1
|
He Y, Zhao Q, Yuan W, Gong L. Photo-Induced Three-Component Reaction for the Construction Of α-Tertiary Amino Acid Derivatives. Chemistry 2024:e202402995. [PMID: 39305150 DOI: 10.1002/chem.202402995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Indexed: 11/01/2024]
Abstract
The synthesis of α-tertiary amino acids (ATAAs), which are pivotal components in natural metabolism and pharmaceutical innovation, continues to attract significant research interest. Despite substantial advancements, the pursuit of a facile, versatile, and resource-efficient methodology remains an area of active development. In this work, we introduce a visible light-triggered three-component reaction involving readily available nitrosoarenes, N-acyl pyrazoles, and allyl or (bromomethyl)benzenes under mild conditions. This approach enables the straightforward assembly of a wide array of ATAA derivatives (42 examples) in commendably high yields (up to 89 %). Mechanistic investigations elucidate that the reaction proceeds through a dehydration condensation between nitrosoarenes and N-acyl pyrazoles to generate ketimine intermediates. This is followed by a light-driven halogen atom transfer (XAT) process and a radical addition, culminating in the formation of the desired products. The approach showcases excellent functional group compatibility and late-stage derivatization potential, offering new insights and avenues for the synthesis of ATAA analogs.
Collapse
Affiliation(s)
- Yuhang He
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qianyi Zhao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Wei Yuan
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, China
| | - Lei Gong
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| |
Collapse
|
2
|
Zhang Y, Vanderghinste J, Wang J, Das S. Challenges and recent advancements in the synthesis of α,α-disubstituted α-amino acids. Nat Commun 2024; 15:1474. [PMID: 38368416 PMCID: PMC10874380 DOI: 10.1038/s41467-024-45790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024] Open
Abstract
α,α-Disubstituted α-amino acids (α-AAs) have improved properties compared to other types of amino acids. They serve as modifiers of peptide conformation and as precursors of bioactive compounds. Therefore, it has been a long-standing goal to construct this highly valuable scaffold efficiently in organic synthesis and drug discovery. However, access to α,α-disubstituted α-AAs is highly challenging and largely unexplored due to their steric constraints. To overcome these, remarkable advances have been made in the last decades. Emerging strategies such as synergistic enantioselective catalysis, visible-light-mediated photocatalysis, metal-free methodologies and CO2 fixation offer new avenues to access the challenging synthesis of α,α-disubstituted α-AAs and continuously bring additional contributions to this field. This review article aims to provide an overview of the recent advancements since 2015 and discuss existing challenges for the synthesis of α,α-disubstituted α-AAs and their derivatives.
Collapse
Affiliation(s)
- Yu Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, 201203, Shanghai, China.
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium.
| | - Jaro Vanderghinste
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Jinxin Wang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, 201203, Shanghai, China
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium.
- Department of Chemistry, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
3
|
Chen KL, Tanaka F. Organocatalytic enantioselective Mannich and retro-Mannich reactions and combinations of these reactions to afford tetrasubstituted α-amino acid derivatives. Org Biomol Chem 2024; 22:477-481. [PMID: 38099926 DOI: 10.1039/d3ob01855e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Organocatalytic asymmetric Mannich reactions and kinetic resolutions of the products via retro-Mannich reactions that afford enantiomerically enriched tetrasubstituted α-amino acid derivatives (α,α-disubstituted-α-amino acid derivatives) were developed. Furthermore, the combination of the Mannich reaction and the retro-Mannich reaction allowed access to products with almost perfect enantiopurities.
Collapse
Affiliation(s)
- Kuan-Lin Chen
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan.
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan.
| |
Collapse
|
4
|
Li Q, Liu Y, Li C. Picolinaldehyde-Zinc(II)-Palladium(0) Catalytic System for the Asymmetric α-Allylation of N-Unprotected Amino Esters. Chemistry 2023; 29:e202301348. [PMID: 37237423 DOI: 10.1002/chem.202301348] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 05/28/2023]
Abstract
Reported in this work is a synergistic ternary achiral picolinaldehyde-Zn(II)-chiral palladium complex system for the highly enantioselective α-allylation of N-unprotected amino esters. By utilizing a variety of allylic carbonates or vinyl benzoxazinanones as substrates, α-allyl α-amino esters were obtained in high yields (up to 96 %) with high enantioselectivities (up to 98 % ee). Control experiments suggest that the coordination of Zn(II) with the Schiff base intermediate enhances the acidity of the α-C-H bonds of amino esters, thereby favoring α-allylation over intrinsic N-allylation. Furthermore, NMR studies reveal an interaction between the chiral palladium complex and the Zn(II)-Schiff base intermediate, leading to the formation of a picolinaldehyde-Zn(II)-Pd(0) catalytic system.
Collapse
Affiliation(s)
- Qian Li
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yan Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
5
|
Laviós A, Martínez-Pardo P, Sanz-Marco A, Vila C, Pedro JR, Blay G. Synthesis of α,α-Diaryl-α-amino Acid Precursors by Reaction of Isocyanoacetate Esters with o-Quinone Diimides. Org Lett 2023; 25:5608-5612. [PMID: 37486803 PMCID: PMC10853967 DOI: 10.1021/acs.orglett.3c01965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 07/26/2023]
Abstract
A novel procedure for the synthesis of α,α-diaryl-α-amino acid derivatives has been developed. Silver oxide catalyzes the conjugate addition of α-aryl isocyanoacetates to o-quinone diimide, affording the corresponding α,α-diarylisocyano esters in excellent yields and regioselectivities in short reaction times. Acid hydrolysis of the isocyano group provides the corresponding amino acids bearing a diarylated tetrasubstituted carbon atom. The reaction is also amenable to the synthesis of α-alkyl-α-arylisocyano esters, while the reaction with 3-hydroxy o-quinone diimides provides 4H-benzo[e][1,3]oxazines via a conjugate addition/cyclization process.
Collapse
Affiliation(s)
- Adrián Laviós
- Departament
de Química Orgànica, Facultat de Química, Universitat de València, Burjassot E-46100, Spain
| | - Pablo Martínez-Pardo
- Departament
de Química Orgànica, Facultat de Química, Universitat de València, Burjassot E-46100, Spain
| | - Amparo Sanz-Marco
- Departament
de Química Orgànica, Facultat de Química, Universitat de València, Burjassot E-46100, Spain
| | - Carlos Vila
- Departament
de Química Orgànica, Facultat de Química, Universitat de València, Burjassot E-46100, Spain
| | - José R. Pedro
- Departament
de Química Orgànica, Facultat de Química, Universitat de València, Burjassot E-46100, Spain
| | - Gonzalo Blay
- Departament
de Química Orgànica, Facultat de Química, Universitat de València, Burjassot E-46100, Spain
| |
Collapse
|
6
|
Yu ZL, Cheng YF, Liu JR, Yang W, Xu DT, Tian Y, Bian JQ, Li ZL, Fan LW, Luan C, Gao A, Gu QS, Liu XY. Cu(I)-Catalyzed Chemo- and Enantioselective Desymmetrizing C-O Bond Coupling of Acyl Radicals. J Am Chem Soc 2023; 145:6535-6545. [PMID: 36912664 DOI: 10.1021/jacs.3c00671] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Transition-metal-catalyzed enantioselective functionalization of acyl radicals has so far not been realized, probably due to their relatively high reactivity, which renders the chemo- and stereocontrol challenging. Herein, we describe Cu(I)-catalyzed enantioselective desymmetrizing C-O bond coupling of acyl radicals. This reaction is compatible with (hetero)aryl and alkyl aldehydes and, more importantly, displays a very broad scope of challenging alcohol substrates, such as 2,2-disubstituted 1,3-diols, 2-substituted-2-chloro-1,3-diols, 2-substituted 1,2,3-triols, 2-substituted serinols, and meso primary 1,4-diols, providing enantioenriched esters characterized by challenging acyclic tetrasubstituted carbon stereocenters. Partnered by one- or two-step follow-up transformations, this reaction provides a convenient and practical strategy for the rapid preparation of chiral C3 building blocks from readily available alcohols, particularly the industrially relevant glycerol. Mechanistic studies supported the proposed C-O bond coupling of acyl radicals.
Collapse
Affiliation(s)
- Zhang-Long Yu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yong-Feng Cheng
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ji-Ren Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wu Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dan-Tong Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Tian
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun-Qian Bian
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li-Wen Fan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cheng Luan
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ang Gao
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
7
|
Tian C, Sun Q, Wang J, Chen Q, Wen Z, Borzov M, Nie W. E-Stereospecific 1,1-Carboboration of Terminal Arylalkynes with [IB(C 6F 5) 3] –. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202205029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
8
|
Ji P, Chen J, Meng X, Gao F, Dong Y, Xu H, Wang W. Design of Photoredox-Catalyzed Giese-Type Reaction for the Synthesis of Chiral Quaternary α-Aryl Amino Acid Derivatives via Clayden Rearrangement. J Org Chem 2022; 87:14706-14714. [PMID: 36264622 DOI: 10.1021/acs.joc.2c02029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chiral quaternary α-aryl amino acids are biologically valued but synthetically challenging building blocks. Herein, we report a strategy for the synthesis of molecular architectures by unifying a photoredox catalytic asymmetric Giese-type reaction and Clayden rearrangement. A new class of chiral Karady-Beckwith dehydroalanines is designed and serves as a versatile handle for the photoredox-mediated highly stereoselective Giese-type reaction with feedstock carboxylic acids and tertiary amines. Subsequent Clayden rearrangement delivers chiral quaternary α-aryl amino acid derivatives with high stereoselectivity. The versatile approach offers a reliable source for the assembly of highly demanding chiral building blocks.
Collapse
Affiliation(s)
- Peng Ji
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0207, United States
| | - Jing Chen
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0207, United States
| | - Xiang Meng
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0207, United States
| | - Feng Gao
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0207, United States
| | - Yue Dong
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0207, United States
| | - Hang Xu
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0207, United States
| | - Wei Wang
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0207, United States
| |
Collapse
|
9
|
Zhu J, Meng X, Liu W, Qi Y, Jin S, Huo S. Regulated synthesis of Zr-metal-organic frameworks with variable hole size and its influence on the performance of novel MOF-based heterogeneous amino acid-thiourea catalysts. RSC Adv 2022; 12:21574-21581. [PMID: 35975053 PMCID: PMC9347210 DOI: 10.1039/d2ra03747e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
We present an efficient and easy synthesis method for incorporating organocatalytic moieties into Zr-metal organic frameworks (Zr-MOFs). The catalytic activity and selectivity of the new chiral catalysts were improved by adjusting the aperture of the MOF cavities. The hole size of the Zr-MOF was modulated by adding acid and replacing bridge ligands during synthesis. The difunctional chiral units of amino acid-thiourea are anchored onto the Zr-MOF by a mild synthesis method from an isothiocyanate intermediate which could effectively avoid the racemization of chiral moieties in the synthesis process. By means of specific surface area measurement (BET), scanning electron microscopy (SEM) and powder X-ray Diffraction (PXRD), it was confirmed that Zr-MOFs with different pore sizes were synthesized without breaking the basic octahedral structure of the MOF. Finally, good yields (up to 83%) and ee values (up to 73%) were achieved with the new heterogeneous catalysts in 48 hours for the aldol reaction of 4-nitrobenzaldehyde with acetone. By contrast, using the catalyst support without modulating the synthesis, the yield (30%) and the ee-value (26%) were both low. Experiments have confirmed the important influence on the reaction selectivity of providing a suitable reaction environment by controlling the aperture of MOF cavities.
Collapse
Affiliation(s)
- Junfeng Zhu
- College of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology Xi'an 710055 China
| | - Xiaorong Meng
- College of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology Xi'an 710055 China
| | - Wen Liu
- College of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology Xi'an 710055 China
| | - Yabing Qi
- College of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology Xi'an 710055 China
| | - Siyi Jin
- College of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology Xi'an 710055 China
| | - Shanshan Huo
- Research Institute of Membrane Separation Technology of Shaanxi Province Co., Ltd Xi'an 710055 China
| |
Collapse
|
10
|
Oba M. Design and Synthesis of Amino Acids Having an Unnatural Side Chain Structure and Their Applications to Functional Peptides. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Makoto Oba
- Graduate School of Medicine, Kyoto Prefectural University of Medicine
| |
Collapse
|
11
|
Zhang D, Wen J, Zhang X. Construction of a quaternary stereogenic center by asymmetric hydroformylation: a straightforward method to prepare chiral α-quaternary amino acids. Chem Sci 2022; 13:7215-7223. [PMID: 35799829 PMCID: PMC9214857 DOI: 10.1039/d2sc02139k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/26/2022] [Indexed: 01/01/2023] Open
Abstract
The construction of chiral quaternary carbon stereocenters has been a long-standing challenge in organic chemistry. Particularly, α-quaternary amino acids that are of high importance in biochemistry still lack a straightforward synthetic method. We here reported a hydroformylation approach to access chiral quaternary stereogenic centers, which has been a long-standing challenge in transition metal catalysis. α,β-Unsaturated carboxylic acid derivatives undergo hydroformylation with a rhodium catalyst to generate an α-quaternary stereocenter under mild conditions. By using this method, a variety of chiral α-quaternary amino acids could be synthesized with satisfactory enantioselectivity. In-depth investigation revealed that the regioselectivity is dramatically influenced by the electronic properties of the substituents attached to the target C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bond. By applying NMR and DFT analyses, the chiral environment of a rhodium/Yanphos complex was depicted, based on which a substrate-catalyst interaction model was proposed. A rhodium-catalyzed asymmetric hydroformylation reaction was reported to construct chiral α-quaternary amino acid derivatives. High chemo-, regio- and enantioselectivity were realized in one step.![]()
Collapse
Affiliation(s)
- Dequan Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jialin Wen
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xumu Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
12
|
Junfei L, Yuling H, Yanhong L, Jianxin C. Synthesis of β-Nitroamide Derivatives Based on Carbamoylsilane. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Liu T, Ni S, Guo W. Practical asymmetric amine nucleophilic approach for the modular construction of protected α-quaternary amino acids. Chem Sci 2022; 13:6806-6812. [PMID: 35774153 PMCID: PMC9200120 DOI: 10.1039/d2sc02318k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/15/2022] [Indexed: 12/12/2022] Open
Abstract
We report the first amine nucleophilic approach for the modular construction of enantioenriched protected α-quaternary amino acids. The key to success is the use of an alcohol solvent, which makes a rationally designed COOMe-bonded Cu-allenylidene electrophilic intermediate stable enough to couple with amine nucleophiles before its decomposition. The reaction features wide functional group tolerance with high enantioselectivity, typically >90% ee, and is amenable to the modification of commercially available bioactive molecules. The resultant protected α-amino acids could be readily converted into a number of precious enantioenriched amines featuring α-hindered tertiary carbon centers, which are otherwise synthetically quite challenging, including those of α-amino aldehyde, peptides or α-vinyl amino ester with >92% ee in excellent yields. This protocol could be utilized for the synthesis of the protected bioactive α-ethylnorvaline in 3 steps, a significant advancement in comparison to an 11-step sequence reported previously. We report the first amine nucleophilic approach for the modular construction of enantioenriched protected α-quaternary amino acids.![]()
Collapse
Affiliation(s)
- Teng Liu
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Yanxiang Road 99, Xi'an 710045, China
| | - Shaofei Ni
- Department of Chemistry, Shantou University, Shantou 515063, China
| | - Wusheng Guo
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Yanxiang Road 99, Xi'an 710045, China
| |
Collapse
|
14
|
Han J, Lyutenko NV, Sorochinsky AE, Okawara A, Konno H, White S, Soloshonok VA. Tailor-Made Amino Acids in Pharmaceutical Industry: Synthetic Approaches to Aza-Tryptophan Derivatives. Chemistry 2021; 27:17510-17528. [PMID: 34913215 DOI: 10.1002/chem.202102485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/24/2021] [Indexed: 12/22/2022]
Abstract
Over the recent years there has been a noticeable upsurge of interest in aza-analogs of tryptophan which are isosteric to the latter and found numerous applications in medicinal, bioorganic chemistry, and peptide research. In the present review article, five aza-tryptophan derivatives are profiled, including aza-substitution in the positions 2, on the five-membered ring, as well as in positions 4, 5, 6, and 7 on the six-membered ring. A detailed and comprehensive literature overview of the synthetic methods for the preparation of these aza-tryptophans is presented and general facets of the biological properties and most promising applications are discussed.
Collapse
Affiliation(s)
- Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Nataliya V Lyutenko
- Department of Fine Organic Synthesis V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, The National Academy of Sciences of Ukraine, 1 Murmanska str., Kyiv, 02094, Ukraine
| | - Alexander E Sorochinsky
- Department of Fine Organic Synthesis V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, The National Academy of Sciences of Ukraine, 1 Murmanska str., Kyiv, 02094, Ukraine
| | - Ayaka Okawara
- Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hiroyuki Konno
- Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Sarah White
- Oakwood Chemical, Inc., 730 Columbia Hwy. N, Estill, SC, 29918, USA
| | - Vadim A Soloshonok
- Department of Organic Chemistry I Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain
| |
Collapse
|
15
|
Liu A, Han J, Nakano A, Konno H, Moriwaki H, Abe H, Izawa K, Soloshonok VA. New pharmaceuticals approved by FDA in 2020: Small-molecule drugs derived from amino acids and related compounds. Chirality 2021; 34:86-103. [PMID: 34713503 DOI: 10.1002/chir.23376] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/09/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022]
Abstract
Amino acids (AAs) play an important role in the modern health industry as key synthetic precursors for pharmaceuticals, biomaterials, biosensors, and drug delivery systems. Currently, over 30% of small-molecule drugs contain residues of tailor-made AAs or derived from them amino-alcohols and di-amines. In this review article, we profile 12 AA-derived new pharmaceuticals approved by the FDA in 2020. These newly introduced drugs include Tazverik (epithelioid sarcoma), Gemtesa (overactive bladder), Zeposia (multiple sclerosis), Byfavo (induction and maintenance of procedural sedation), Cu 64 dotatate, and Gallium 68 PSMA-11 (both PET imaging), Rimegepant (acute migraine), Zepzelca (lung cancer), Remdesivir (COVID-19), Amisulpride (nausea and vomiting), Setmelanotide (obesity), and Lonafarnib (progeria syndrome). For each compound, we describe the spectrum of biological activity, medicinal chemistry discovery, and synthetic preparation.
Collapse
Affiliation(s)
- Aiyao Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Arina Nakano
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | | | | | | | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
16
|
Roupnel L, Guillot R, Gori D, Viswambharan B, Kouklovsky C, Alezra V. Highly Stereoselective Aldol Reactions by Memory of Chirality: Synthesis of Quaternary β‐Hydroxy α‐Amino Acids. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Loïc Roupnel
- Institut de Chimie Moléculaire et des Matériaux d'Orsay – Services communs CNRS UMR 8182 Université Paris-Saclay FR-91405 Orsay France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay – Services communs CNRS UMR 8182 Université Paris-Saclay FR-91405 Orsay France
| | - Didier Gori
- Institut de Chimie Moléculaire et des Matériaux d'Orsay – Méthodologie Synthèse et Molécules Thérapeutiques CNRS UMR 8182 Université Paris-Saclay FR-91405 Orsay France
- Aix Marseille University - CNRS UMR7376 Laboratory of Environmental Chemistry FR-13331 Marseille France
| | - Baby Viswambharan
- Institut de Chimie Moléculaire et des Matériaux d'Orsay – Méthodologie Synthèse et Molécules Thérapeutiques CNRS UMR 8182 Université Paris-Saclay FR-91405 Orsay France
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d'Orsay – Méthodologie Synthèse et Molécules Thérapeutiques CNRS UMR 8182 Université Paris-Saclay FR-91405 Orsay France
| | - Valérie Alezra
- Institut de Chimie Moléculaire et des Matériaux d'Orsay – Méthodologie Synthèse et Molécules Thérapeutiques CNRS UMR 8182 Université Paris-Saclay FR-91405 Orsay France
| |
Collapse
|
17
|
Sercel ZP, Sun AW, Stoltz BM. Synthesis of Enantioenriched gem-Disubstituted 4-Imidazolidinones by Palladium-Catalyzed Decarboxylative Asymmetric Allylic Alkylation. Org Lett 2021; 23:6348-6351. [PMID: 34346221 DOI: 10.1021/acs.orglett.1c02134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A variety of enantioenriched gem-disubstituted 4-imidazolidinones were prepared in up to >99% yield and 95% ee by the Pd-catalyzed decarboxylative asymmetric allylic alkylation of imidazolidinone-derived β-amidoesters. In the process of preparing these substrates, a rapid synthetic route to 4-imidazolidinone derivatives was developed, beginning from 2-thiohydantoin. The orthogonality of the benzoyl imide and tert-butyl carbamate groups used to protect these nitrogen-rich products was demonstrated, enabling potential applications in drug design.
Collapse
Affiliation(s)
- Zachary P Sercel
- Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Alexander W Sun
- Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Brian M Stoltz
- Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
18
|
Loro C, Sala R, Penso M, Foschi F. DBU Catalysed Enantioselective Degradative Rearrangement: a Way to Tetrasubstituted 2‐Aryl‐2‐Amino Esters. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Camilla Loro
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 9 IT-20100 Como Italy
| | - Roberto Sala
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 9 IT-20100 Como Italy
| | - Michele Penso
- CNR-Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) Via Golgi 19 IT-20133 Milano Italy
| | - Francesca Foschi
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 9 IT-20100 Como Italy
| |
Collapse
|
19
|
Inuki S, Ohno H. Total Syntheses of Myriocin, Mycestericins and Sphingofungin E: Sphingosine Analogues Containing a β, β′-Dihydroxy α-Amino Acid Framework. CHEM LETT 2021. [DOI: 10.1246/cl.210133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
20
|
Gugkaeva ZT, Smol'yakov AF, Maleev VI, Larionov VA. A general asymmetric synthesis of artificial aliphatic and perfluoroalkylated α-amino acids by Luche's cross-electrophile coupling reaction. Org Biomol Chem 2021; 19:5327-5332. [PMID: 34042928 DOI: 10.1039/d1ob00805f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aliphatic artificial α-amino acids (α-AAs) have attracted great interest in biochemistry and pharmacy. In this context, we developed a promising practical protocol for the asymmetric synthesis of these α-AAs through the selective and efficient intermolecular cross-electrophile coupling of Belokon's chiral dehydroalanine Ni(ii) complex with different alkyl and perfluoroalkyl iodides mediated by a dual Zn/Cu system. The reaction afforded diastereomeric complexes with dr up to 21.3 : 1 in 24-95% yields (19 examples). Exemplarily, three enantiomerically pure aliphatic α-AAs were obtained through acidic decomposition of (S,S)-diastereomers of Ni(ii) complexes. Importantly, the chiral auxiliary ligand (S)-BPB ((S)-2-(N-benzylprolyl)aminobenzophenone) was easily recycled by simple filtration after acidic complex decomposition and reused for the synthesis of the initial dehydroalanine Ni(ii) complex.
Collapse
Affiliation(s)
- Zalina T Gugkaeva
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation.
| | - Alexander F Smol'yakov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation. and Plekhanov Russian University of Economics, Stremyanny per. 36, 117997 Moscow, Russian Federation
| | - Victor I Maleev
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation.
| | - Vladimir A Larionov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation. and Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russian Federation
| |
Collapse
|
21
|
Wu X, Ren J, Shao Z, Yang X, Qian D. Transition-Metal-Catalyzed Asymmetric Couplings of α-Aminoalkyl Fragments to Access Chiral Alkylamines. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaomei Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, People’s Republic of China
| | - Jiangtao Ren
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, People’s Republic of China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, People’s Republic of China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, People’s Republic of China
| | - Deyun Qian
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, People’s Republic of China
| |
Collapse
|
22
|
Lupidi G, Palmieri A, Petrini M. Enantioselective Catalyzed Synthesis of Amino Derivatives Using Electrophilic Open‐Chain
N
‐Activated Ketimines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gabriele Lupidi
- School of Science and Technology, Chemistry Division Università di Camerino via S.Agostino, 1 I-62032 Camerino Italy
| | - Alessandro Palmieri
- School of Science and Technology, Chemistry Division Università di Camerino via S.Agostino, 1 I-62032 Camerino Italy
| | - Marino Petrini
- School of Science and Technology, Chemistry Division Università di Camerino via S.Agostino, 1 I-62032 Camerino Italy
| |
Collapse
|
23
|
Liu X, Li Y, Pan H, Li WY, Feng X. Enantioselective Nucleophilic Aromatic Substitution Reaction of Azlactones to Synthesize Quaternary α-Amino Acid Derivatives. Synlett 2020. [DOI: 10.1055/a-1323-2389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractAn asymmetric organocatalytic nucleophilic aromatic substitution reaction of azlactones with electron-deficient aryls was established. A variety of α-aryl α-alkyl α-amino acid esters and peptides were obtained in decent yields and stereoselectivities. A new bifunctional catalytic mode involving charge-transfer interaction and hydrogen bonding is proposed to explain the enantioselectivity.
Collapse
|
24
|
Beaudegnies R, Lamberth C. A general synthesis of novel acyclic chiral α-tertiary amines. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Ueda A, Ikeda M, Kasae T, Doi M, Demizu Y, Oba M, Tanaka M. Synthesis of Chiral α‐Trifluoromethyl α,α‐Disubstituted α‐Amino Acids and Conformational Analysis of L‐Leu‐Based Peptides with (
R
)‐ or (
S
)‐α‐Trifluoromethylalanine. ChemistrySelect 2020. [DOI: 10.1002/slct.202002888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Atsushi Ueda
- Graduate School of Biomedical Sciences Nagasaki University Nagasaki 852-8521 Japan
| | - Misuzu Ikeda
- Graduate School of Biomedical Sciences Nagasaki University Nagasaki 852-8521 Japan
| | - Takuya Kasae
- Graduate School of Biomedical Sciences Nagasaki University Nagasaki 852-8521 Japan
| | - Mitsunobu Doi
- Osaka University of Pharmaceutical Sciences Osaka 569-1094 Japan
| | - Yosuke Demizu
- Division of Organic Chemistry National Institute of Health Sciences Kawasaki 210 9501 Japan
| | - Makoto Oba
- Kyoto Prefectural University of Medicine Kyoto 606-0823 Japan
| | - Masakazu Tanaka
- Graduate School of Biomedical Sciences Nagasaki University Nagasaki 852-8521 Japan
| |
Collapse
|
26
|
|
27
|
Yin Z, Hu W, Zhang W, Konno H, Moriwaki H, Izawa K, Han J, Soloshonok VA. Tailor-made amino acid-derived pharmaceuticals approved by the FDA in 2019. Amino Acids 2020; 52:1227-1261. [PMID: 32880009 DOI: 10.1007/s00726-020-02887-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Amino acids (AAs) are among a handful of paramount classes of compounds innately involved in the origin and evolution of all known life-forms. Along with basic scientific explorations, the major goal of medicinal chemistry research in the area of tailor-made AAs is the development of more selective and potent pharmaceuticals. The growing acceptance of peptides and peptidomimetics as drugs clearly indicates that AA-based molecules become the most successful structural motif in the modern drug design. In fact, among 24 small-molecule drugs approved by FDA in 2019, 13 of them contain a residue of AA or di-amines or amino-alcohols, which are commonly considered to be derived from the parent AAs. In the present review article, we profile 13 new tailor-made AA-derived pharmaceuticals introduced to the market in 2019. Where it is possible, we will discuss the development form drug-candidates, total synthesis, with emphasis on the core-AA, therapeutic area, and the mode of biological activity.
Collapse
Affiliation(s)
- Zizhen Yin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Wenfei Hu
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA, 02125, USA
| | - Wei Zhang
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA, 02125, USA.
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Hiroki Moriwaki
- Hamari Chemicals Ltd, 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Kunisuke Izawa
- Hamari Chemicals Ltd, 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain. .,Basque Foundation for Science, IKERBASQUE, Alameda Urquijo 36-5, Plaza Bizkaia, 48011, Bilbao, Spain.
| |
Collapse
|
28
|
Guo Q, Zhao M, Chen J. Efficient synthesis of α-amino secondary amides by direct aminocarbonylation of N-Boc-imines using carbamoylsilane as an amide source. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Liu J, Han J, Izawa K, Sato T, White S, Meanwell NA, Soloshonok VA. Cyclic tailor-made amino acids in the design of modern pharmaceuticals. Eur J Med Chem 2020; 208:112736. [PMID: 32966895 DOI: 10.1016/j.ejmech.2020.112736] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022]
Abstract
Tailor-made AAs are indispensable components of modern medicinal chemistry and are becoming increasingly prominent in new drugs. In fact, about 30% of small-molecule pharmaceuticals contain residues of tailor-made AAs or structurally related diamines and amino-alcohols. Cyclic tailor-made AAs present a particular value to rational structural design by virtue of their local conformational constraints and are widely used in lead optimization programs. The present review article highlights 34 compounds, all of which are derived from cyclic AAs, representing recently-approved, small-molecule pharmaceuticals as well as promising drug candidates currently in various phases of clinical study. For each compound, the discussion includes the discovery, therapeutic profile and optimized synthesis, with a focus on the preparation of cyclic tailor-made AA as the principal structural feature. The present review article is intended to serve as a reference source for organic, medicinal and process chemists along with other professionals working in the fields of drug design and pharmaceutical discovery.
Collapse
Affiliation(s)
- Jiang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan.
| | - Tatsunori Sato
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Sarah White
- Oakwood Chemical, Inc, 730 Columbia Hwy. N, Estill, SC, 29918, USA
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, PO Box, 4000, Princeton, NJ, 08543 4000, United States
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain.
| |
Collapse
|
30
|
Zhao G, Samanta SS, Michieletto J, Roche SP. A Broad Substrate Scope of Aza-Friedel-Crafts Alkylation for the Synthesis of Quaternary α-Amino Esters. Org Lett 2020; 22:5822-5827. [PMID: 32649206 PMCID: PMC7654210 DOI: 10.1021/acs.orglett.0c01895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A versatile synthetic protocol of aza-Friedel-Crafts alkylation has been developed for the synthesis of quaternary α-amino esters. This operationally simple alkylation proceeds under ambient conditions with high efficiency, regioselectivity, and an exceptionally broad scope of arene nucleophiles. A key feature of this alkylation is the role associated with the silver(I) salt counteranions liberated during the reaction. Taking advantage of a phase-transfer counteranion/Brønsted acid pair mechanism, we also report a catalytic enantioselective example of the reaction.
Collapse
Affiliation(s)
- Guangkuan Zhao
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Shyam S Samanta
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Jessica Michieletto
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Stéphane P Roche
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
- Center for Molecular Biology and Biotechnology, Florida Atlantic University, Jupiter, Florida 33458, United States
| |
Collapse
|