1
|
Airas J, Bayas CA, N'Ait Ousidi A, Ait Itto MY, Auhmani A, Loubidi M, Esseffar M, Pollock JA, Parish CA. Investigating novel thiazolyl-indazole derivatives as scaffolds for SARS-CoV-2 M Pro inhibitors. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2022; 4:100034. [PMID: 37519829 PMCID: PMC8828376 DOI: 10.1016/j.ejmcr.2022.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/20/2021] [Accepted: 02/07/2022] [Indexed: 11/29/2022]
Abstract
COVID-19 is a global pandemic caused by infection with the SARS-CoV-2 virus. Remdesivir, a SARS-CoV-2 RNA polymerase inhibitor, is the only drug to have received widespread approval for treatment of COVID-19. The SARS-CoV-2 main protease enzyme (MPro), essential for viral replication and transcription, remains an active target in the search for new treatments. In this study, the ability of novel thiazolyl-indazole derivatives to inhibit MPro is evaluated. These compounds were synthesized via the heterocyclization of phenacyl bromide with (R)-carvone, (R)-pulegone and (R)-menthone thiosemicarbazones. The binding affinity and binding interactions of each compound were evaluated through Schrödinger Glide docking, AMBER molecular dynamics simulations, and MM-GBSA free energy estimation, and these results were compared with similar calculations of MPro binding various 5-mer substrates (VKLQA, VKLQS, VKLQG) and a previously identified MPro tight-binder X77. From these simulations, we can see that binding is driven by residue specific interactions such as π-stacking with His41, and S/π interactions with Met49 and Met165. The compounds were also experimentally evaluated in a MPro biochemical assay and the most potent compound containing a phenylthiazole moiety inhibited protease activity with an IC50 of 92.9 μM. This suggests that the phenylthiazole scaffold is a promising candidate for the development of future MPro inhibitors.
Collapse
Affiliation(s)
- Justin Airas
- Department of Chemistry, University of Richmond, Gottwald Center for the Sciences, Richmond, VA, 23173, USA
| | - Catherine A Bayas
- Department of Chemistry, University of Richmond, Gottwald Center for the Sciences, Richmond, VA, 23173, USA
| | - Abdellah N'Ait Ousidi
- Département de Chimie, Faculté des Sciences Semlalia, Cadi Ayyad University, BP, 2390, Marrakech, Morocco
| | - Moulay Youssef Ait Itto
- Département de Chimie, Faculté des Sciences Semlalia, Cadi Ayyad University, BP, 2390, Marrakech, Morocco
| | - Aziz Auhmani
- Département de Chimie, Faculté des Sciences Semlalia, Cadi Ayyad University, BP, 2390, Marrakech, Morocco
| | - Mohamed Loubidi
- Département de Chimie, Faculté des Sciences Semlalia, Cadi Ayyad University, BP, 2390, Marrakech, Morocco
| | - M'hamed Esseffar
- Département de Chimie, Faculté des Sciences Semlalia, Cadi Ayyad University, BP, 2390, Marrakech, Morocco
| | - Julie A Pollock
- Department of Chemistry, University of Richmond, Gottwald Center for the Sciences, Richmond, VA, 23173, USA
| | - Carol A Parish
- Department of Chemistry, University of Richmond, Gottwald Center for the Sciences, Richmond, VA, 23173, USA
| |
Collapse
|
2
|
Dhanavath R, Dharavath R, Kothula D, Bitla S, Yaku G, Birdaraju S, Puchakayala MR, Atcha KR. Synthesis and Biological Evaluation of Novel 2‐Arylquinoline‐3‐Fused Thiazolo
[2,3‐c]1,2,
4‐Triazole Heterocycles as Potential Antiproliferative and Antimicrobial Agents. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ramulu Dhanavath
- Department of Chemistry, Nizam College Osmania University Hyderabad India
| | - Ravinder Dharavath
- Green & Medicinal Chemistry Lab, Department of Chemistry Osmania University Hyderabad India
| | - Devender Kothula
- Department of Chemistry, Nizam College Osmania University Hyderabad India
| | - Sampath Bitla
- Department of Chemistry, Nizam College Osmania University Hyderabad India
| | - Gugulothu Yaku
- Green & Medicinal Chemistry Lab, Department of Chemistry Osmania University Hyderabad India
| | - Saritha Birdaraju
- Department of Chemistry, Nizam College Osmania University Hyderabad India
| | | | | |
Collapse
|
3
|
Oubella A, Fawzi M, Bimoussa A, N’Ait Ousidi A, Auhmani A, Riahi A, Robert A, El Firdoussi L, Morjani H, Ait Itto MY. Convenient route to benzo[1,2,3]selenadiazole–isoxazole hybrids and evaluation of their in vitro cytotoxicity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02083-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|