, Department of Chemistry and Biochemistry, One Bear Place #97348, Waco, TX 76798, USA.
| | | | | |
Collapse
|